/********************************************************************
* COPYRIGHT:
* Copyright (c) 1999-2009, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/************************************************************************
* Date Name Description
* 12/15/99 Madhu Creation.
* 01/12/2000 Madhu Updated for changed API and added new tests
************************************************************************/
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include "unicode/utypes.h"
#include "unicode/brkiter.h"
#include "unicode/rbbi.h"
#include "unicode/uchar.h"
#include "unicode/utf16.h"
#include "unicode/ucnv.h"
#include "unicode/schriter.h"
#include "unicode/uniset.h"
#include "unicode/regex.h" // TODO: make conditional on regexp being built.
#include "unicode/ustring.h"
#include "unicode/utext.h"
#include "intltest.h"
#include "rbbitst.h"
#include <string.h>
#include "uvector.h"
#include "uvectr32.h"
#include "triedict.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "unicode/numfmt.h"
#include "unicode/uscript.h"
#define TEST_ASSERT(x) {if (!(x)) { \
errln("Failure in file %s, line %d", __FILE__, __LINE__);}}
#define TEST_ASSERT_SUCCESS(errcode) { if (U_FAILURE(errcode)) { \
errcheckln(errcode, "Failure in file %s, line %d, status = \"%s\"", __FILE__, __LINE__, u_errorName(errcode));}}
//---------------------------------------------
// runIndexedTest
//---------------------------------------------
void RBBITest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* params )
{
if (exec) logln("TestSuite RuleBasedBreakIterator: ");
switch (index) {
case 0: name = "TestBug4153072";
if(exec) TestBug4153072(); break;
case 1: name = "TestJapaneseLineBreak";
if(exec) TestJapaneseLineBreak(); break;
case 2: name = "TestStatusReturn";
if(exec) TestStatusReturn(); break;
case 3: name = "TestUnicodeFiles";
if(exec) TestUnicodeFiles(); break;
case 4: name = "TestEmptyString";
if(exec) TestEmptyString(); break;
case 5: name = "TestGetAvailableLocales";
if(exec) TestGetAvailableLocales(); break;
case 6: name = "TestGetDisplayName";
if(exec) TestGetDisplayName(); break;
case 7: name = "TestEndBehaviour";
if(exec) TestEndBehaviour(); break;
case 8: name = "TestMixedThaiLineBreak";
if(exec) TestMixedThaiLineBreak(); break;
case 9: name = "TestThaiLineBreak";
if(exec) TestThaiLineBreak(); break;
case 10: name = "TestMaiyamok";
if(exec) TestMaiyamok(); break;
case 11: name = "TestWordBreaks";
if(exec) TestWordBreaks(); break;
case 12: name = "TestWordBoundary";
if(exec) TestWordBoundary(); break;
case 13: name = "TestLineBreaks";
if(exec) TestLineBreaks(); break;
case 14: name = "TestSentBreaks";
if(exec) TestSentBreaks(); break;
case 15: name = "TestExtended";
if(exec) TestExtended(); break;
case 16: name = "TestMonkey";
if(exec) {
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
TestMonkey(params);
#else
logln("skipping TestMonkey (UCONFIG_NO_REGULAR_EXPRESSIONS)");
#endif
}
break;
case 17: name = "TestBug3818";
if(exec) TestBug3818(); break;
case 18: name = "TestJapaneseWordBreak";
if(exec) TestJapaneseWordBreak(); break;
case 19: name = "TestDebug";
if(exec) TestDebug(); break;
case 20: name = "TestTrieDict";
if(exec) TestTrieDict(); break;
case 21: name = "TestBug5775";
if (exec) TestBug5775(); break;
case 22: name = "TestThaiBreaks";
if (exec) TestThaiBreaks(); break;
case 23: name = "TestTailoredBreaks";
if (exec) TestTailoredBreaks(); break;
case 24: name = "TestTrieDictWithValue";
if(exec) TestTrieDictWithValue(); break;
default: name = ""; break; //needed to end loop
}
}
//---------------------------------------------------------------------------
//
// class BITestData Holds a set of Break iterator test data and results
// Includes
// - the string data to be broken
// - a vector of the expected break positions.
// - a vector of source line numbers for the data,
// (to help see where errors occured.)
// - The expected break tag values.
// - Vectors of actual break positions and tag values.
// - Functions for comparing actual with expected and
// reporting errors.
//
//----------------------------------------------------------------------------
class BITestData {
public:
UnicodeString fDataToBreak;
UVector fExpectedBreakPositions;
UVector fExpectedTags;
UVector fLineNum;
UVector fActualBreakPositions; // Test Results.
UVector fActualTags;
BITestData(UErrorCode &status);
void addDataChunk(const char *data, int32_t tag, int32_t lineNum, UErrorCode status);
void checkResults(const char *heading, RBBITest *test);
void err(const char *heading, RBBITest *test, int32_t expectedIdx, int32_t actualIdx);
void clearResults();
};
//
// Constructor.
//
BITestData::BITestData(UErrorCode &status)
: fExpectedBreakPositions(status), fExpectedTags(status), fLineNum(status), fActualBreakPositions(status),
fActualTags(status)
{
}
//
// addDataChunk. Add a section (non-breaking) piece if data to the test data.
// The macro form collects the line number, which is helpful
// when tracking down failures.
//
// A null data item is inserted at the start of each test's data
// to put the starting zero into the data list. The position saved for
// each non-null item is its ending position.
//
#define ADD_DATACHUNK(td, data, tag, status) td.addDataChunk(data, tag, __LINE__, status);
void BITestData::addDataChunk(const char *data, int32_t tag, int32_t lineNum, UErrorCode status) {
if (U_FAILURE(status)) {return;}
if (data != NULL) {
fDataToBreak.append(CharsToUnicodeString(data));
}
fExpectedBreakPositions.addElement(fDataToBreak.length(), status);
fExpectedTags.addElement(tag, status);
fLineNum.addElement(lineNum, status);
}
//
// checkResults. Compare the actual and expected break positions, report any differences.
//
void BITestData::checkResults(const char *heading, RBBITest *test) {
int32_t expectedIndex = 0;
int32_t actualIndex = 0;
for (;;) {
// If we've run through both the expected and actual results vectors, we're done.
// break out of the loop.
if (expectedIndex >= fExpectedBreakPositions.size() &&
actualIndex >= fActualBreakPositions.size()) {
break;
}
if (expectedIndex >= fExpectedBreakPositions.size()) {
err(heading, test, expectedIndex-1, actualIndex);
actualIndex++;
continue;
}
if (actualIndex >= fActualBreakPositions.size()) {
err(heading, test, expectedIndex, actualIndex-1);
expectedIndex++;
continue;
}
if (fActualBreakPositions.elementAti(actualIndex) != fExpectedBreakPositions.elementAti(expectedIndex)) {
err(heading, test, expectedIndex, actualIndex);
// Try to resync the positions of the indices, to avoid a rash of spurious erros.
if (fActualBreakPositions.elementAti(actualIndex) < fExpectedBreakPositions.elementAti(expectedIndex)) {
actualIndex++;
} else {
expectedIndex++;
}
continue;
}
if (fActualTags.elementAti(actualIndex) != fExpectedTags.elementAti(expectedIndex)) {
test->errln("%s, tag mismatch. Test Line = %d, expected tag=%d, got %d",
heading, fLineNum.elementAt(expectedIndex),
fExpectedTags.elementAti(expectedIndex), fActualTags.elementAti(actualIndex));
}
actualIndex++;
expectedIndex++;
}
}
//
// err - An error was found. Report it, along with information about where the
// incorrectly broken test data appeared in the source file.
//
void BITestData::err(const char *heading, RBBITest *test, int32_t expectedIdx, int32_t actualIdx)
{
int32_t expected = fExpectedBreakPositions.elementAti(expectedIdx);
int32_t actual = fActualBreakPositions.elementAti(actualIdx);
int32_t o = 0;
int32_t line = fLineNum.elementAti(expectedIdx);
if (expectedIdx > 0) {
// The line numbers are off by one because a premature break occurs somewhere
// within the previous item, rather than at the start of the current (expected) item.
// We want to report the offset of the unexpected break from the start of
// this previous item.
o = actual - fExpectedBreakPositions.elementAti(expectedIdx-1);
}
if (actual < expected) {
test->errln("%s unexpected break at offset %d in test item from line %d. actual break: %d expected break: %d", heading, o, line, actual, expected);
} else {
test->errln("%s Failed to find break at end of item from line %d. actual break: %d expected break: %d", heading, line, actual, expected);
}
}
void BITestData::clearResults() {
fActualBreakPositions.removeAllElements();
fActualTags.removeAllElements();
}
//-----------------------------------------------------------------------------------
//
// Cannned Test Characters
//
//-----------------------------------------------------------------------------------
static const UChar cannedTestArray[] = {
0x0001, 0x0002, 0x0003, 0x0004, 0x0020, 0x0021, '\\', 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0028, 0x0029, 0x002b, 0x002d, 0x0030, 0x0031,
0x0032, 0x0033, 0x0034, 0x003c, 0x003d, 0x003e, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x005b, 0x005d, 0x005e, 0x005f, 0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x007b,
0x007d, 0x007c, 0x002c, 0x00a0, 0x00a2,
0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7, 0x00a8, 0x00a9, 0x00ab, 0x00ad, 0x00ae, 0x00af, 0x00b0, 0x00b2, 0x00b3,
0x00b4, 0x00b9, 0x00bb, 0x00bc, 0x00bd, 0x02b0, 0x02b1, 0x02b2, 0x02b3, 0x02b4, 0x0300, 0x0301, 0x0302, 0x0303,
0x0304, 0x05d0, 0x05d1, 0x05d2, 0x05d3, 0x05d4, 0x0903, 0x093e, 0x093f, 0x0940, 0x0949, 0x0f3a, 0x0f3b, 0x2000,
0x2001, 0x2002, 0x200c, 0x200d, 0x200e, 0x200f, 0x2010, 0x2011, 0x2012, 0x2028, 0x2029, 0x202a, 0x203e, 0x203f,
0x2040, 0x20dd, 0x20de, 0x20df, 0x20e0, 0x2160, 0x2161, 0x2162, 0x2163, 0x2164, 0x0000
};
static UnicodeString* cannedTestChars = 0;
#define halfNA "\\u0928\\u094d\\u200d"
#define halfSA "\\u0938\\u094d\\u200d"
#define halfCHA "\\u091a\\u094d\\u200d"
#define halfKA "\\u0915\\u094d\\u200d"
#define deadTA "\\u0924\\u094d"
//--------------------------------------------------------------------------------------
//
// RBBITest constructor and destructor
//
//--------------------------------------------------------------------------------------
RBBITest::RBBITest() {
UnicodeString temp(cannedTestArray);
cannedTestChars = new UnicodeString();
*cannedTestChars += (UChar)0x0000;
*cannedTestChars += temp;
}
RBBITest::~RBBITest() {
delete cannedTestChars;
}
static const int T_NUMBER = 100;
static const int T_LETTER = 200;
static const int T_H_OR_K = 300;
static const int T_IDEO = 400;
//--------------------------------------------------------------------
//Testing the BreakIterator for devanagari script
//--------------------------------------------------------------------
#define deadRA "\\u0930\\u094d" /*deadform RA = devanagari RA + virama*/
#define deadPHA "\\u092b\\u094d" /*deadform PHA = devanagari PHA + virama*/
#define deadTTHA "\\u0920\\u094d"
#define deadPA "\\u092a\\u094d"
#define deadSA "\\u0938\\u094d"
#define visarga "\\u0903" /*devanagari visarga looks like a english colon*/
//-----------------------------------------------------------------------------------
//
// Test for status {tag} return value from break rules.
// TODO: a more thorough test.
//
//-----------------------------------------------------------------------------------
void RBBITest::TestStatusReturn() {
UnicodeString rulesString1("$Letters = [:L:];\n"
"$Numbers = [:N:];\n"
"$Letters+{1};\n"
"$Numbers+{2};\n"
"Help\\ {4}/me\\!;\n"
"[^$Letters $Numbers];\n"
"!.*;\n", -1, US_INV);
UnicodeString testString1 = "abc123..abc Help me Help me!";
// 01234567890123456789012345678
int32_t bounds1[] = {0, 3, 6, 7, 8, 11, 12, 16, 17, 19, 20, 25, 27, 28, -1};
int32_t brkStatus[] = {0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 4, 1, 0, -1};
UErrorCode status=U_ZERO_ERROR;
UParseError parseError;
RuleBasedBreakIterator *bi = new RuleBasedBreakIterator(rulesString1, parseError, status);
if(U_FAILURE(status)) {
dataerrln("FAIL : in construction - %s", u_errorName(status));
} else {
int32_t pos;
int32_t i = 0;
bi->setText(testString1);
for (pos=bi->first(); pos!= BreakIterator::DONE; pos=bi->next()) {
if (pos != bounds1[i]) {
errln("FAIL: expected break at %d, got %d\n", bounds1[i], pos);
break;
}
int tag = bi->getRuleStatus();
if (tag != brkStatus[i]) {
errln("FAIL: break at %d, expected tag %d, got tag %d\n", pos, brkStatus[i], tag);
break;
}
i++;
}
}
delete bi;
}
static void printStringBreaks(UnicodeString ustr, int expected[],
int expectedcount)
{
UErrorCode status = U_ZERO_ERROR;
char name[100];
printf("code alpha extend alphanum type word sent line name\n");
int j;
for (j = 0; j < ustr.length(); j ++) {
if (expectedcount > 0) {
int k;
for (k = 0; k < expectedcount; k ++) {
if (j == expected[k]) {
printf("------------------------------------------------ %d\n",
j);
}
}
}
UChar32 c = ustr.char32At(j);
if (c > 0xffff) {
j ++;
}
u_charName(c, U_UNICODE_CHAR_NAME, name, 100, &status);
printf("%7x %5d %6d %8d %4s %4s %4s %4s %s\n", (int)c,
u_isUAlphabetic(c),
u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND),
u_isalnum(c),
u_getPropertyValueName(UCHAR_GENERAL_CATEGORY,
u_charType(c),
U_SHORT_PROPERTY_NAME),
u_getPropertyValueName(UCHAR_WORD_BREAK,
u_getIntPropertyValue(c,
UCHAR_WORD_BREAK),
U_SHORT_PROPERTY_NAME),
u_getPropertyValueName(UCHAR_SENTENCE_BREAK,
u_getIntPropertyValue(c,
UCHAR_SENTENCE_BREAK),
U_SHORT_PROPERTY_NAME),
u_getPropertyValueName(UCHAR_LINE_BREAK,
u_getIntPropertyValue(c,
UCHAR_LINE_BREAK),
U_SHORT_PROPERTY_NAME),
name);
}
}
void RBBITest::TestThaiLineBreak() {
UErrorCode status = U_ZERO_ERROR;
BITestData thaiLineSelection(status);
// \u0e2f-- the Thai paiyannoi character-- isn't a letter. It's a symbol that
// represents elided letters at the end of a long word. It should be bound to
// the end of the word and not treated as an independent punctuation mark.
ADD_DATACHUNK(thaiLineSelection, NULL, 0, status); // Break at start of data
ADD_DATACHUNK(thaiLineSelection, "\\u0e2a\\u0e16\\u0e32\\u0e19\\u0e35\\u0e2f", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e08\\u0e30", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e23\\u0e30\\u0e14\\u0e21", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e40\\u0e08\\u0e49\\u0e32", 0, status);
// ADD_DATACHUNK(thaiLineSelection, "\\u0e2b\\u0e19\\u0e49\\u0e32", 0, status);
// ADD_DATACHUNK(thaiLineSelection, "\\u0e17\\u0e35\\u0e48", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e2b\\u0e19\\u0e49\\u0e32\\u0e17\\u0e35\\u0e48", 0, status);
// the commented-out lines (I think) are the preferred result; this line is what our current dictionary is giving us
ADD_DATACHUNK(thaiLineSelection, "\\u0e2d\\u0e2d\\u0e01", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e21\\u0e32", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e40\\u0e23\\u0e48\\u0e07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e23\\u0e30\\u0e1a\\u0e32\\u0e22", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e2d\\u0e22\\u0e48\\u0e32\\u0e07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e40\\u0e15\\u0e47\\u0e21", 0, status);
// the one time where the paiyannoi occurs somewhere other than at the end
// of a word is in the Thai abbrevation for "etc.", which both begins and
// ends with a paiyannoi
ADD_DATACHUNK(thaiLineSelection, "\\u0e2f\\u0e25\\u0e2f", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e17\\u0e35\\u0e48", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e19\\u0e31\\u0e49\\u0e19", 0, status);
RuleBasedBreakIterator* e = (RuleBasedBreakIterator *)BreakIterator::createLineInstance(
Locale("th"), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for Thai locale in TestThaiLineBreak. - %s", u_errorName(status));
return;
}
generalIteratorTest(*e, thaiLineSelection);
delete e;
}
void RBBITest::TestMixedThaiLineBreak()
{
UErrorCode status = U_ZERO_ERROR;
BITestData thaiLineSelection(status);
ADD_DATACHUNK(thaiLineSelection, NULL, 0, status); // Break at start of data
// @suwit -- Test Arabic numerals, Thai numerals, Punctuation and English characters
// start
ADD_DATACHUNK(thaiLineSelection, "\\u0E1B\\u0E35", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E1E\\u0E38\\u0E17\\u0E18\\u0E28\\u0E31\\u0E01\\u0E23\\u0E32\\u0E0A ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "2545 ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E40\\u0E1B\\u0E47\\u0E19", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E1B\\u0E35", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E09\\u0E25\\u0E2D\\u0E07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E04\\u0E23\\u0E1A", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E23\\u0E2D\\u0E1A ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\"\\u0E52\\u0E52\\u0E50 ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E1b\\u0E35\" ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E02\\u0E2d\\u0E07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E01\\u0E23\\u0E38\\u0E07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E23\\u0E31\\u0E15\\u0E19\\u0E42\\u0E01\\u0E2A\\u0E34\\u0E19\\u0E17\\u0E23\\u0E4C ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "(\\u0E01\\u0E23\\u0E38\\u0E07\\u0E40\\u0E17\\u0E1e\\u0E2F", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0E2B\\u0E23\\u0E37\\u0E2D ", 0, status);
ADD_DATACHUNK(thaiLineSelection, "Bangkok)", 0, status);
// @suwit - end of changes
RuleBasedBreakIterator* e = (RuleBasedBreakIterator *)BreakIterator::createLineInstance(Locale("th"), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for Thai locale in TestMixedThaiLineBreak. - %s", u_errorName(status));
return;
}
generalIteratorTest(*e, thaiLineSelection);
delete e;
}
void RBBITest::TestMaiyamok()
{
UErrorCode status = U_ZERO_ERROR;
BITestData thaiLineSelection(status);
ADD_DATACHUNK(thaiLineSelection, NULL, 0, status); // Break at start of data
// the Thai maiyamok character is a shorthand symbol that means "repeat the previous
// word". Instead of appearing as a word unto itself, however, it's kept together
// with the word before it
ADD_DATACHUNK(thaiLineSelection, "\\u0e44\\u0e1b\\u0e46", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e21\\u0e32\\u0e46", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e23\\u0e30\\u0e2b\\u0e27\\u0e48\\u0e32\\u0e07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e01\\u0e23\\u0e38\\u0e07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e40\\u0e17\\u0e1e", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e41\\u0e25\\u0e30", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e40\\u0e03\\u0e35", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e22\\u0e07", 0, status);
ADD_DATACHUNK(thaiLineSelection, "\\u0e43\\u0e2b\\u0e21\\u0e48", 0, status);
RuleBasedBreakIterator* e = (RuleBasedBreakIterator *)BreakIterator::createLineInstance(
Locale("th"), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for Thai locale in TestMaiyamok. - %s", u_errorName(status));
return;
}
generalIteratorTest(*e, thaiLineSelection);
delete e;
}
void RBBITest::TestBug3818() {
UErrorCode status = U_ZERO_ERROR;
// Four Thai words...
static const UChar thaiWordData[] = { 0x0E43,0x0E2B,0x0E0D,0x0E48, 0x0E43,0x0E2B,0x0E0D,0x0E48,
0x0E43,0x0E2B,0x0E0D,0x0E48, 0x0E43,0x0E2B,0x0E0D,0x0E48, 0 };
UnicodeString thaiStr(thaiWordData);
RuleBasedBreakIterator* bi =
(RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale("th"), status);
if (U_FAILURE(status) || bi == NULL) {
errcheckln(status, "Fail at file %s, line %d, status = %s", __FILE__, __LINE__, u_errorName(status));
return;
}
bi->setText(thaiStr);
int32_t startOfSecondWord = bi->following(1);
if (startOfSecondWord != 4) {
errln("Fail at file %s, line %d expected start of word at 4, got %d",
__FILE__, __LINE__, startOfSecondWord);
}
startOfSecondWord = bi->following(0);
if (startOfSecondWord != 4) {
errln("Fail at file %s, line %d expected start of word at 4, got %d",
__FILE__, __LINE__, startOfSecondWord);
}
delete bi;
}
void RBBITest::TestJapaneseWordBreak() {
// TODO: Rewrite this test for a dictionary-based word breaking.
#if 0
UErrorCode status = U_ZERO_ERROR;
BITestData japaneseWordSelection(status);
ADD_DATACHUNK(japaneseWordSelection, NULL, 0, status); // Break at start of data
ADD_DATACHUNK(japaneseWordSelection, "\\u4ECA\\u65E5", 400, status); //2
ADD_DATACHUNK(japaneseWordSelection, "\\u306F\\u3044\\u3044", 300, status); //5
ADD_DATACHUNK(japaneseWordSelection, "\\u5929\\u6C17", 400, status); //7
ADD_DATACHUNK(japaneseWordSelection, "\\u3067\\u3059\\u306D", 300, status); //10
ADD_DATACHUNK(japaneseWordSelection, "\\u3002", 0, status); //11
ADD_DATACHUNK(japaneseWordSelection, "\\u000D\\u000A", 0, status); //12
RuleBasedBreakIterator* e = (RuleBasedBreakIterator *)BreakIterator::createWordInstance(
Locale("ja"), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for Japanese locale in TestJapaneseWordBreak.\n");
return;
}
generalIteratorTest(*e, japaneseWordSelection);
delete e;
#endif
}
void RBBITest::TestTrieDict() {
UErrorCode status = U_ZERO_ERROR;
//
// Open and read the test data file.
//
const char *testDataDirectory = IntlTest::getSourceTestData(status);
char testFileName[1000];
if (testDataDirectory == NULL || strlen(testDataDirectory) + strlen("riwords.txt") + 10 >= sizeof(testFileName)) {
errln("Can't open test data. Path too long.");
return;
}
strcpy(testFileName, testDataDirectory);
strcat(testFileName, "riwords.txt");
// Items needing deleting at the end
MutableTrieDictionary *mutableDict = NULL;
CompactTrieDictionary *compactDict = NULL;
UnicodeSet *breaks = NULL;
UChar *testFile = NULL;
StringEnumeration *enumer1 = NULL;
StringEnumeration *enumer2 = NULL;
MutableTrieDictionary *mutable2 = NULL;
StringEnumeration *cloneEnum = NULL;
CompactTrieDictionary *compact2 = NULL;
const UnicodeString *originalWord = NULL;
const UnicodeString *cloneWord = NULL;
UChar *current;
UChar *word;
UChar uc;
int32_t wordLen;
int32_t wordCount;
int32_t testCount;
int len;
testFile = ReadAndConvertFile(testFileName, len, NULL, status);
if (U_FAILURE(status)) {
goto cleanup; /* something went wrong, error already output */
}
mutableDict = new MutableTrieDictionary(0x0E1C, status);
if (U_FAILURE(status)) {
errln("Error creating MutableTrieDictionary: %s\n", u_errorName(status));
goto cleanup;
}
breaks = new UnicodeSet;
breaks->add(0x000A); // Line Feed
breaks->add(0x000D); // Carriage Return
breaks->add(0x2028); // Line Separator
breaks->add(0x2029); // Paragraph Separator
// Now add each non-comment line of the file as a word.
current = testFile;
word = current;
uc = *current++;
wordLen = 0;
wordCount = 0;
while (uc) {
if (uc == 0x0023) { // #comment line, skip
while (uc && !breaks->contains(uc)) {
uc = *current++;
}
}
else while (uc && !breaks->contains(uc)) {
++wordLen;
uc = *current++;
}
if (wordLen > 0) {
mutableDict->addWord(word, wordLen, status);
if (U_FAILURE(status)) {
errln("Could not add word to mutable dictionary; status %s\n", u_errorName(status));
goto cleanup;
}
wordCount += 1;
}
// Find beginning of next line
while (uc && breaks->contains(uc)) {
uc = *current++;
}
word = current-1;
wordLen = 0;
}
if (wordCount < 50) {
errln("Word count (%d) unreasonably small\n", wordCount);
goto cleanup;
}
enumer1 = mutableDict->openWords(status);
if (U_FAILURE(status)) {
errln("Could not open mutable dictionary enumerator: %s\n", u_errorName(status));
goto cleanup;
}
testCount = 0;
if (wordCount != (testCount = enumer1->count(status))) {
errln("MutableTrieDictionary word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
// Now compact it
compactDict = new CompactTrieDictionary(*mutableDict, status);
if (U_FAILURE(status)) {
errln("Failed to create CompactTrieDictionary: %s\n", u_errorName(status));
goto cleanup;
}
enumer2 = compactDict->openWords(status);
if (U_FAILURE(status)) {
errln("Could not open compact trie dictionary enumerator: %s\n", u_errorName(status));
goto cleanup;
}
if (wordCount != (testCount = enumer2->count(status))) {
errln("CompactTrieDictionary word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
if (enumer1->getDynamicClassID() == enumer2->getDynamicClassID()) {
errln("CompactTrieEnumeration and MutableTrieEnumeration ClassIDs are the same");
}
delete enumer1;
enumer1 = NULL;
delete enumer2;
enumer2 = NULL;
// Now un-compact it
mutable2 = compactDict->cloneMutable(status);
if (U_FAILURE(status)) {
errln("Could not clone CompactTrieDictionary to MutableTrieDictionary: %s\n", u_errorName(status));
goto cleanup;
}
cloneEnum = mutable2->openWords(status);
if (U_FAILURE(status)) {
errln("Could not create cloned mutable enumerator: %s\n", u_errorName(status));
goto cleanup;
}
if (wordCount != (testCount = cloneEnum->count(status))) {
errln("Cloned MutableTrieDictionary word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
// Compact original dictionary to clone. Note that we can only compare the same kind of
// dictionary as the order of the enumerators is not guaranteed to be the same between
// different kinds
enumer1 = mutableDict->openWords(status);
if (U_FAILURE(status)) {
errln("Could not re-open mutable dictionary enumerator: %s\n", u_errorName(status));
goto cleanup;
}
originalWord = enumer1->snext(status);
cloneWord = cloneEnum->snext(status);
while (U_SUCCESS(status) && originalWord != NULL && cloneWord != NULL) {
if (*originalWord != *cloneWord) {
errln("Original and cloned MutableTrieDictionary word mismatch\n");
goto cleanup;
}
originalWord = enumer1->snext(status);
cloneWord = cloneEnum->snext(status);
}
if (U_FAILURE(status)) {
errln("Enumeration failed: %s\n", u_errorName(status));
goto cleanup;
}
if (originalWord != cloneWord) {
errln("Original and cloned MutableTrieDictionary ended enumeration at different points\n");
goto cleanup;
}
// Test the data copying constructor for CompactTrieDict, and the data access APIs.
compact2 = new CompactTrieDictionary(compactDict->data(), status);
if (U_FAILURE(status)) {
errln("CompactTrieDictionary(const void *,...) failed\n");
goto cleanup;
}
if (compact2->dataSize() == 0) {
errln("CompactTrieDictionary->dataSize() == 0\n");
goto cleanup;
}
// Now count the words via the second dictionary
delete enumer1;
enumer1 = compact2->openWords(status);
if (U_FAILURE(status)) {
errln("Could not open compact trie dictionary 2 enumerator: %s\n", u_errorName(status));
goto cleanup;
}
if (wordCount != (testCount = enumer1->count(status))) {
errln("CompactTrieDictionary 2 word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
cleanup:
delete compactDict;
delete mutableDict;
delete breaks;
delete[] testFile;
delete enumer1;
delete mutable2;
delete cloneEnum;
delete compact2;
}
/*TODO: delete later*/
inline void writeEnumerationToFile(StringEnumeration *enumer, char *filename){
UErrorCode status = U_ZERO_ERROR;
FILE *outfile = fopen(filename,"w");
UConverter *cvt = ucnv_open("UTF-8", &status);
if (U_FAILURE(status))
return;
if(outfile != NULL){
status = U_ZERO_ERROR;
const UnicodeString *word = enumer->snext(status);
while (word != NULL && U_SUCCESS(status)) {
char u8word[500];
status = U_ZERO_ERROR;
ucnv_fromUChars(cvt, u8word, 500, word->getBuffer(), word->length(),
&status);
fprintf(outfile,"%s\n", u8word);
status = U_ZERO_ERROR;
word = enumer->snext(status);
}
fclose(outfile);
}
ucnv_close(cvt);
}
// A very simple helper class to streamline the buffer handling in
// TestTrieDictWithValue
template<class T, size_t N>
class AutoBuffer {
public:
AutoBuffer(size_t size) : buffer(stackBuffer) {
if (size > N)
buffer = new T[size];
}
~AutoBuffer() {
if (buffer != stackBuffer)
delete [] buffer;
}
T* elems() {
return buffer;
}
const T& operator[] (size_t i) const {
return buffer[i];
}
T& operator[] (size_t i) {
return buffer[i];
}
private:
T stackBuffer[N];
T* buffer;
AutoBuffer();
};
//----------------------------------------------------------------------------
//
// TestTrieDictWithValue Test trie dictionaries with logprob values and
// more than 2^16 nodes after compaction.
//
//----------------------------------------------------------------------------
void RBBITest::TestTrieDictWithValue() {
UErrorCode status = U_ZERO_ERROR;
//
// Open and read the test data file.
//
const char *testDataDirectory = IntlTest::getSourceTestData(status);
const char *filename = "cjdict-truncated.txt";
char testFileName[1000];
if (testDataDirectory == NULL || strlen(testDataDirectory) + strlen(filename) + 10 >= sizeof(testFileName)) {
errln("Can't open test data. Path too long.");
return;
}
strcpy(testFileName, testDataDirectory);
strcat(testFileName, filename);
// Items needing deleting at the end
MutableTrieDictionary *mutableDict = NULL;
CompactTrieDictionary *compactDict = NULL;
UnicodeSet *breaks = NULL;
UChar *testFile = NULL;
StringEnumeration *enumer1 = NULL;
StringEnumeration *enumer2 = NULL;
MutableTrieDictionary *mutable2 = NULL;
StringEnumeration *cloneEnum = NULL;
CompactTrieDictionary *compact2 = NULL;
NumberFormat *nf = NULL;
UText *originalText = NULL, *cloneText = NULL;
const UnicodeString *originalWord = NULL;
const UnicodeString *cloneWord = NULL;
UChar *current;
UChar *word;
UChar uc;
int32_t wordLen;
int32_t wordCount;
int32_t testCount;
int32_t valueLen;
int counter = 0;
int len;
testFile = ReadAndConvertFile(testFileName, len, NULL, status);
if (U_FAILURE(status)) {
goto cleanup; /* something went wrong, error already output */
}
mutableDict = new MutableTrieDictionary(0x0E1C, status, TRUE);
if (U_FAILURE(status)) {
errln("Error creating MutableTrieDictionary: %s\n", u_errorName(status));
goto cleanup;
}
breaks = new UnicodeSet;
breaks->add(0x000A); // Line Feed
breaks->add(0x000D); // Carriage Return
breaks->add(0x2028); // Line Separator
breaks->add(0x2029); // Paragraph Separator
breaks->add(0x0009); // Tab character
// Now add each non-comment line of the file as a word.
current = testFile;
word = current;
uc = *current++;
wordLen = 0;
wordCount = 0;
nf = NumberFormat::createInstance(status);
while (uc) {
UnicodeString ucharValue;
valueLen = 0;
if (uc == 0x0023) { // #comment line, skip
while (uc && !breaks->contains(uc)) {
uc = *current++;
}
}
else{
while (uc && !breaks->contains(uc)) {
++wordLen;
uc = *current++;
}
if(uc == 0x0009){ //separator is a tab char, read in num after tab
uc = *current++;
while (uc && !breaks->contains(uc)) {
ucharValue.append(uc);
uc = *current++;
}
}
}
if (wordLen > 0) {
Formattable value((int32_t)0);
nf->parse(ucharValue.getTerminatedBuffer(), value, status);
if(U_FAILURE(status)){
errln("parsing of value failed when reading in dictionary\n");
goto cleanup;
}
mutableDict->addWord(word, wordLen, status, value.getLong());
if (U_FAILURE(status)) {
errln("Could not add word to mutable dictionary; status %s\n", u_errorName(status));
goto cleanup;
}
wordCount += 1;
}
// Find beginning of next line
while (uc && breaks->contains(uc)) {
uc = *current++;
}
word = current-1;
wordLen = 0;
}
if (wordCount < 50) {
errln("Word count (%d) unreasonably small\n", wordCount);
goto cleanup;
}
enumer1 = mutableDict->openWords(status);
if (U_FAILURE(status)) {
errln("Could not open mutable dictionary enumerator: %s\n", u_errorName(status));
goto cleanup;
}
testCount = 0;
if (wordCount != (testCount = enumer1->count(status))) {
errln("MutableTrieDictionary word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
// Now compact it
compactDict = new CompactTrieDictionary(*mutableDict, status);
if (U_FAILURE(status)) {
errln("Failed to create CompactTrieDictionary: %s\n", u_errorName(status));
goto cleanup;
}
enumer2 = compactDict->openWords(status);
if (U_FAILURE(status)) {
errln("Could not open compact trie dictionary enumerator: %s\n", u_errorName(status));
goto cleanup;
}
//delete later
// writeEnumerationToFile(enumer1, "/home/jchye/mutable.txt");
// writeEnumerationToFile(enumer2, "/home/jchye/compact.txt");
enumer1->reset(status);
enumer2->reset(status);
originalWord = enumer1->snext(status);
cloneWord = enumer2->snext(status);
while (U_SUCCESS(status) && originalWord != NULL && cloneWord != NULL) {
if (*originalWord != *cloneWord) {
errln("MutableTrieDictionary and CompactTrieDictionary word mismatch at %d, lengths are %d and %d\n",
counter, originalWord->length(), cloneWord->length());
goto cleanup;
}
// check if attached values of the same word in both dictionaries tally
#if 0
int32_t lengths1[originalWord->length()], lengths2[cloneWord->length()];
uint16_t values1[originalWord->length()], values2[cloneWord->length()];
#endif
AutoBuffer<int32_t, 20> lengths1(originalWord->length());
AutoBuffer<int32_t, 20> lengths2(cloneWord->length());
AutoBuffer<uint16_t, 20> values1(originalWord->length());
AutoBuffer<uint16_t, 20> values2(cloneWord->length());
originalText = utext_openConstUnicodeString(originalText, originalWord, &status);
cloneText = utext_openConstUnicodeString(cloneText, cloneWord, &status);
int count1, count2;
mutableDict->matches(originalText, originalWord->length(), lengths1.elems(), count1, originalWord->length(), values1.elems());
compactDict->matches(cloneText, cloneWord->length(), lengths2.elems(), count2, cloneWord->length(), values2.elems());
if(values1[count1-1] != values2[count2-1]){
errln("Values of word %d in MutableTrieDictionary and CompactTrieDictionary do not match, with values %d and %d\n",
counter, values1[count1-1], values2[count2-1]);
goto cleanup;
}
counter++;
originalWord = enumer1->snext(status);
cloneWord = enumer2->snext(status);
}
if (enumer1->getDynamicClassID() == enumer2->getDynamicClassID()) {
errln("CompactTrieEnumeration and MutableTrieEnumeration ClassIDs are the same");
}
delete enumer1;
enumer1 = NULL;
delete enumer2;
enumer2 = NULL;
// Now un-compact it
mutable2 = compactDict->cloneMutable(status);
if (U_FAILURE(status)) {
errln("Could not clone CompactTrieDictionary to MutableTrieDictionary: %s\n", u_errorName(status));
goto cleanup;
}
cloneEnum = mutable2->openWords(status);
if (U_FAILURE(status)) {
errln("Could not create cloned mutable enumerator: %s\n", u_errorName(status));
goto cleanup;
}
if (wordCount != (testCount = cloneEnum->count(status))) {
errln("Cloned MutableTrieDictionary word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
// Compact original dictionary to clone. Note that we can only compare the same kind of
// dictionary as the order of the enumerators is not guaranteed to be the same between
// different kinds
enumer1 = mutableDict->openWords(status);
if (U_FAILURE(status)) {
errln("Could not re-open mutable dictionary enumerator: %s\n", u_errorName(status));
goto cleanup;
}
counter = 0;
originalWord = enumer1->snext(status);
cloneWord = cloneEnum->snext(status);
while (U_SUCCESS(status) && originalWord != NULL && cloneWord != NULL) {
if (*originalWord != *cloneWord) {
errln("Original and cloned MutableTrieDictionary word mismatch\n");
goto cleanup;
}
// check if attached values of the same word in both dictionaries tally
AutoBuffer<int32_t, 20> lengths1(originalWord->length());
AutoBuffer<int32_t, 20> lengths2(cloneWord->length());
AutoBuffer<uint16_t, 20> values1(originalWord->length());
AutoBuffer<uint16_t, 20> values2(cloneWord->length());
originalText = utext_openConstUnicodeString(originalText, originalWord, &status);
cloneText = utext_openConstUnicodeString(cloneText, cloneWord, &status);
int count1, count2;
mutableDict->matches(originalText, originalWord->length(), lengths1.elems(), count1, originalWord->length(), values1.elems());
mutable2->matches(cloneText, cloneWord->length(), lengths2.elems(), count2, cloneWord->length(), values2.elems());
if(values1[count1-1] != values2[count2-1]){
errln("Values of word %d in original and cloned MutableTrieDictionary do not match, with values %d and %d\n",
counter, values1[count1-1], values2[count2-1]);
goto cleanup;
}
counter++;
originalWord = enumer1->snext(status);
cloneWord = cloneEnum->snext(status);
}
if (U_FAILURE(status)) {
errln("Enumeration failed: %s\n", u_errorName(status));
goto cleanup;
}
if (originalWord != cloneWord) {
errln("Original and cloned MutableTrieDictionary ended enumeration at different points\n");
goto cleanup;
}
// Test the data copying constructor for CompactTrieDict, and the data access APIs.
compact2 = new CompactTrieDictionary(compactDict->data(), status);
if (U_FAILURE(status)) {
errln("CompactTrieDictionary(const void *,...) failed\n");
goto cleanup;
}
if (compact2->dataSize() == 0) {
errln("CompactTrieDictionary->dataSize() == 0\n");
goto cleanup;
}
// Now count the words via the second dictionary
delete enumer1;
enumer1 = compact2->openWords(status);
if (U_FAILURE(status)) {
errln("Could not open compact trie dictionary 2 enumerator: %s\n", u_errorName(status));
goto cleanup;
}
if (wordCount != (testCount = enumer1->count(status))) {
errln("CompactTrieDictionary 2 word count (%d) differs from file word count (%d), with status %s\n",
testCount, wordCount, u_errorName(status));
goto cleanup;
}
cleanup:
delete compactDict;
delete mutableDict;
delete breaks;
delete[] testFile;
delete enumer1;
delete mutable2;
delete cloneEnum;
delete compact2;
utext_close(originalText);
utext_close(cloneText);
}
//----------------------------------------------------------------------------
//
// generalIteratorTest Given a break iterator and a set of test data,
// Run the tests and report the results.
//
//----------------------------------------------------------------------------
void RBBITest::generalIteratorTest(RuleBasedBreakIterator& bi, BITestData &td)
{
bi.setText(td.fDataToBreak);
testFirstAndNext(bi, td);
testLastAndPrevious(bi, td);
testFollowing(bi, td);
testPreceding(bi, td);
testIsBoundary(bi, td);
doMultipleSelectionTest(bi, td);
}
//
// testFirstAndNext. Run the iterator forwards in the obvious first(), next()
// kind of loop.
//
void RBBITest::testFirstAndNext(RuleBasedBreakIterator& bi, BITestData &td)
{
UErrorCode status = U_ZERO_ERROR;
int32_t p;
int32_t lastP = -1;
int32_t tag;
logln("Test first and next");
bi.setText(td.fDataToBreak);
td.clearResults();
for (p=bi.first(); p!=RuleBasedBreakIterator::DONE; p=bi.next()) {
td.fActualBreakPositions.addElement(p, status); // Save result.
tag = bi.getRuleStatus();
td.fActualTags.addElement(tag, status);
if (p <= lastP) {
// If the iterator is not making forward progress, stop.
// No need to raise an error here, it'll be detected in the normal check of results.
break;
}
lastP = p;
}
td.checkResults("testFirstAndNext", this);
}
//
// TestLastAndPrevious. Run the iterator backwards, starting with last().
//
void RBBITest::testLastAndPrevious(RuleBasedBreakIterator& bi, BITestData &td)
{
UErrorCode status = U_ZERO_ERROR;
int32_t p;
int32_t lastP = 0x7ffffffe;
int32_t tag;
logln("Test last and previous");
bi.setText(td.fDataToBreak);
td.clearResults();
for (p=bi.last(); p!=RuleBasedBreakIterator::DONE; p=bi.previous()) {
// Save break position. Insert it at start of vector of results, shoving
// already-saved results further towards the end.
td.fActualBreakPositions.insertElementAt(p, 0, status);
// bi.previous(); // TODO: Why does this fix things up????
// bi.next();
tag = bi.getRuleStatus();
td.fActualTags.insertElementAt(tag, 0, status);
if (p >= lastP) {
// If the iterator is not making progress, stop.
// No need to raise an error here, it'll be detected in the normal check of results.
break;
}
lastP = p;
}
td.checkResults("testLastAndPrevious", this);
}
void RBBITest::testFollowing(RuleBasedBreakIterator& bi, BITestData &td)
{
UErrorCode status = U_ZERO_ERROR;
int32_t p;
int32_t tag;
int32_t lastP = -2; // A value that will never be returned as a break position.
// cannot be -1; that is returned for DONE.
int i;
logln("testFollowing():");
bi.setText(td.fDataToBreak);
td.clearResults();
// Save the starting point, since we won't get that out of following.
p = bi.first();
td.fActualBreakPositions.addElement(p, status); // Save result.
tag = bi.getRuleStatus();
td.fActualTags.addElement(tag, status);
for (i = 0; i <= td.fDataToBreak.length()+1; i++) {
p = bi.following(i);
if (p != lastP) {
if (p == RuleBasedBreakIterator::DONE) {
break;
}
// We've reached a new break position. Save it.
td.fActualBreakPositions.addElement(p, status); // Save result.
tag = bi.getRuleStatus();
td.fActualTags.addElement(tag, status);
lastP = p;
}
}
// The loop normally exits by means of the break in the middle.
// Make sure that the index was at the correct position for the break iterator to have
// returned DONE.
if (i != td.fDataToBreak.length()) {
errln("testFollowing(): iterator returned DONE prematurely.");
}
// Full check of all results.
td.checkResults("testFollowing", this);
}
void RBBITest::testPreceding(RuleBasedBreakIterator& bi, BITestData &td) {
UErrorCode status = U_ZERO_ERROR;
int32_t p;
int32_t tag;
int32_t lastP = 0x7ffffffe;
int i;
logln("testPreceding():");
bi.setText(td.fDataToBreak);
td.clearResults();
p = bi.last();
td.fActualBreakPositions.addElement(p, status);
tag = bi.getRuleStatus();
td.fActualTags.addElement(tag, status);
for (i = td.fDataToBreak.length(); i>=-1; i--) {
p = bi.preceding(i);
if (p != lastP) {
if (p == RuleBasedBreakIterator::DONE) {
break;
}
// We've reached a new break position. Save it.
td.fActualBreakPositions.insertElementAt(p, 0, status);
lastP = p;
tag = bi.getRuleStatus();
td.fActualTags.insertElementAt(tag, 0, status);
}
}
// The loop normally exits by means of the break in the middle.
// Make sure that the index was at the correct position for the break iterator to have
// returned DONE.
if (i != 0) {
errln("testPreceding(): iterator returned DONE prematurely.");
}
// Full check of all results.
td.checkResults("testPreceding", this);
}
void RBBITest::testIsBoundary(RuleBasedBreakIterator& bi, BITestData &td) {
UErrorCode status = U_ZERO_ERROR;
int i;
int32_t tag;
logln("testIsBoundary():");
bi.setText(td.fDataToBreak);
td.clearResults();
for (i = 0; i <= td.fDataToBreak.length(); i++) {
if (bi.isBoundary(i)) {
td.fActualBreakPositions.addElement(i, status); // Save result.
tag = bi.getRuleStatus();
td.fActualTags.addElement(tag, status);
}
}
td.checkResults("testIsBoundary: ", this);
}
void RBBITest::doMultipleSelectionTest(RuleBasedBreakIterator& iterator, BITestData &td)
{
iterator.setText(td.fDataToBreak);
RuleBasedBreakIterator* testIterator =(RuleBasedBreakIterator*)iterator.clone();
int32_t offset = iterator.first();
int32_t testOffset;
int32_t count = 0;
logln("doMultipleSelectionTest text of length: %d", td.fDataToBreak.length());
if (*testIterator != iterator)
errln("clone() or operator!= failed: two clones compared unequal");
do {
testOffset = testIterator->first();
testOffset = testIterator->next(count);
if (offset != testOffset)
errln(UnicodeString("next(n) and next() not returning consistent results: for step ") + count + ", next(n) returned " + testOffset + " and next() had " + offset);
if (offset != RuleBasedBreakIterator::DONE) {
count++;
offset = iterator.next();
if (offset != RuleBasedBreakIterator::DONE && *testIterator == iterator) {
errln("operator== failed: Two unequal iterators compared equal. count=%d offset=%d", count, offset);
if (count > 10000 || offset == -1) {
errln("operator== failed too many times. Stopping test.");
if (offset == -1) {
errln("Does (RuleBasedBreakIterator::DONE == -1)?");
}
return;
}
}
}
} while (offset != RuleBasedBreakIterator::DONE);
// now do it backwards...
offset = iterator.last();
count = 0;
do {
testOffset = testIterator->last();
testOffset = testIterator->next(count); // next() with a negative arg is same as previous
if (offset != testOffset)
errln(UnicodeString("next(n) and next() not returning consistent results: for step ") + count + ", next(n) returned " + testOffset + " and next() had " + offset);
if (offset != RuleBasedBreakIterator::DONE) {
count--;
offset = iterator.previous();
}
} while (offset != RuleBasedBreakIterator::DONE);
delete testIterator;
}
//---------------------------------------------
//
// other tests
//
//---------------------------------------------
void RBBITest::TestEmptyString()
{
UnicodeString text = "";
UErrorCode status = U_ZERO_ERROR;
BITestData x(status);
ADD_DATACHUNK(x, "", 0, status); // Break at start of data
RuleBasedBreakIterator* bi = (RuleBasedBreakIterator *)BreakIterator::createLineInstance(Locale::getDefault(), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for default locale in TestEmptyString. - %s", u_errorName(status));
return;
}
generalIteratorTest(*bi, x);
delete bi;
}
void RBBITest::TestGetAvailableLocales()
{
int32_t locCount = 0;
const Locale* locList = BreakIterator::getAvailableLocales(locCount);
if (locCount == 0)
dataerrln("getAvailableLocales() returned an empty list!");
// Just make sure that it's returning good memory.
int32_t i;
for (i = 0; i < locCount; ++i) {
logln(locList[i].getName());
}
}
//Testing the BreakIterator::getDisplayName() function
void RBBITest::TestGetDisplayName()
{
UnicodeString result;
BreakIterator::getDisplayName(Locale::getUS(), result);
if (Locale::getDefault() == Locale::getUS() && result != "English (United States)")
dataerrln("BreakIterator::getDisplayName() failed: expected \"English (United States)\", got \""
+ result);
BreakIterator::getDisplayName(Locale::getFrance(), Locale::getUS(), result);
if (result != "French (France)")
dataerrln("BreakIterator::getDisplayName() failed: expected \"French (France)\", got \""
+ result);
}
/**
* Test End Behaviour
* @bug 4068137
*/
void RBBITest::TestEndBehaviour()
{
UErrorCode status = U_ZERO_ERROR;
UnicodeString testString("boo.");
BreakIterator *wb = BreakIterator::createWordInstance(Locale::getDefault(), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for default locale in TestEndBehaviour. - %s", u_errorName(status));
return;
}
wb->setText(testString);
if (wb->first() != 0)
errln("Didn't get break at beginning of string.");
if (wb->next() != 3)
errln("Didn't get break before period in \"boo.\"");
if (wb->current() != 4 && wb->next() != 4)
errln("Didn't get break at end of string.");
delete wb;
}
/*
* @bug 4153072
*/
void RBBITest::TestBug4153072() {
UErrorCode status = U_ZERO_ERROR;
BreakIterator *iter = BreakIterator::createWordInstance(Locale::getDefault(), status);
if (U_FAILURE(status))
{
errcheckln(status, "Failed to create the BreakIterator for default locale in TestBug4153072 - %s", u_errorName(status));
return;
}
UnicodeString str("...Hello, World!...");
int32_t begin = 3;
int32_t end = str.length() - 3;
UBool onBoundary;
StringCharacterIterator* textIterator = new StringCharacterIterator(str, begin, end, begin);
iter->adoptText(textIterator);
int index;
// Note: with the switch to UText, there is no way to restrict the
// iteration range to begin at an index other than zero.
// String character iterators created with a non-zero bound are
// treated by RBBI as being empty.
for (index = -1; index < begin + 1; ++index) {
onBoundary = iter->isBoundary(index);
if (index == 0? !onBoundary : onBoundary) {
errln((UnicodeString)"Didn't handle isBoundary correctly with offset = " + index +
" and begin index = " + begin);
}
}
delete iter;
}
//
// Test for problem reported by Ashok Matoria on 9 July 2007
// One.<kSoftHyphen><kSpace>Two.
//
// Sentence break at start (0) and then on calling next() it breaks at
// 'T' of "Two". Now, at this point if I do next() and
// then previous(), it breaks at <kSOftHyphen> instead of 'T' of "Two".
//
void RBBITest::TestBug5775() {
UErrorCode status = U_ZERO_ERROR;
BreakIterator *bi = BreakIterator::createSentenceInstance(Locale::getEnglish(), status);
TEST_ASSERT_SUCCESS(status);
if (U_FAILURE(status)) {
return;
}
// Check for status first for better handling of no data errors.
TEST_ASSERT(bi != NULL);
if (bi == NULL) {
return;
}
UnicodeString s("One.\\u00ad Two.", -1, US_INV);
// 01234 56789
s = s.unescape();
bi->setText(s);
int pos = bi->next();
TEST_ASSERT(pos == 6);
pos = bi->next();
TEST_ASSERT(pos == 10);
pos = bi->previous();
TEST_ASSERT(pos == 6);
delete bi;
}
/**
* Test Japanese Line Break
* @bug 4095322
*/
void RBBITest::TestJapaneseLineBreak()
{
#if 0
// Test needs updating some more... Dump it for now.
// Change for Unicode TR 14: Punctuation characters with categories Pi and Pf do not count
// as opening and closing punctuation for line breaking.
// Also, \u30fc and \u30fe are not counted as hyphens. Remove these chars
// from these tests. 6-13-2002
//
UErrorCode status = U_ZERO_ERROR;
UnicodeString testString = CharsToUnicodeString("\\u4e00x\\u4e8c");
UnicodeString precedingChars = CharsToUnicodeString(
//"([{\\u00ab$\\u00a5\\u00a3\\u00a4\\u2018\\u201a\\u201c\\u201e\\u201b\\u201f");
"([{$\\u00a5\\u00a3\\u00a4\\u201a\\u201e");
UnicodeString followingChars = CharsToUnicodeString(
// ")]}\\u00bb!%,.\\u3001\\u3002\\u3063\\u3083\\u3085\\u3087\\u30c3\\u30e3\\u30e5\\u30e7\\u30fc"
")]}!%,.\\u3001\\u3002\\u3063\\u3083\\u3085\\u3087\\u30c3\\u30e3\\u30e5\\u30e7"
// ":;\\u309b\\u309c\\u3005\\u309d\\u309e\\u30fd\\u30fe\\u2019\\u201d\\u00b0\\u2032\\u2033\\u2034"
":;\\u309b\\u309c\\u3005\\u309d\\u309e\\u30fd\\u00b0\\u2032\\u2033\\u2034"
"\\u2030\\u2031\\u2103\\u2109\\u00a2\\u0300\\u0301\\u0302");
BreakIterator *iter = BreakIterator::createLineInstance(Locale::getJapan(), status);
int32_t i;
if (U_FAILURE(status))
{
errln("Failed to create the BreakIterator for Japanese locale in TestJapaneseLineBreak.\n");
return;
}
for (i = 0; i < precedingChars.length(); i++) {
testString.setCharAt(1, precedingChars[i]);
iter->setText(testString);
int32_t j = iter->first();
if (j != 0)
errln("ja line break failure: failed to start at 0");
j = iter->next();
if (j != 1)
errln("ja line break failure: failed to stop before '" + UCharToUnicodeString(precedingChars[i])
+ "' (" + ((int)(precedingChars[i])) + ")");
j = iter->next();
if (j != 3)
errln("ja line break failure: failed to skip position after '" + UCharToUnicodeString(precedingChars[i])
+ "' (" + ((int)(precedingChars[i])) + ")");
}
for (i = 0; i < followingChars.length(); i++) {
testString.setCharAt(1, followingChars[i]);
iter->setText(testString);
int j = iter->first();
if (j != 0)
errln("ja line break failure: failed to start at 0");
j = iter->next();
if (j != 2)
errln("ja line break failure: failed to skip position before '" + UCharToUnicodeString(followingChars[i])
+ "' (" + ((int)(followingChars[i])) + ")");
j = iter->next();
if (j != 3)
errln("ja line break failure: failed to stop after '" + UCharToUnicodeString(followingChars[i])
+ "' (" + ((int)(followingChars[i])) + ")");
}
delete iter;
#endif
}
//------------------------------------------------------------------------------
//
// RBBITest::Extended Run RBBI Tests from an external test data file
//
//------------------------------------------------------------------------------
struct TestParams {
BreakIterator *bi;
UnicodeString dataToBreak;
UVector32 *expectedBreaks;
UVector32 *srcLine;
UVector32 *srcCol;
};
void RBBITest::executeTest(TestParams *t) {
int32_t bp;
int32_t prevBP;
int32_t i;
if (t->bi == NULL) {
return;
}
t->bi->setText(t->dataToBreak);
//
// Run the iterator forward
//
prevBP = -1;
for (bp = t->bi->first(); bp != BreakIterator::DONE; bp = t->bi->next()) {
if (prevBP == bp) {
// Fail for lack of forward progress.
errln("Forward Iteration, no forward progress. Break Pos=%4d File line,col=%4d,%4d",
bp, t->srcLine->elementAti(bp), t->srcCol->elementAti(bp));
break;
}
// Check that there were we didn't miss an expected break between the last one
// and this one.
for (i=prevBP+1; i<bp; i++) {
if (t->expectedBreaks->elementAti(i) != 0) {
int expected[] = {0, i};
printStringBreaks(t->dataToBreak, expected, 2);
errln("Forward Iteration, break expected, but not found. Pos=%4d File line,col= %4d,%4d",
i, t->srcLine->elementAti(i), t->srcCol->elementAti(i));
}
}
// Check that the break we did find was expected
if (t->expectedBreaks->elementAti(bp) == 0) {
int expected[] = {0, bp};
printStringBreaks(t->dataToBreak, expected, 2);
errln("Forward Iteration, break found, but not expected. Pos=%4d File line,col= %4d,%4d",
bp, t->srcLine->elementAti(bp), t->srcCol->elementAti(bp));
} else {
// The break was expected.
// Check that the {nnn} tag value is correct.
int32_t expectedTagVal = t->expectedBreaks->elementAti(bp);
if (expectedTagVal == -1) {
expectedTagVal = 0;
}
int32_t line = t->srcLine->elementAti(bp);
int32_t rs = ((RuleBasedBreakIterator *)t->bi)->getRuleStatus();
if (rs != expectedTagVal) {
errln("Incorrect status for forward break. Pos=%4d File line,col= %4d,%4d.\n"
" Actual, Expected status = %4d, %4d",
bp, line, t->srcCol->elementAti(bp), rs, expectedTagVal);
}
}
prevBP = bp;
}
// Verify that there were no missed expected breaks after the last one found
for (i=prevBP+1; i<t->expectedBreaks->size(); i++) {
if (t->expectedBreaks->elementAti(i) != 0) {
errln("Forward Iteration, break expected, but not found. Pos=%4d File line,col= %4d,%4d",
i, t->srcLine->elementAti(i), t->srcCol->elementAti(i));
}
}
//
// Run the iterator backwards, verify that the same breaks are found.
//
prevBP = t->dataToBreak.length()+2; // start with a phony value for the last break pos seen.
for (bp = t->bi->last(); bp != BreakIterator::DONE; bp = t->bi->previous()) {
if (prevBP == bp) {
// Fail for lack of progress.
errln("Reverse Iteration, no progress. Break Pos=%4d File line,col=%4d,%4d",
bp, t->srcLine->elementAti(bp), t->srcCol->elementAti(bp));
break;
}
// Check that there were we didn't miss an expected break between the last one
// and this one. (UVector returns zeros for index out of bounds.)
for (i=prevBP-1; i>bp; i--) {
if (t->expectedBreaks->elementAti(i) != 0) {
errln("Reverse Itertion, break expected, but not found. Pos=%4d File line,col= %4d,%4d",
i, t->srcLine->elementAti(i), t->srcCol->elementAti(i));
}
}
// Check that the break we did find was expected
if (t->expectedBreaks->elementAti(bp) == 0) {
errln("Reverse Itertion, break found, but not expected. Pos=%4d File line,col= %4d,%4d",
bp, t->srcLine->elementAti(bp), t->srcCol->elementAti(bp));
} else {
// The break was expected.
// Check that the {nnn} tag value is correct.
int32_t expectedTagVal = t->expectedBreaks->elementAti(bp);
if (expectedTagVal == -1) {
expectedTagVal = 0;
}
int line = t->srcLine->elementAti(bp);
int32_t rs = ((RuleBasedBreakIterator *)t->bi)->getRuleStatus();
if (rs != expectedTagVal) {
errln("Incorrect status for reverse break. Pos=%4d File line,col= %4d,%4d.\n"
" Actual, Expected status = %4d, %4d",
bp, line, t->srcCol->elementAti(bp), rs, expectedTagVal);
}
}
prevBP = bp;
}
// Verify that there were no missed breaks prior to the last one found
for (i=prevBP-1; i>=0; i--) {
if (t->expectedBreaks->elementAti(i) != 0) {
errln("Forward Itertion, break expected, but not found. Pos=%4d File line,col= %4d,%4d",
i, t->srcLine->elementAti(i), t->srcCol->elementAti(i));
}
}
}
void RBBITest::TestExtended() {
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
UErrorCode status = U_ZERO_ERROR;
Locale locale("");
UnicodeString rules;
TestParams tp;
tp.bi = NULL;
tp.expectedBreaks = new UVector32(status);
tp.srcLine = new UVector32(status);
tp.srcCol = new UVector32(status);
RegexMatcher localeMatcher(UNICODE_STRING_SIMPLE("<locale *([\\p{L}\\p{Nd}_]*) *>"), 0, status);
if (U_FAILURE(status)) {
dataerrln("Failure in file %s, line %d, status = \"%s\"", __FILE__, __LINE__, u_errorName(status));
}
//
// Open and read the test data file.
//
const char *testDataDirectory = IntlTest::getSourceTestData(status);
char testFileName[1000];
if (testDataDirectory == NULL || strlen(testDataDirectory) >= sizeof(testFileName)) {
errln("Can't open test data. Path too long.");
return;
}
strcpy(testFileName, testDataDirectory);
strcat(testFileName, "rbbitst.txt");
int len;
UChar *testFile = ReadAndConvertFile(testFileName, len, "UTF-8", status);
if (U_FAILURE(status)) {
return; /* something went wrong, error already output */
}
//
// Put the test data into a UnicodeString
//
UnicodeString testString(FALSE, testFile, len);
enum EParseState{
PARSE_COMMENT,
PARSE_TAG,
PARSE_DATA,
PARSE_NUM
}
parseState = PARSE_TAG;
EParseState savedState = PARSE_TAG;
static const UChar CH_LF = 0x0a;
static const UChar CH_CR = 0x0d;
static const UChar CH_HASH = 0x23;
/*static const UChar CH_PERIOD = 0x2e;*/
static const UChar CH_LT = 0x3c;
static const UChar CH_GT = 0x3e;
static const UChar CH_BACKSLASH = 0x5c;
static const UChar CH_BULLET = 0x2022;
int32_t lineNum = 1;
int32_t colStart = 0;
int32_t column = 0;
int32_t charIdx = 0;
int32_t tagValue = 0; // The numeric value of a <nnn> tag.
for (charIdx = 0; charIdx < len; ) {
status = U_ZERO_ERROR;
UChar c = testString.charAt(charIdx);
charIdx++;
if (c == CH_CR && charIdx<len && testString.charAt(charIdx) == CH_LF) {
// treat CRLF as a unit
c = CH_LF;
charIdx++;
}
if (c == CH_LF || c == CH_CR) {
lineNum++;
colStart = charIdx;
}
column = charIdx - colStart + 1;
switch (parseState) {
case PARSE_COMMENT:
if (c == 0x0a || c == 0x0d) {
parseState = savedState;
}
break;
case PARSE_TAG:
{
if (c == CH_HASH) {
parseState = PARSE_COMMENT;
savedState = PARSE_TAG;
break;
}
if (u_isUWhiteSpace(c)) {
break;
}
if (testString.compare(charIdx-1, 6, "<word>") == 0) {
delete tp.bi;
tp.bi = BreakIterator::createWordInstance(locale, status);
charIdx += 5;
break;
}
if (testString.compare(charIdx-1, 6, "<char>") == 0) {
delete tp.bi;
tp.bi = BreakIterator::createCharacterInstance(locale, status);
charIdx += 5;
break;
}
if (testString.compare(charIdx-1, 6, "<line>") == 0) {
delete tp.bi;
tp.bi = BreakIterator::createLineInstance(locale, status);
charIdx += 5;
break;
}
if (testString.compare(charIdx-1, 6, "<sent>") == 0) {
delete tp.bi;
tp.bi = NULL;
tp.bi = BreakIterator::createSentenceInstance(locale, status);
charIdx += 5;
break;
}
if (testString.compare(charIdx-1, 7, "<title>") == 0) {
delete tp.bi;
tp.bi = BreakIterator::createTitleInstance(locale, status);
charIdx += 6;
break;
}
// <locale loc_name>
localeMatcher.reset(testString);
if (localeMatcher.lookingAt(charIdx-1, status)) {
UnicodeString localeName = localeMatcher.group(1, status);
char localeName8[100];
localeName.extract(0, localeName.length(), localeName8, sizeof(localeName8), 0);
locale = Locale::createFromName(localeName8);
charIdx += localeMatcher.group(0, status).length();
TEST_ASSERT_SUCCESS(status);
break;
}
if (testString.compare(charIdx-1, 6, "<data>") == 0) {
parseState = PARSE_DATA;
charIdx += 5;
tp.dataToBreak = "";
tp.expectedBreaks->removeAllElements();
tp.srcCol ->removeAllElements();
tp.srcLine->removeAllElements();
break;
}
errln("line %d: Tag expected in test file.", lineNum);
parseState = PARSE_COMMENT;
savedState = PARSE_DATA;
goto end_test; // Stop the test.
}
break;
case PARSE_DATA:
if (c == CH_BULLET) {
int32_t breakIdx = tp.dataToBreak.length();
tp.expectedBreaks->setSize(breakIdx+1);
tp.expectedBreaks->setElementAt(-1, breakIdx);
tp.srcLine->setSize(breakIdx+1);
tp.srcLine->setElementAt(lineNum, breakIdx);
tp.srcCol ->setSize(breakIdx+1);
tp.srcCol ->setElementAt(column, breakIdx);
break;
}
if (testString.compare(charIdx-1, 7, "</data>") == 0) {
// Add final entry to mappings from break location to source file position.
// Need one extra because last break position returned is after the
// last char in the data, not at the last char.
tp.srcLine->addElement(lineNum, status);
tp.srcCol ->addElement(column, status);
parseState = PARSE_TAG;
charIdx += 6;
// RUN THE TEST!
executeTest(&tp);
break;
}
if (testString.compare(charIdx-1, 3, UNICODE_STRING_SIMPLE("\\N{")) == 0) {
// Named character, e.g. \N{COMBINING GRAVE ACCENT}
// Get the code point from the name and insert it into the test data.
// (Damn, no API takes names in Unicode !!!
// we've got to take it back to char *)
int32_t nameEndIdx = testString.indexOf((UChar)0x7d/*'}'*/, charIdx);
int32_t nameLength = nameEndIdx - (charIdx+2);
char charNameBuf[200];
UChar32 theChar = -1;
if (nameEndIdx != -1) {
UErrorCode status = U_ZERO_ERROR;
testString.extract(charIdx+2, nameLength, charNameBuf, sizeof(charNameBuf));
charNameBuf[sizeof(charNameBuf)-1] = 0;
theChar = u_charFromName(U_UNICODE_CHAR_NAME, charNameBuf, &status);
if (U_FAILURE(status)) {
theChar = -1;
}
}
if (theChar == -1) {
errln("Error in named character in test file at line %d, col %d",
lineNum, column);
} else {
// Named code point was recognized. Insert it
// into the test data.
tp.dataToBreak.append(theChar);
while (tp.dataToBreak.length() > tp.srcLine->size()) {
tp.srcLine->addElement(lineNum, status);
tp.srcCol ->addElement(column, status);
}
}
if (nameEndIdx > charIdx) {
charIdx = nameEndIdx+1;
}
break;
}
if (testString.compare(charIdx-1, 2, "<>") == 0) {
charIdx++;
int32_t breakIdx = tp.dataToBreak.length();
tp.expectedBreaks->setSize(breakIdx+1);
tp.expectedBreaks->setElementAt(-1, breakIdx);
tp.srcLine->setSize(breakIdx+1);
tp.srcLine->setElementAt(lineNum, breakIdx);
tp.srcCol ->setSize(breakIdx+1);
tp.srcCol ->setElementAt(column, breakIdx);
break;
}
if (c == CH_LT) {
tagValue = 0;
parseState = PARSE_NUM;
break;
}
if (c == CH_HASH && column==3) { // TODO: why is column off so far?
parseState = PARSE_COMMENT;
savedState = PARSE_DATA;
break;
}
if (c == CH_BACKSLASH) {
// Check for \ at end of line, a line continuation.
// Advance over (discard) the newline
UChar32 cp = testString.char32At(charIdx);
if (cp == CH_CR && charIdx<len && testString.charAt(charIdx+1) == CH_LF) {
// We have a CR LF
// Need an extra increment of the input ptr to move over both of them
charIdx++;
}
if (cp == CH_LF || cp == CH_CR) {
lineNum++;
colStart = charIdx;
charIdx++;
break;
}
// Let unescape handle the back slash.
cp = testString.unescapeAt(charIdx);
if (cp != -1) {
// Escape sequence was recognized. Insert the char
// into the test data.
tp.dataToBreak.append(cp);
while (tp.dataToBreak.length() > tp.srcLine->size()) {
tp.srcLine->addElement(lineNum, status);
tp.srcCol ->addElement(column, status);
}
break;
}
// Not a recognized backslash escape sequence.
// Take the next char as a literal.
// TODO: Should this be an error?
c = testString.charAt(charIdx);
charIdx = testString.moveIndex32(charIdx, 1);
}
// Normal, non-escaped data char.
tp.dataToBreak.append(c);
// Save the mapping from offset in the data to line/column numbers in
// the original input file. Will be used for better error messages only.
// If there's an expected break before this char, the slot in the mapping
// vector will already be set for this char; don't overwrite it.
if (tp.dataToBreak.length() > tp.srcLine->size()) {
tp.srcLine->addElement(lineNum, status);
tp.srcCol ->addElement(column, status);
}
break;
case PARSE_NUM:
// We are parsing an expected numeric tag value, like <1234>,
// within a chunk of data.
if (u_isUWhiteSpace(c)) {
break;
}
if (c == CH_GT) {
// Finished the number. Add the info to the expected break data,
// and switch parse state back to doing plain data.
parseState = PARSE_DATA;
if (tagValue == 0) {
tagValue = -1;
}
int32_t breakIdx = tp.dataToBreak.length();
tp.expectedBreaks->setSize(breakIdx+1);
tp.expectedBreaks->setElementAt(tagValue, breakIdx);
tp.srcLine->setSize(breakIdx+1);
tp.srcLine->setElementAt(lineNum, breakIdx);
tp.srcCol ->setSize(breakIdx+1);
tp.srcCol ->setElementAt(column, breakIdx);
break;
}
if (u_isdigit(c)) {
tagValue = tagValue*10 + u_charDigitValue(c);
break;
}
errln("Syntax Error in test file at line %d, col %d",
lineNum, column);
parseState = PARSE_COMMENT;
goto end_test; // Stop the test
break;
}
if (U_FAILURE(status)) {
errln("ICU Error %s while parsing test file at line %d.",
u_errorName(status), lineNum);
status = U_ZERO_ERROR;
goto end_test; // Stop the test
}
}
end_test:
delete tp.bi;
delete tp.expectedBreaks;
delete tp.srcLine;
delete tp.srcCol;
delete [] testFile;
#endif
}
void RBBITest::TestThaiBreaks() {
UErrorCode status=U_ZERO_ERROR;
BreakIterator* b;
Locale locale = Locale("th");
int32_t p, index;
UChar c[]= {
0x0E01, 0x0E39, 0x0020, 0x0E01, 0x0E34, 0x0E19, 0x0E01, 0x0E38, 0x0E49, 0x0E07, 0x0020, 0x0E1B,
0x0E34, 0x0E49, 0x0E48, 0x0E07, 0x0E2D, 0x0E22, 0x0E39, 0x0E48, 0x0E43, 0x0E19,
0x0E16, 0x0E49, 0x0E33
};
int32_t expectedWordResult[] = {
2, 3, 6, 10, 11, 15, 17, 20, 22
};
int32_t expectedLineResult[] = {
3, 6, 11, 15, 17, 20, 22
};
int32_t size = sizeof(c)/sizeof(UChar);
UnicodeString text=UnicodeString(c);
b = BreakIterator::createWordInstance(locale, status);
if (U_FAILURE(status)) {
errcheckln(status, "Unable to create thai word break iterator. - %s", u_errorName(status));
return;
}
b->setText(text);
p = index = 0;
while ((p=b->next())!=BreakIterator::DONE && p < size) {
if (p != expectedWordResult[index++]) {
errln("Incorrect break given by thai word break iterator. Expected: %d Got: %d", expectedWordResult[index-1], p);
}
}
delete b;
b = BreakIterator::createLineInstance(locale, status);
if (U_FAILURE(status)) {
printf("Unable to create thai line break iterator.\n");
return;
}
b->setText(text);
p = index = 0;
while ((p=b->next())!=BreakIterator::DONE && p < size) {
if (p != expectedLineResult[index++]) {
errln("Incorrect break given by thai line break iterator. Expected: %d Got: %d", expectedLineResult[index-1], p);
}
}
delete b;
}
// UBreakIteratorType UBRK_WORD, Locale "en_US_POSIX"
// Words don't include colon or period (cldrbug #1969).
static const char posxWordText[] = "Can't have breaks in xx:yy or struct.field for CS-types.";
static const int32_t posxWordTOffsets[] = { 5, 6, 10, 11, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 36, 37, 42, 43, 46, 47, 49, 50, 55, 56 };
static const int32_t posxWordROffsets[] = { 5, 6, 10, 11, 17, 18, 20, 21, 26, 27, 29, 30, 42, 43, 46, 47, 49, 50, 55, 56 };
// UBreakIteratorType UBRK_WORD, Locale "ja"
// Don't break in runs of hiragana or runs of ideograph, where the latter includes \u3005 \u3007 \u303B (cldrbug #2009).
static const char jaWordText[] = "\\u79C1\\u9054\\u306B\\u4E00\\u3007\\u3007\\u3007\\u306E\\u30B3\\u30F3\\u30D4\\u30E5\\u30FC\\u30BF"
"\\u304C\\u3042\\u308B\\u3002\\u5948\\u3005\\u306F\\u30EF\\u30FC\\u30C9\\u3067\\u3042\\u308B\\u3002";
#if 0
static const int32_t jaWordTOffsets[] = { 2, 3, 7, 8, 14, 17, 18, 20, 21, 24, 27, 28 };
static const int32_t jaWordROffsets[] = { 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28 };
#endif
// There's no separate Japanese word break iterator. Root is the same as Japanese.
// Our dictionary-based iterator has to be tweaked to better handle U+3005,
// U+3007, U+300B and some other cases.
static const int32_t jaWordTOffsets[] = { 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28 };
static const int32_t jaWordROffsets[] = { 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28 };
// UBreakIteratorType UBRK_SENTENCE, Locale "el"
// Add break after Greek question mark (cldrbug #2069).
static const char elSentText[] = "\\u0391\\u03B2, \\u03B3\\u03B4; \\u0395 \\u03B6\\u03B7\\u037E \\u0398 \\u03B9\\u03BA. "
"\\u039B\\u03BC \\u03BD\\u03BE! \\u039F\\u03C0, \\u03A1\\u03C2? \\u03A3";
static const int32_t elSentTOffsets[] = { 8, 14, 20, 27, 35, 36 };
static const int32_t elSentROffsets[] = { 20, 27, 35, 36 };
// UBreakIteratorType UBRK_CHARACTER, Locale "th"
// Clusters should not include spacing Thai/Lao vowels (prefix or postfix), except for [SARA] AM (cldrbug #2161).
static const char thCharText[] = "\\u0E01\\u0E23\\u0E30\\u0E17\\u0E48\\u0E2D\\u0E21\\u0E23\\u0E08\\u0E19\\u0E32 "
"(\\u0E2A\\u0E38\\u0E0A\\u0E32\\u0E15\\u0E34-\\u0E08\\u0E38\\u0E11\\u0E32\\u0E21\\u0E32\\u0E28) "
"\\u0E40\\u0E14\\u0E47\\u0E01\\u0E21\\u0E35\\u0E1B\\u0E31\\u0E0D\\u0E2B\\u0E32 ";
static const int32_t thCharTOffsets[] = { 1, 2, 3, 5, 6, 7, 8, 9, 10, 11,
12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28,
29, 30, 32, 33, 35, 37, 38, 39, 40, 41 };
static const int32_t thCharROffsets[] = { 1, 3, 5, 6, 7, 8, 9, 11,
12, 13, 15, 17, 19, 20, 22, 24, 26, 27, 28,
29, 32, 33, 35, 37, 38, 40, 41 };
typedef struct {
UBreakIteratorType type;
const char * locale;
const char * escapedText;
const int32_t * tailoredOffsets;
int32_t tailoredOffsetsCount;
const int32_t * rootOffsets;
int32_t rootOffsetsCount;
} TailoredBreakItem;
#define ARRAY_PTR_LEN(array) (array),(sizeof(array)/sizeof(array[0]))
static const TailoredBreakItem tbItems[] = {
{ UBRK_WORD, "en_US_POSIX", posxWordText, ARRAY_PTR_LEN(posxWordTOffsets), ARRAY_PTR_LEN(posxWordROffsets) },
{ UBRK_WORD, "ja", jaWordText, ARRAY_PTR_LEN(jaWordTOffsets), ARRAY_PTR_LEN(jaWordROffsets) },
{ UBRK_SENTENCE, "el", elSentText, ARRAY_PTR_LEN(elSentTOffsets), ARRAY_PTR_LEN(elSentROffsets) },
{ UBRK_CHARACTER, "th", thCharText, ARRAY_PTR_LEN(thCharTOffsets), ARRAY_PTR_LEN(thCharROffsets) },
{ UBRK_CHARACTER, NULL, NULL, NULL,0, NULL,0 } // terminator
};
static void formatOffsets(char* buffer, int32_t buflen, int32_t count, const int32_t* offsets) {
while (count-- > 0) {
int writeCount;
sprintf(buffer, /* buflen, */ " %d%n", *offsets++, &writeCount); /* wants to be snprintf */
buffer += writeCount;
buflen -= writeCount;
}
}
enum { kMaxOffsetCount = 128 };
void RBBITest::TBTest(BreakIterator* brkitr, int type, const char *locale, const char* escapedText, const int32_t *expectOffsets, int32_t expectOffsetsCount) {
brkitr->setText( CharsToUnicodeString(escapedText) );
int32_t foundOffsets[kMaxOffsetCount];
int32_t offset, foundOffsetsCount = 0;
// do forwards iteration test
while ( foundOffsetsCount < kMaxOffsetCount && (offset = brkitr->next()) != BreakIterator::DONE ) {
foundOffsets[foundOffsetsCount++] = offset;
}
if ( foundOffsetsCount != expectOffsetsCount || memcmp(expectOffsets, foundOffsets, foundOffsetsCount*sizeof(foundOffsets[0])) != 0 ) {
// log error for forwards test
char formatExpect[512], formatFound[512];
formatOffsets(formatExpect, sizeof(formatExpect), expectOffsetsCount, expectOffsets);
formatOffsets(formatFound, sizeof(formatFound), foundOffsetsCount, foundOffsets);
errln("For type %d %-5s, text \"%.16s\"...; expect %d offsets:%s; found %d offsets fwd:%s\n",
type, locale, escapedText, expectOffsetsCount, formatExpect, foundOffsetsCount, formatFound);
} else {
// do backwards iteration test
--foundOffsetsCount; // back off one from the end offset
while ( foundOffsetsCount > 0 ) {
offset = brkitr->previous();
if ( offset != foundOffsets[--foundOffsetsCount] ) {
// log error for backwards test
char formatExpect[512];
formatOffsets(formatExpect, sizeof(formatExpect), expectOffsetsCount, expectOffsets);
errln("For type %d %-5s, text \"%.16s\"...; expect %d offsets:%s; found rev offset %d where expect %d\n",
type, locale, escapedText, expectOffsetsCount, formatExpect, offset, foundOffsets[foundOffsetsCount]);
break;
}
}
}
}
void RBBITest::TestTailoredBreaks() {
const TailoredBreakItem * tbItemPtr;
Locale rootLocale = Locale("root");
for (tbItemPtr = tbItems; tbItemPtr->escapedText != NULL; ++tbItemPtr) {
Locale testLocale = Locale(tbItemPtr->locale);
BreakIterator * tailoredBrkiter;
BreakIterator * rootBrkiter;
UErrorCode status = U_ZERO_ERROR;
switch (tbItemPtr->type) {
case UBRK_CHARACTER:
tailoredBrkiter = BreakIterator::createCharacterInstance(testLocale, status);
rootBrkiter = BreakIterator::createCharacterInstance(rootLocale, status);
break;
case UBRK_WORD:
tailoredBrkiter = BreakIterator::createWordInstance(testLocale, status);
rootBrkiter = BreakIterator::createWordInstance(rootLocale, status);
break;
case UBRK_LINE:
tailoredBrkiter = BreakIterator::createLineInstance(testLocale, status);
rootBrkiter = BreakIterator::createLineInstance(rootLocale, status);
break;
case UBRK_SENTENCE:
tailoredBrkiter = BreakIterator::createSentenceInstance(testLocale, status);
rootBrkiter = BreakIterator::createSentenceInstance(rootLocale, status);
break;
default:
status = U_UNSUPPORTED_ERROR;
break;
}
if (U_FAILURE(status)) {
errcheckln(status, "BreakIterator create failed for type %d, locales root or %s - Error: %s", (int)(tbItemPtr->type), tbItemPtr->locale, u_errorName(status));
continue;
}
TBTest(tailoredBrkiter, (int)(tbItemPtr->type), tbItemPtr->locale, tbItemPtr->escapedText, tbItemPtr->tailoredOffsets, tbItemPtr->tailoredOffsetsCount);
TBTest(rootBrkiter, (int)(tbItemPtr->type), "root", tbItemPtr->escapedText, tbItemPtr->rootOffsets, tbItemPtr->rootOffsetsCount);
delete rootBrkiter;
delete tailoredBrkiter;
}
}
//-------------------------------------------------------------------------------
//
// ReadAndConvertFile Read a text data file, convert it to UChars, and
// return the datain one big UChar * buffer, which the caller must delete.
//
// parameters:
// fileName: the name of the file, with no directory part. The test data directory
// is assumed.
// ulen an out parameter, receives the actual length (in UChars) of the file data.
// encoding The file encoding. If the file contains a BOM, that will override the encoding
// specified here. The BOM, if it exists, will be stripped from the returned data.
// Pass NULL for the system default encoding.
// status
// returns:
// The file data, converted to UChar.
// The caller must delete this when done with
// delete [] theBuffer;
//
// TODO: This is a clone of RegexTest::ReadAndConvertFile.
// Move this function to some common place.
//
//--------------------------------------------------------------------------------
UChar *RBBITest::ReadAndConvertFile(const char *fileName, int &ulen, const char *encoding, UErrorCode &status) {
UChar *retPtr = NULL;
char *fileBuf = NULL;
UConverter* conv = NULL;
FILE *f = NULL;
ulen = 0;
if (U_FAILURE(status)) {
return retPtr;
}
//
// Open the file.
//
f = fopen(fileName, "rb");
if (f == 0) {
dataerrln("Error opening test data file %s\n", fileName);
status = U_FILE_ACCESS_ERROR;
return NULL;
}
//
// Read it in
//
int fileSize;
int amt_read;
fseek( f, 0, SEEK_END);
fileSize = ftell(f);
fileBuf = new char[fileSize];
fseek(f, 0, SEEK_SET);
amt_read = fread(fileBuf, 1, fileSize, f);
if (amt_read != fileSize || fileSize <= 0) {
errln("Error reading test data file.");
goto cleanUpAndReturn;
}
//
// Look for a Unicode Signature (BOM) on the data just read
//
int32_t signatureLength;
const char * fileBufC;
const char* bomEncoding;
fileBufC = fileBuf;
bomEncoding = ucnv_detectUnicodeSignature(
fileBuf, fileSize, &signatureLength, &status);
if(bomEncoding!=NULL ){
fileBufC += signatureLength;
fileSize -= signatureLength;
encoding = bomEncoding;
}
//
// Open a converter to take the rule file to UTF-16
//
conv = ucnv_open(encoding, &status);
if (U_FAILURE(status)) {
goto cleanUpAndReturn;
}
//
// Convert the rules to UChar.
// Preflight first to determine required buffer size.
//
ulen = ucnv_toUChars(conv,
NULL, // dest,
0, // destCapacity,
fileBufC,
fileSize,
&status);
if (status == U_BUFFER_OVERFLOW_ERROR) {
// Buffer Overflow is expected from the preflight operation.
status = U_ZERO_ERROR;
retPtr = new UChar[ulen+1];
ucnv_toUChars(conv,
retPtr, // dest,
ulen+1,
fileBufC,
fileSize,
&status);
}
cleanUpAndReturn:
fclose(f);
delete []fileBuf;
ucnv_close(conv);
if (U_FAILURE(status)) {
errln("ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status));
delete retPtr;
retPtr = 0;
ulen = 0;
};
return retPtr;
}
//--------------------------------------------------------------------------------------------
//
// Run tests from each of the boundary test data files distributed by the Unicode Consortium
//
//-------------------------------------------------------------------------------------------
void RBBITest::TestUnicodeFiles() {
RuleBasedBreakIterator *bi;
UErrorCode status = U_ZERO_ERROR;
bi = (RuleBasedBreakIterator *)BreakIterator::createCharacterInstance(Locale::getDefault(), status);
TEST_ASSERT_SUCCESS(status);
if (U_SUCCESS(status)) {
runUnicodeTestData("GraphemeBreakTest.txt", bi);
}
delete bi;
bi = (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getDefault(), status);
TEST_ASSERT_SUCCESS(status);
if (U_SUCCESS(status)) {
runUnicodeTestData("WordBreakTest.txt", bi);
}
delete bi;
bi = (RuleBasedBreakIterator *)BreakIterator::createSentenceInstance(Locale::getDefault(), status);
TEST_ASSERT_SUCCESS(status);
if (U_SUCCESS(status)) {
runUnicodeTestData("SentenceBreakTest.txt", bi);
}
delete bi;
bi = (RuleBasedBreakIterator *)BreakIterator::createLineInstance(Locale::getDefault(), status);
TEST_ASSERT_SUCCESS(status);
if (U_SUCCESS(status)) {
runUnicodeTestData("LineBreakTest.txt", bi);
}
delete bi;
}
//--------------------------------------------------------------------------------------------
//
// Run tests from one of the boundary test data files distributed by the Unicode Consortium
//
//-------------------------------------------------------------------------------------------
void RBBITest::runUnicodeTestData(const char *fileName, RuleBasedBreakIterator *bi) {
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
UErrorCode status = U_ZERO_ERROR;
//
// Open and read the test data file, put it into a UnicodeString.
//
const char *testDataDirectory = IntlTest::getSourceTestData(status);
char testFileName[1000];
if (testDataDirectory == NULL || strlen(testDataDirectory) >= sizeof(testFileName)) {
dataerrln("Can't open test data. Path too long.");
return;
}
strcpy(testFileName, testDataDirectory);
strcat(testFileName, fileName);
logln("Opening data file %s\n", fileName);
int len;
UChar *testFile = ReadAndConvertFile(testFileName, len, "UTF-8", status);
if (status != U_FILE_ACCESS_ERROR) {
TEST_ASSERT_SUCCESS(status);
TEST_ASSERT(testFile != NULL);
}
if (U_FAILURE(status) || testFile == NULL) {
return; /* something went wrong, error already output */
}
UnicodeString testFileAsString(TRUE, testFile, len);
//
// Parse the test data file using a regular expression.
// Each kind of token is recognized in its own capture group; what type of item was scanned
// is identified by which group had a match.
//
// Caputure Group # 1 2 3 4 5
// Parses this item: divide x hex digits comment \n unrecognized \n
//
UnicodeString tokenExpr("[ \t]*(?:(\\u00F7)|(\\u00D7)|([0-9a-fA-F]+)|((?:#.*?)?$.)|(.*?$.))", -1, US_INV);
RegexMatcher tokenMatcher(tokenExpr, testFileAsString, UREGEX_MULTILINE | UREGEX_DOTALL, status);
UnicodeString testString;
UVector32 breakPositions(status);
int lineNumber = 1;
TEST_ASSERT_SUCCESS(status);
if (U_FAILURE(status)) {
return;
}
//
// Scan through each test case, building up the string to be broken in testString,
// and the positions that should be boundaries in the breakPositions vector.
//
while (tokenMatcher.find()) {
if (tokenMatcher.start(1, status) >= 0) {
// Scanned a divide sign, indicating a break position in the test data.
if (testString.length()>0) {
breakPositions.addElement(testString.length(), status);
}
}
else if (tokenMatcher.start(2, status) >= 0) {
// Scanned an 'x', meaning no break at this position in the test data
// Nothing to be done here.
}
else if (tokenMatcher.start(3, status) >= 0) {
// Scanned Hex digits. Convert them to binary, append to the character data string.
const UnicodeString &hexNumber = tokenMatcher.group(3, status);
int length = hexNumber.length();
if (length<=8) {
char buf[10];
hexNumber.extract (0, length, buf, sizeof(buf), US_INV);
UChar32 c = (UChar32)strtol(buf, NULL, 16);
if (c<=0x10ffff) {
testString.append(c);
} else {
errln("Error: Unicode Character value out of range. \'%s\', line %d.\n",
fileName, lineNumber);
}
} else {
errln("Syntax Error: Hex Unicode Character value must have no more than 8 digits at \'%s\', line %d.\n",
fileName, lineNumber);
}
}
else if (tokenMatcher.start(4, status) >= 0) {
// Scanned to end of a line, possibly skipping over a comment in the process.
// If the line from the file contained test data, run the test now.
//
if (testString.length() > 0) {
checkUnicodeTestCase(fileName, lineNumber, testString, &breakPositions, bi);
}
// Clear out this test case.
// The string and breakPositions vector will be refilled as the next
// test case is parsed.
testString.remove();
breakPositions.removeAllElements();
lineNumber++;
} else {
// Scanner catchall. Something unrecognized appeared on the line.
char token[16];
UnicodeString uToken = tokenMatcher.group(0, status);
uToken.extract(0, uToken.length(), token, (uint32_t)sizeof(token));
token[sizeof(token)-1] = 0;
errln("Syntax error in test data file \'%s\', line %d. Scanning \"%s\"\n", fileName, lineNumber, token);
// Clean up, in preparation for continuing with the next line.
testString.remove();
breakPositions.removeAllElements();
lineNumber++;
}
TEST_ASSERT_SUCCESS(status);
if (U_FAILURE(status)) {
break;
}
}
delete [] testFile;
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
}
//--------------------------------------------------------------------------------------------
//
// checkUnicodeTestCase() Run one test case from one of the Unicode Consortium
// test data files. Do only a simple, forward-only check -
// this test is mostly to check that ICU and the Unicode
// data agree with each other.
//
//--------------------------------------------------------------------------------------------
void RBBITest::checkUnicodeTestCase(const char *testFileName, int lineNumber,
const UnicodeString &testString, // Text data to be broken
UVector32 *breakPositions, // Positions where breaks should be found.
RuleBasedBreakIterator *bi) {
int32_t pos; // Break Position in the test string
int32_t expectedI = 0; // Index of expected break position in the vector of expected results.
int32_t expectedPos; // Expected break position (index into test string)
bi->setText(testString);
pos = bi->first();
pos = bi->next();
while (pos != BreakIterator::DONE) {
if (expectedI >= breakPositions->size()) {
errln("Test file \"%s\", line %d, unexpected break found at position %d",
testFileName, lineNumber, pos);
break;
}
expectedPos = breakPositions->elementAti(expectedI);
if (pos < expectedPos) {
errln("Test file \"%s\", line %d, unexpected break found at position %d",
testFileName, lineNumber, pos);
break;
}
if (pos > expectedPos) {
errln("Test file \"%s\", line %d, failed to find expected break at position %d",
testFileName, lineNumber, expectedPos);
break;
}
pos = bi->next();
expectedI++;
}
if (pos==BreakIterator::DONE && expectedI<breakPositions->size()) {
errln("Test file \"%s\", line %d, failed to find expected break at position %d",
testFileName, lineNumber, breakPositions->elementAti(expectedI));
}
}
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
//---------------------------------------------------------------------------------------
//
// classs RBBIMonkeyKind
//
// Monkey Test for Break Iteration
// Abstract interface class. Concrete derived classes independently
// implement the break rules for different iterator types.
//
// The Monkey Test itself uses doesn't know which type of break iterator it is
// testing, but works purely in terms of the interface defined here.
//
//---------------------------------------------------------------------------------------
class RBBIMonkeyKind {
public:
// Return a UVector of UnicodeSets, representing the character classes used
// for this type of iterator.
virtual UVector *charClasses() = 0;
// Set the test text on which subsequent calls to next() will operate
virtual void setText(const UnicodeString &s) = 0;
// Find the next break postion, starting from the prev break position, or from zero.
// Return -1 after reaching end of string.
virtual int32_t next(int32_t i) = 0;
virtual ~RBBIMonkeyKind();
UErrorCode deferredStatus;
protected:
RBBIMonkeyKind();
private:
};
RBBIMonkeyKind::RBBIMonkeyKind() {
deferredStatus = U_ZERO_ERROR;
}
RBBIMonkeyKind::~RBBIMonkeyKind() {
}
//----------------------------------------------------------------------------------------
//
// Random Numbers. Similar to standard lib rand() and srand()
// Not using library to
// 1. Get same results on all platforms.
// 2. Get access to current seed, to more easily reproduce failures.
//
//---------------------------------------------------------------------------------------
static uint32_t m_seed = 1;
static uint32_t m_rand()
{
m_seed = m_seed * 1103515245 + 12345;
return (uint32_t)(m_seed/65536) % 32768;
}
//------------------------------------------------------------------------------------------
//
// class RBBICharMonkey Character (Grapheme Cluster) specific implementation
// of RBBIMonkeyKind.
//
//------------------------------------------------------------------------------------------
class RBBICharMonkey: public RBBIMonkeyKind {
public:
RBBICharMonkey();
virtual ~RBBICharMonkey();
virtual UVector *charClasses();
virtual void setText(const UnicodeString &s);
virtual int32_t next(int32_t i);
private:
UVector *fSets;
UnicodeSet *fCRLFSet;
UnicodeSet *fControlSet;
UnicodeSet *fExtendSet;
UnicodeSet *fPrependSet;
UnicodeSet *fSpacingSet;
UnicodeSet *fLSet;
UnicodeSet *fVSet;
UnicodeSet *fTSet;
UnicodeSet *fLVSet;
UnicodeSet *fLVTSet;
UnicodeSet *fHangulSet;
UnicodeSet *fAnySet;
const UnicodeString *fText;
};
RBBICharMonkey::RBBICharMonkey() {
UErrorCode status = U_ZERO_ERROR;
fText = NULL;
fCRLFSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\r\\n]"), status);
fControlSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = Control}]"), status);
fExtendSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = Extend}]"), status);
fPrependSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = Prepend}]"), status);
fSpacingSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = SpacingMark}]"), status);
fLSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = L}]"), status);
fVSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = V}]"), status);
fTSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = T}]"), status);
fLVSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = LV}]"), status);
fLVTSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Grapheme_Cluster_Break = LVT}]"), status);
fHangulSet = new UnicodeSet();
fHangulSet->addAll(*fLSet);
fHangulSet->addAll(*fVSet);
fHangulSet->addAll(*fTSet);
fHangulSet->addAll(*fLVSet);
fHangulSet->addAll(*fLVTSet);
fAnySet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\u0000-\\U0010ffff]"), status);
fSets = new UVector(status);
fSets->addElement(fCRLFSet, status);
fSets->addElement(fControlSet, status);
fSets->addElement(fExtendSet, status);
fSets->addElement(fPrependSet, status);
fSets->addElement(fSpacingSet, status);
fSets->addElement(fHangulSet, status);
fSets->addElement(fAnySet, status);
if (U_FAILURE(status)) {
deferredStatus = status;
}
}
void RBBICharMonkey::setText(const UnicodeString &s) {
fText = &s;
}
int32_t RBBICharMonkey::next(int32_t prevPos) {
int p0, p1, p2, p3; // Indices of the significant code points around the
// break position being tested. The candidate break
// location is before p2.
int breakPos = -1;
UChar32 c0, c1, c2, c3; // The code points at p0, p1, p2 & p3.
if (U_FAILURE(deferredStatus)) {
return -1;
}
// Previous break at end of string. return DONE.
if (prevPos >= fText->length()) {
return -1;
}
p0 = p1 = p2 = p3 = prevPos;
c3 = fText->char32At(prevPos);
c0 = c1 = c2 = 0;
// Loop runs once per "significant" character position in the input text.
for (;;) {
// Move all of the positions forward in the input string.
p0 = p1; c0 = c1;
p1 = p2; c1 = c2;
p2 = p3; c2 = c3;
// Advancd p3 by one codepoint
p3 = fText->moveIndex32(p3, 1);
c3 = fText->char32At(p3);
if (p1 == p2) {
// Still warming up the loop. (won't work with zero length strings, but we don't care)
continue;
}
if (p2 == fText->length()) {
// Reached end of string. Always a break position.
break;
}
// Rule GB3 CR x LF
// No Extend or Format characters may appear between the CR and LF,
// which requires the additional check for p2 immediately following p1.
//
if (c1==0x0D && c2==0x0A && p1==(p2-1)) {
continue;
}
// Rule (GB4). ( Control | CR | LF ) <break>
if (fControlSet->contains(c1) ||
c1 == 0x0D ||
c1 == 0x0A) {
break;
}
// Rule (GB5) <break> ( Control | CR | LF )
//
if (fControlSet->contains(c2) ||
c2 == 0x0D ||
c2 == 0x0A) {
break;
}
// Rule (GB6) L x ( L | V | LV | LVT )
if (fLSet->contains(c1) &&
(fLSet->contains(c2) ||
fVSet->contains(c2) ||
fLVSet->contains(c2) ||
fLVTSet->contains(c2))) {
continue;
}
// Rule (GB7) ( LV | V ) x ( V | T )
if ((fLVSet->contains(c1) || fVSet->contains(c1)) &&
(fVSet->contains(c2) || fTSet->contains(c2))) {
continue;
}
// Rule (GB8) ( LVT | T) x T
if ((fLVTSet->contains(c1) || fTSet->contains(c1)) &&
fTSet->contains(c2)) {
continue;
}
// Rule (GB9) Numeric x ALetter
if (fExtendSet->contains(c2)) {
continue;
}
// Rule (GB9a) x SpacingMark
if (fSpacingSet->contains(c2)) {
continue;
}
// Rule (GB9b) Prepend x
if (fPrependSet->contains(c1)) {
continue;
}
// Rule (GB10) Any <break> Any
break;
}
breakPos = p2;
return breakPos;
}
UVector *RBBICharMonkey::charClasses() {
return fSets;
}
RBBICharMonkey::~RBBICharMonkey() {
delete fSets;
delete fCRLFSet;
delete fControlSet;
delete fExtendSet;
delete fPrependSet;
delete fSpacingSet;
delete fLSet;
delete fVSet;
delete fTSet;
delete fLVSet;
delete fLVTSet;
delete fHangulSet;
delete fAnySet;
}
//------------------------------------------------------------------------------------------
//
// class RBBIWordMonkey Word Break specific implementation
// of RBBIMonkeyKind.
//
//------------------------------------------------------------------------------------------
class RBBIWordMonkey: public RBBIMonkeyKind {
public:
RBBIWordMonkey();
virtual ~RBBIWordMonkey();
virtual UVector *charClasses();
virtual void setText(const UnicodeString &s);
virtual int32_t next(int32_t i);
private:
UVector *fSets;
UnicodeSet *fCRSet;
UnicodeSet *fLFSet;
UnicodeSet *fNewlineSet;
UnicodeSet *fKatakanaSet;
UnicodeSet *fALetterSet;
// TODO(jungshik): Do we still need this change?
// UnicodeSet *fALetterSet; // matches ALetterPlus in word.txt
UnicodeSet *fMidNumLetSet;
UnicodeSet *fMidLetterSet;
UnicodeSet *fMidNumSet;
UnicodeSet *fNumericSet;
UnicodeSet *fFormatSet;
UnicodeSet *fOtherSet;
UnicodeSet *fExtendSet;
UnicodeSet *fExtendNumLetSet;
UnicodeSet *fDictionaryCjkSet;
RegexMatcher *fMatcher;
const UnicodeString *fText;
};
RBBIWordMonkey::RBBIWordMonkey()
{
UErrorCode status = U_ZERO_ERROR;
fSets = new UVector(status);
fCRSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = CR}]"), status);
fLFSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = LF}]"), status);
fNewlineSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = Newline}]"), status);
fDictionaryCjkSet= new UnicodeSet("[[\\uac00-\\ud7a3][:Han:][:Hiragana:]]", status);
// Exclude Hangul syllables from ALetterSet during testing.
// Leave CJK dictionary characters out from the monkey tests!
#if 0
fALetterSet = new UnicodeSet("[\\p{Word_Break = ALetter}"
"[\\p{Line_Break = Complex_Context}"
"-\\p{Grapheme_Cluster_Break = Extend}"
"-\\p{Grapheme_Cluster_Break = Control}"
"]]",
status);
#endif
fALetterSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = ALetter}]"), status);
fALetterSet->removeAll(*fDictionaryCjkSet);
fKatakanaSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = Katakana}]"), status);
fMidNumLetSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = MidNumLet}]"), status);
fMidLetterSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = MidLetter}]"), status);
fMidNumSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = MidNum}]"), status);
fNumericSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = Numeric}[\\uff10-\\uff19]]"), status);
fFormatSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = Format}]"), status);
fExtendNumLetSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = ExtendNumLet}]"), status);
fExtendSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Word_Break = Extend}]"), status);
fOtherSet = new UnicodeSet();
if(U_FAILURE(status)) {
deferredStatus = status;
return;
}
fOtherSet->complement();
fOtherSet->removeAll(*fCRSet);
fOtherSet->removeAll(*fLFSet);
fOtherSet->removeAll(*fNewlineSet);
fOtherSet->removeAll(*fKatakanaSet);
fOtherSet->removeAll(*fALetterSet);
fOtherSet->removeAll(*fMidLetterSet);
fOtherSet->removeAll(*fMidNumSet);
fOtherSet->removeAll(*fNumericSet);
fOtherSet->removeAll(*fExtendNumLetSet);
fOtherSet->removeAll(*fFormatSet);
fOtherSet->removeAll(*fExtendSet);
// Inhibit dictionary characters from being tested at all.
fOtherSet->removeAll(*fDictionaryCjkSet);
fOtherSet->removeAll(UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{LineBreak = Complex_Context}]"), status));
fSets->addElement(fCRSet, status);
fSets->addElement(fLFSet, status);
fSets->addElement(fNewlineSet, status);
fSets->addElement(fALetterSet, status);
//fSets->addElement(fKatakanaSet, status); //TODO: work out how to test katakana
fSets->addElement(fMidLetterSet, status);
fSets->addElement(fMidNumLetSet, status);
fSets->addElement(fMidNumSet, status);
fSets->addElement(fNumericSet, status);
fSets->addElement(fFormatSet, status);
fSets->addElement(fExtendSet, status);
fSets->addElement(fOtherSet, status);
fSets->addElement(fExtendNumLetSet, status);
if (U_FAILURE(status)) {
deferredStatus = status;
}
}
void RBBIWordMonkey::setText(const UnicodeString &s) {
fText = &s;
}
int32_t RBBIWordMonkey::next(int32_t prevPos) {
int p0, p1, p2, p3; // Indices of the significant code points around the
// break position being tested. The candidate break
// location is before p2.
int breakPos = -1;
UChar32 c0, c1, c2, c3; // The code points at p0, p1, p2 & p3.
if (U_FAILURE(deferredStatus)) {
return -1;
}
// Prev break at end of string. return DONE.
if (prevPos >= fText->length()) {
return -1;
}
p0 = p1 = p2 = p3 = prevPos;
c3 = fText->char32At(prevPos);
c0 = c1 = c2 = 0;
// Loop runs once per "significant" character position in the input text.
for (;;) {
// Move all of the positions forward in the input string.
p0 = p1; c0 = c1;
p1 = p2; c1 = c2;
p2 = p3; c2 = c3;
// Advancd p3 by X(Extend | Format)* Rule 4
// But do not advance over Extend & Format following a new line. (Unicode 5.1 change)
do {
p3 = fText->moveIndex32(p3, 1);
c3 = fText->char32At(p3);
if (fCRSet->contains(c2) || fLFSet->contains(c2) || fNewlineSet->contains(c2)) {
break;
};
}
while (fFormatSet->contains(c3) || fExtendSet->contains(c3));
if (p1 == p2) {
// Still warming up the loop. (won't work with zero length strings, but we don't care)
continue;
}
if (p2 == fText->length()) {
// Reached end of string. Always a break position.
break;
}
// Rule (3) CR x LF
// No Extend or Format characters may appear between the CR and LF,
// which requires the additional check for p2 immediately following p1.
//
if (c1==0x0D && c2==0x0A) {
continue;
}
// Rule (3a) Break before and after newlines (including CR and LF)
//
if (fCRSet->contains(c1) || fLFSet->contains(c1) || fNewlineSet->contains(c1)) {
break;
};
if (fCRSet->contains(c2) || fLFSet->contains(c2) || fNewlineSet->contains(c2)) {
break;
};
// Rule (5). ALetter x ALetter
if (fALetterSet->contains(c1) &&
fALetterSet->contains(c2)) {
continue;
}
// Rule (6) ALetter x (MidLetter | MidNumLet) ALetter
//
if ( fALetterSet->contains(c1) &&
(fMidLetterSet->contains(c2) || fMidNumLetSet->contains(c2)) &&
fALetterSet->contains(c3)) {
continue;
}
// Rule (7) ALetter (MidLetter | MidNumLet) x ALetter
if (fALetterSet->contains(c0) &&
(fMidLetterSet->contains(c1) || fMidNumLetSet->contains(c1)) &&
fALetterSet->contains(c2)) {
continue;
}
// Rule (8) Numeric x Numeric
if (fNumericSet->contains(c1) &&
fNumericSet->contains(c2)) {
continue;
}
// Rule (9) ALetter x Numeric
if (fALetterSet->contains(c1) &&
fNumericSet->contains(c2)) {
continue;
}
// Rule (10) Numeric x ALetter
if (fNumericSet->contains(c1) &&
fALetterSet->contains(c2)) {
continue;
}
// Rule (11) Numeric (MidNum | MidNumLet) x Numeric
if (fNumericSet->contains(c0) &&
(fMidNumSet->contains(c1) || fMidNumLetSet->contains(c1)) &&
fNumericSet->contains(c2)) {
continue;
}
// Rule (12) Numeric x (MidNum | MidNumLet) Numeric
if (fNumericSet->contains(c1) &&
(fMidNumSet->contains(c2) || fMidNumLetSet->contains(c2)) &&
fNumericSet->contains(c3)) {
continue;
}
// Rule (13) Katakana x Katakana
if (fKatakanaSet->contains(c1) &&
fKatakanaSet->contains(c2)) {
continue;
}
// Rule 13a
if ((fALetterSet->contains(c1) || fNumericSet->contains(c1) ||
fKatakanaSet->contains(c1) || fExtendNumLetSet->contains(c1)) &&
fExtendNumLetSet->contains(c2)) {
continue;
}
// Rule 13b
if (fExtendNumLetSet->contains(c1) &&
(fALetterSet->contains(c2) || fNumericSet->contains(c2) ||
fKatakanaSet->contains(c2))) {
continue;
}
// Rule 14. Break found here.
break;
}
breakPos = p2;
return breakPos;
}
UVector *RBBIWordMonkey::charClasses() {
return fSets;
}
RBBIWordMonkey::~RBBIWordMonkey() {
delete fSets;
delete fCRSet;
delete fLFSet;
delete fNewlineSet;
delete fKatakanaSet;
delete fALetterSet;
delete fMidNumLetSet;
delete fMidLetterSet;
delete fMidNumSet;
delete fNumericSet;
delete fFormatSet;
delete fExtendSet;
delete fExtendNumLetSet;
delete fOtherSet;
}
//------------------------------------------------------------------------------------------
//
// class RBBISentMonkey Sentence Break specific implementation
// of RBBIMonkeyKind.
//
//------------------------------------------------------------------------------------------
class RBBISentMonkey: public RBBIMonkeyKind {
public:
RBBISentMonkey();
virtual ~RBBISentMonkey();
virtual UVector *charClasses();
virtual void setText(const UnicodeString &s);
virtual int32_t next(int32_t i);
private:
int moveBack(int posFrom);
int moveForward(int posFrom);
UChar32 cAt(int pos);
UVector *fSets;
UnicodeSet *fSepSet;
UnicodeSet *fFormatSet;
UnicodeSet *fSpSet;
UnicodeSet *fLowerSet;
UnicodeSet *fUpperSet;
UnicodeSet *fOLetterSet;
UnicodeSet *fNumericSet;
UnicodeSet *fATermSet;
UnicodeSet *fSContinueSet;
UnicodeSet *fSTermSet;
UnicodeSet *fCloseSet;
UnicodeSet *fOtherSet;
UnicodeSet *fExtendSet;
const UnicodeString *fText;
};
RBBISentMonkey::RBBISentMonkey()
{
UErrorCode status = U_ZERO_ERROR;
fSets = new UVector(status);
// Separator Set Note: Beginning with Unicode 5.1, CR and LF were removed from the separator
// set and made into character classes of their own. For the monkey impl,
// they remain in SEP, since Sep always appears with CR and LF in the rules.
fSepSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Sep} \\u000a \\u000d]"), status);
fFormatSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Format}]"), status);
fSpSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Sp}]"), status);
fLowerSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Lower}]"), status);
fUpperSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Upper}]"), status);
fOLetterSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = OLetter}]"), status);
fNumericSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Numeric}]"), status);
fATermSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = ATerm}]"), status);
fSContinueSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = SContinue}]"), status);
fSTermSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = STerm}]"), status);
fCloseSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Close}]"), status);
fExtendSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Sentence_Break = Extend}]"), status);
fOtherSet = new UnicodeSet();
if(U_FAILURE(status)) {
deferredStatus = status;
return;
}
fOtherSet->complement();
fOtherSet->removeAll(*fSepSet);
fOtherSet->removeAll(*fFormatSet);
fOtherSet->removeAll(*fSpSet);
fOtherSet->removeAll(*fLowerSet);
fOtherSet->removeAll(*fUpperSet);
fOtherSet->removeAll(*fOLetterSet);
fOtherSet->removeAll(*fNumericSet);
fOtherSet->removeAll(*fATermSet);
fOtherSet->removeAll(*fSContinueSet);
fOtherSet->removeAll(*fSTermSet);
fOtherSet->removeAll(*fCloseSet);
fOtherSet->removeAll(*fExtendSet);
fSets->addElement(fSepSet, status);
fSets->addElement(fFormatSet, status);
fSets->addElement(fSpSet, status);
fSets->addElement(fLowerSet, status);
fSets->addElement(fUpperSet, status);
fSets->addElement(fOLetterSet, status);
fSets->addElement(fNumericSet, status);
fSets->addElement(fATermSet, status);
fSets->addElement(fSContinueSet, status);
fSets->addElement(fSTermSet, status);
fSets->addElement(fCloseSet, status);
fSets->addElement(fOtherSet, status);
fSets->addElement(fExtendSet, status);
if (U_FAILURE(status)) {
deferredStatus = status;
}
}
void RBBISentMonkey::setText(const UnicodeString &s) {
fText = &s;
}
UVector *RBBISentMonkey::charClasses() {
return fSets;
}
// moveBack() Find the "significant" code point preceding the index i.
// Skips over ($Extend | $Format)* .
//
int RBBISentMonkey::moveBack(int i) {
if (i <= 0) {
return -1;
}
UChar32 c;
int32_t j = i;
do {
j = fText->moveIndex32(j, -1);
c = fText->char32At(j);
}
while (j>0 &&(fFormatSet->contains(c) || fExtendSet->contains(c)));
return j;
}
int RBBISentMonkey::moveForward(int i) {
if (i>=fText->length()) {
return fText->length();
}
UChar32 c;
int32_t j = i;
do {
j = fText->moveIndex32(j, 1);
c = cAt(j);
}
while (fFormatSet->contains(c) || fExtendSet->contains(c));
return j;
}
UChar32 RBBISentMonkey::cAt(int pos) {
if (pos<0 || pos>=fText->length()) {
return -1;
} else {
return fText->char32At(pos);
}
}
int32_t RBBISentMonkey::next(int32_t prevPos) {
int p0, p1, p2, p3; // Indices of the significant code points around the
// break position being tested. The candidate break
// location is before p2.
int breakPos = -1;
UChar32 c0, c1, c2, c3; // The code points at p0, p1, p2 & p3.
UChar32 c;
if (U_FAILURE(deferredStatus)) {
return -1;
}
// Prev break at end of string. return DONE.
if (prevPos >= fText->length()) {
return -1;
}
p0 = p1 = p2 = p3 = prevPos;
c3 = fText->char32At(prevPos);
c0 = c1 = c2 = 0;
// Loop runs once per "significant" character position in the input text.
for (;;) {
// Move all of the positions forward in the input string.
p0 = p1; c0 = c1;
p1 = p2; c1 = c2;
p2 = p3; c2 = c3;
// Advancd p3 by X(Extend | Format)* Rule 4
p3 = moveForward(p3);
c3 = cAt(p3);
// Rule (3) CR x LF
if (c1==0x0d && c2==0x0a && p2==(p1+1)) {
continue;
}
// Rule (4). Sep <break>
if (fSepSet->contains(c1)) {
p2 = p1+1; // Separators don't combine with Extend or Format.
break;
}
if (p2 >= fText->length()) {
// Reached end of string. Always a break position.
break;
}
if (p2 == prevPos) {
// Still warming up the loop. (won't work with zero length strings, but we don't care)
continue;
}
// Rule (6). ATerm x Numeric
if (fATermSet->contains(c1) && fNumericSet->contains(c2)) {
continue;
}
// Rule (7). Upper ATerm x Uppper
if (fUpperSet->contains(c0) && fATermSet->contains(c1) && fUpperSet->contains(c2)) {
continue;
}
// Rule (8) ATerm Close* Sp* x (not (OLettter | Upper | Lower | Sep | STerm | ATerm))* Lower
// Note: STerm | ATerm are added to the negated part of the expression by a
// note to the Unicode 5.0 documents.
int p8 = p1;
while (fSpSet->contains(cAt(p8))) {
p8 = moveBack(p8);
}
while (fCloseSet->contains(cAt(p8))) {
p8 = moveBack(p8);
}
if (fATermSet->contains(cAt(p8))) {
p8=p2;
for (;;) {
c = cAt(p8);
if (c==-1 || fOLetterSet->contains(c) || fUpperSet->contains(c) ||
fLowerSet->contains(c) || fSepSet->contains(c) ||
fATermSet->contains(c) || fSTermSet->contains(c)) {
break;
}
p8 = moveForward(p8);
}
if (fLowerSet->contains(cAt(p8))) {
continue;
}
}
// Rule 8a (STerm | ATerm) Close* Sp* x (SContinue | STerm | ATerm);
if (fSContinueSet->contains(c2) || fSTermSet->contains(c2) || fATermSet->contains(c2)) {
p8 = p1;
while (fSpSet->contains(cAt(p8))) {
p8 = moveBack(p8);
}
while (fCloseSet->contains(cAt(p8))) {
p8 = moveBack(p8);
}
c = cAt(p8);
if (fSTermSet->contains(c) || fATermSet->contains(c)) {
continue;
}
}
// Rule (9) (STerm | ATerm) Close* x (Close | Sp | Sep | CR | LF)
int p9 = p1;
while (fCloseSet->contains(cAt(p9))) {
p9 = moveBack(p9);
}
c = cAt(p9);
if ((fSTermSet->contains(c) || fATermSet->contains(c))) {
if (fCloseSet->contains(c2) || fSpSet->contains(c2) || fSepSet->contains(c2)) {
continue;
}
}
// Rule (10) (Sterm | ATerm) Close* Sp* x (Sp | Sep | CR | LF)
int p10 = p1;
while (fSpSet->contains(cAt(p10))) {
p10 = moveBack(p10);
}
while (fCloseSet->contains(cAt(p10))) {
p10 = moveBack(p10);
}
if (fSTermSet->contains(cAt(p10)) || fATermSet->contains(cAt(p10))) {
if (fSpSet->contains(c2) || fSepSet->contains(c2)) {
continue;
}
}
// Rule (11) (STerm | ATerm) Close* Sp* (Sep | CR | LF)? <break>
int p11 = p1;
if (fSepSet->contains(cAt(p11))) {
p11 = moveBack(p11);
}
while (fSpSet->contains(cAt(p11))) {
p11 = moveBack(p11);
}
while (fCloseSet->contains(cAt(p11))) {
p11 = moveBack(p11);
}
if (fSTermSet->contains(cAt(p11)) || fATermSet->contains(cAt(p11))) {
break;
}
// Rule (12) Any x Any
continue;
}
breakPos = p2;
return breakPos;
}
RBBISentMonkey::~RBBISentMonkey() {
delete fSets;
delete fSepSet;
delete fFormatSet;
delete fSpSet;
delete fLowerSet;
delete fUpperSet;
delete fOLetterSet;
delete fNumericSet;
delete fATermSet;
delete fSContinueSet;
delete fSTermSet;
delete fCloseSet;
delete fOtherSet;
delete fExtendSet;
}
//-------------------------------------------------------------------------------------------
//
// RBBILineMonkey
//
//-------------------------------------------------------------------------------------------
class RBBILineMonkey: public RBBIMonkeyKind {
public:
RBBILineMonkey();
virtual ~RBBILineMonkey();
virtual UVector *charClasses();
virtual void setText(const UnicodeString &s);
virtual int32_t next(int32_t i);
virtual void rule9Adjust(int32_t pos, UChar32 *posChar, int32_t *nextPos, UChar32 *nextChar);
private:
UVector *fSets;
UnicodeSet *fBK;
UnicodeSet *fCR;
UnicodeSet *fLF;
UnicodeSet *fCM;
UnicodeSet *fNL;
UnicodeSet *fSG;
UnicodeSet *fWJ;
UnicodeSet *fZW;
UnicodeSet *fGL;
UnicodeSet *fCB;
UnicodeSet *fSP;
UnicodeSet *fB2;
UnicodeSet *fBA;
UnicodeSet *fBB;
UnicodeSet *fHY;
UnicodeSet *fH2;
UnicodeSet *fH3;
UnicodeSet *fCL;
UnicodeSet *fEX;
UnicodeSet *fIN;
UnicodeSet *fJL;
UnicodeSet *fJV;
UnicodeSet *fJT;
UnicodeSet *fNS;
UnicodeSet *fOP;
UnicodeSet *fQU;
UnicodeSet *fIS;
UnicodeSet *fNU;
UnicodeSet *fPO;
UnicodeSet *fPR;
UnicodeSet *fSY;
UnicodeSet *fAI;
UnicodeSet *fAL;
UnicodeSet *fID;
UnicodeSet *fSA;
UnicodeSet *fXX;
BreakIterator *fCharBI;
const UnicodeString *fText;
int32_t *fOrigPositions;
RegexMatcher *fNumberMatcher;
RegexMatcher *fLB11Matcher;
};
RBBILineMonkey::RBBILineMonkey()
{
UErrorCode status = U_ZERO_ERROR;
fSets = new UVector(status);
fBK = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_Break=BK}]"), status);
fCR = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=CR}]"), status);
fLF = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=LF}]"), status);
fCM = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=CM}]"), status);
fNL = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=NL}]"), status);
fWJ = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=WJ}]"), status);
fZW = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=ZW}]"), status);
fGL = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=GL}]"), status);
fCB = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=CB}]"), status);
fSP = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=SP}]"), status);
fB2 = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=B2}]"), status);
fBA = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=BA}]"), status);
fBB = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=BB}]"), status);
fHY = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=HY}]"), status);
fH2 = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=H2}]"), status);
fH3 = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=H3}]"), status);
fCL = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=CL}]"), status);
fEX = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=EX}]"), status);
fIN = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=IN}]"), status);
fJL = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=JL}]"), status);
fJV = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=JV}]"), status);
fJT = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=JT}]"), status);
fNS = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=NS}]"), status);
fOP = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=OP}]"), status);
fQU = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=QU}]"), status);
fIS = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=IS}]"), status);
fNU = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=NU}]"), status);
fPO = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=PO}]"), status);
fPR = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=PR}]"), status);
fSY = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=SY}]"), status);
fAI = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=AI}]"), status);
fAL = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=AL}]"), status);
fID = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=ID}]"), status);
fSA = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=SA}]"), status);
fSG = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\ud800-\\udfff]"), status);
fXX = new UnicodeSet(UNICODE_STRING_SIMPLE("[\\p{Line_break=XX}]"), status);
if (U_FAILURE(status)) {
deferredStatus = status;
fCharBI = NULL;
fNumberMatcher = NULL;
return;
}
fAL->addAll(*fXX); // Default behavior for XX is identical to AL
fAL->addAll(*fAI); // Default behavior for AI is identical to AL
fAL->addAll(*fSA); // Default behavior for SA is XX, which defaults to AL
fAL->addAll(*fSG); // Default behavior for SG is identical to AL.
fSets->addElement(fBK, status);
fSets->addElement(fCR, status);
fSets->addElement(fLF, status);
fSets->addElement(fCM, status);
fSets->addElement(fNL, status);
fSets->addElement(fWJ, status);
fSets->addElement(fZW, status);
fSets->addElement(fGL, status);
fSets->addElement(fCB, status);
fSets->addElement(fSP, status);
fSets->addElement(fB2, status);
fSets->addElement(fBA, status);
fSets->addElement(fBB, status);
fSets->addElement(fHY, status);
fSets->addElement(fH2, status);
fSets->addElement(fH3, status);
fSets->addElement(fCL, status);
fSets->addElement(fEX, status);
fSets->addElement(fIN, status);
fSets->addElement(fJL, status);
fSets->addElement(fJT, status);
fSets->addElement(fJV, status);
fSets->addElement(fNS, status);
fSets->addElement(fOP, status);
fSets->addElement(fQU, status);
fSets->addElement(fIS, status);
fSets->addElement(fNU, status);
fSets->addElement(fPO, status);
fSets->addElement(fPR, status);
fSets->addElement(fSY, status);
fSets->addElement(fAI, status);
fSets->addElement(fAL, status);
fSets->addElement(fID, status);
fSets->addElement(fWJ, status);
fSets->addElement(fSA, status);
fSets->addElement(fSG, status);
const char *rules =
"((\\p{Line_Break=PR}|\\p{Line_Break=PO})\\p{Line_Break=CM}*)?"
"((\\p{Line_Break=OP}|\\p{Line_Break=HY})\\p{Line_Break=CM}*)?"
"\\p{Line_Break=NU}\\p{Line_Break=CM}*"
"((\\p{Line_Break=NU}|\\p{Line_Break=IS}|\\p{Line_Break=SY})\\p{Line_Break=CM}*)*"
"(\\p{Line_Break=CL}\\p{Line_Break=CM}*)?"
"((\\p{Line_Break=PR}|\\p{Line_Break=PO})\\p{Line_Break=CM}*)?";
fNumberMatcher = new RegexMatcher(
UnicodeString(rules, -1, US_INV), 0, status);
fCharBI = BreakIterator::createCharacterInstance(Locale::getEnglish(), status);
if (U_FAILURE(status)) {
deferredStatus = status;
}
}
void RBBILineMonkey::setText(const UnicodeString &s) {
fText = &s;
fCharBI->setText(s);
fNumberMatcher->reset(s);
}
//
// rule9Adjust
// Line Break TR rules 9 and 10 implementation.
// This deals with combining marks and other sequences that
// that must be treated as if they were something other than what they actually are.
//
// This is factored out into a separate function because it must be applied twice for
// each potential break, once to the chars before the position being checked, then
// again to the text following the possible break.
//
void RBBILineMonkey::rule9Adjust(int32_t pos, UChar32 *posChar, int32_t *nextPos, UChar32 *nextChar) {
if (pos == -1) {
// Invalid initial position. Happens during the warmup iteration of the
// main loop in next().
return;
}
int32_t nPos = *nextPos;
// LB 9 Keep combining sequences together.
// advance over any CM class chars. Note that Line Break CM is different
// from the normal Grapheme Extend property.
if (!(fSP->contains(*posChar) || fBK->contains(*posChar) || *posChar==0x0d ||
*posChar==0x0a ||fNL->contains(*posChar) || fZW->contains(*posChar))) {
for (;;) {
*nextChar = fText->char32At(nPos);
if (!fCM->contains(*nextChar)) {
break;
}
nPos = fText->moveIndex32(nPos, 1);
}
}
// LB 9 Treat X CM* as if it were x.
// No explicit action required.
// LB 10 Treat any remaining combining mark as AL
if (fCM->contains(*posChar)) {
*posChar = 0x41; // thisChar = 'A';
}
// Push the updated nextPos and nextChar back to our caller.
// This only makes a difference if posChar got bigger by consuming a
// combining sequence.
*nextPos = nPos;
*nextChar = fText->char32At(nPos);
}
int32_t RBBILineMonkey::next(int32_t startPos) {
UErrorCode status = U_ZERO_ERROR;
int32_t pos; // Index of the char following a potential break position
UChar32 thisChar; // Character at above position "pos"
int32_t prevPos; // Index of the char preceding a potential break position
UChar32 prevChar; // Character at above position. Note that prevChar
// and thisChar may not be adjacent because combining
// characters between them will be ignored.
int32_t nextPos; // Index of the next character following pos.
// Usually skips over combining marks.
int32_t nextCPPos; // Index of the code point following "pos."
// May point to a combining mark.
int32_t tPos; // temp value.
UChar32 c;
if (U_FAILURE(deferredStatus)) {
return -1;
}
if (startPos >= fText->length()) {
return -1;
}
// Initial values for loop. Loop will run the first time without finding breaks,
// while the invalid values shift out and the "this" and
// "prev" positions are filled in with good values.
pos = prevPos = -1; // Invalid value, serves as flag for initial loop iteration.
thisChar = prevChar = 0;
nextPos = nextCPPos = startPos;
// Loop runs once per position in the test text, until a break position
// is found.
for (;;) {
prevPos = pos;
prevChar = thisChar;
pos = nextPos;
thisChar = fText->char32At(pos);
nextCPPos = fText->moveIndex32(pos, 1);
nextPos = nextCPPos;
// Rule LB2 - Break at end of text.
if (pos >= fText->length()) {
break;
}
// Rule LB 9 - adjust for combining sequences.
// We do this one out-of-order because the adjustment does not change anything
// that would match rules LB 3 - LB 6, but after the adjustment, LB 3-6 do need to
// be applied.
rule9Adjust(prevPos, &prevChar, &pos, &thisChar);
nextCPPos = nextPos = fText->moveIndex32(pos, 1);
c = fText->char32At(nextPos);
rule9Adjust(pos, &thisChar, &nextPos, &c);
// If the loop is still warming up - if we haven't shifted the initial
// -1 positions out of prevPos yet - loop back to advance the
// position in the input without any further looking for breaks.
if (prevPos == -1) {
continue;
}
// LB 4 Always break after hard line breaks,
if (fBK->contains(prevChar)) {
break;
}
// LB 5 Break after CR, LF, NL, but not inside CR LF
if (prevChar == 0x0d && thisChar == 0x0a) {
continue;
}
if (prevChar == 0x0d ||
prevChar == 0x0a ||
prevChar == 0x85) {
break;
}
// LB 6 Don't break before hard line breaks
if (thisChar == 0x0d || thisChar == 0x0a || thisChar == 0x85 ||
fBK->contains(thisChar)) {
continue;
}
// LB 7 Don't break before spaces or zero-width space.
if (fSP->contains(thisChar)) {
continue;
}
if (fZW->contains(thisChar)) {
continue;
}
// LB 8 Break after zero width space
if (fZW->contains(prevChar)) {
break;
}
// LB 9, 10 Already done, at top of loop.
//
// LB 11 Do not break before or after WORD JOINER and related characters.
// x WJ
// WJ x
//
if (fWJ->contains(thisChar) || fWJ->contains(prevChar)) {
continue;
}
// LB 12
// GL x
if (fGL->contains(prevChar)) {
continue;
}
// LB 12a
// [^SP BA HY] x GL
if (!(fSP->contains(prevChar) ||
fBA->contains(prevChar) ||
fHY->contains(prevChar) ) && fGL->contains(thisChar)) {
continue;
}
// LB 13 Don't break before closings.
// NU x CL and NU x IS are not matched here so that they will
// fall into LB 17 and the more general number regular expression.
//
if (!fNU->contains(prevChar) && fCL->contains(thisChar) ||
fEX->contains(thisChar) ||
!fNU->contains(prevChar) && fIS->contains(thisChar) ||
!fNU->contains(prevChar) && fSY->contains(thisChar)) {
continue;
}
// LB 14 Don't break after OP SP*
// Scan backwards, checking for this sequence.
// The OP char could include combining marks, so we actually check for
// OP CM* SP*
// Another Twist: The Rule 67 fixes may have changed a SP CM
// sequence into a ID char, so before scanning back through spaces,
// verify that prevChar is indeed a space. The prevChar variable
// may differ from fText[prevPos]
tPos = prevPos;
if (fSP->contains(prevChar)) {
while (tPos > 0 && fSP->contains(fText->char32At(tPos))) {
tPos=fText->moveIndex32(tPos, -1);
}
}
while (tPos > 0 && fCM->contains(fText->char32At(tPos))) {
tPos=fText->moveIndex32(tPos, -1);
}
if (fOP->contains(fText->char32At(tPos))) {
continue;
}
// LB 15 QU SP* x OP
if (fOP->contains(thisChar)) {
// Scan backwards from prevChar to see if it is preceded by QU CM* SP*
int tPos = prevPos;
while (tPos>0 && fSP->contains(fText->char32At(tPos))) {
tPos = fText->moveIndex32(tPos, -1);
}
while (tPos>0 && fCM->contains(fText->char32At(tPos))) {
tPos = fText->moveIndex32(tPos, -1);
}
if (fQU->contains(fText->char32At(tPos))) {
continue;
}
}
// LB 16 CL SP* x NS
// Scan backwards for SP* CM* CL
if (fNS->contains(thisChar)) {
int tPos = prevPos;
while (tPos>0 && fSP->contains(fText->char32At(tPos))) {
tPos = fText->moveIndex32(tPos, -1);
}
while (tPos>0 && fCM->contains(fText->char32At(tPos))) {
tPos = fText->moveIndex32(tPos, -1);
}
if (fCL->contains(fText->char32At(tPos))) {
continue;
}
}
// LB 17 B2 SP* x B2
if (fB2->contains(thisChar)) {
// Scan backwards, checking for the B2 CM* SP* sequence.
tPos = prevPos;
if (fSP->contains(prevChar)) {
while (tPos > 0 && fSP->contains(fText->char32At(tPos))) {
tPos=fText->moveIndex32(tPos, -1);
}
}
while (tPos > 0 && fCM->contains(fText->char32At(tPos))) {
tPos=fText->moveIndex32(tPos, -1);
}
if (fB2->contains(fText->char32At(tPos))) {
continue;
}
}
// LB 18 break after space
if (fSP->contains(prevChar)) {
break;
}
// LB 19
// x QU
// QU x
if (fQU->contains(thisChar) || fQU->contains(prevChar)) {
continue;
}
// LB 20 Break around a CB
if (fCB->contains(thisChar) || fCB->contains(prevChar)) {
break;
}
// LB 21
if (fBA->contains(thisChar) ||
fHY->contains(thisChar) ||
fNS->contains(thisChar) ||
fBB->contains(prevChar) ) {
continue;
}
// LB 22
if (fAL->contains(prevChar) && fIN->contains(thisChar) ||
fID->contains(prevChar) && fIN->contains(thisChar) ||
fIN->contains(prevChar) && fIN->contains(thisChar) ||
fNU->contains(prevChar) && fIN->contains(thisChar) ) {
continue;
}
// LB 23 ID x PO
// AL x NU
// NU x AL
if (fID->contains(prevChar) && fPO->contains(thisChar) ||
fAL->contains(prevChar) && fNU->contains(thisChar) ||
fNU->contains(prevChar) && fAL->contains(thisChar) ) {
continue;
}
// LB 24 Do not break between prefix and letters or ideographs.
// PR x ID
// PR x AL
// PO x AL
if (fPR->contains(prevChar) && fID->contains(thisChar) ||
fPR->contains(prevChar) && fAL->contains(thisChar) ||
fPO->contains(prevChar) && fAL->contains(thisChar) ) {
continue;
}
// LB 25 Numbers
if (fNumberMatcher->lookingAt(prevPos, status)) {
if (U_FAILURE(status)) {
break;
}
// Matched a number. But could have been just a single digit, which would
// not represent a "no break here" between prevChar and thisChar
int32_t numEndIdx = fNumberMatcher->end(status); // idx of first char following num
if (numEndIdx > pos) {
// Number match includes at least our two chars being checked
if (numEndIdx > nextPos) {
// Number match includes additional chars. Update pos and nextPos
// so that next loop iteration will continue at the end of the number,
// checking for breaks between last char in number & whatever follows.
pos = nextPos = numEndIdx;
do {
pos = fText->moveIndex32(pos, -1);
thisChar = fText->char32At(pos);
} while (fCM->contains(thisChar));
}
continue;
}
}
// LB 26 Do not break a Korean syllable.
if (fJL->contains(prevChar) && (fJL->contains(thisChar) ||
fJV->contains(thisChar) ||
fH2->contains(thisChar) ||
fH3->contains(thisChar))) {
continue;
}
if ((fJV->contains(prevChar) || fH2->contains(prevChar)) &&
(fJV->contains(thisChar) || fJT->contains(thisChar))) {
continue;
}
if ((fJT->contains(prevChar) || fH3->contains(prevChar)) &&
fJT->contains(thisChar)) {
continue;
}
// LB 27 Treat a Korean Syllable Block the same as ID.
if ((fJL->contains(prevChar) || fJV->contains(prevChar) ||
fJT->contains(prevChar) || fH2->contains(prevChar) || fH3->contains(prevChar)) &&
fIN->contains(thisChar)) {
continue;
}
if ((fJL->contains(prevChar) || fJV->contains(prevChar) ||
fJT->contains(prevChar) || fH2->contains(prevChar) || fH3->contains(prevChar)) &&
fPO->contains(thisChar)) {
continue;
}
if (fPR->contains(prevChar) && (fJL->contains(thisChar) || fJV->contains(thisChar) ||
fJT->contains(thisChar) || fH2->contains(thisChar) || fH3->contains(thisChar))) {
continue;
}
// LB 28 Do not break between alphabetics ("at").
if (fAL->contains(prevChar) && fAL->contains(thisChar)) {
continue;
}
// LB 29 Do not break between numeric punctuation and alphabetics ("e.g.").
if (fIS->contains(prevChar) && fAL->contains(thisChar)) {
continue;
}
// LB 31 Break everywhere else
break;
}
return pos;
}
UVector *RBBILineMonkey::charClasses() {
return fSets;
}
RBBILineMonkey::~RBBILineMonkey() {
delete fSets;
delete fBK;
delete fCR;
delete fLF;
delete fCM;
delete fNL;
delete fWJ;
delete fZW;
delete fGL;
delete fCB;
delete fSP;
delete fB2;
delete fBA;
delete fBB;
delete fHY;
delete fH2;
delete fH3;
delete fCL;
delete fEX;
delete fIN;
delete fJL;
delete fJV;
delete fJT;
delete fNS;
delete fOP;
delete fQU;
delete fIS;
delete fNU;
delete fPO;
delete fPR;
delete fSY;
delete fAI;
delete fAL;
delete fID;
delete fSA;
delete fSG;
delete fXX;
delete fCharBI;
delete fNumberMatcher;
}
//-------------------------------------------------------------------------------------------
//
// TestMonkey
//
// params
// seed=nnnnn Random number starting seed.
// Setting the seed allows errors to be reproduced.
// loop=nnn Looping count. Controls running time.
// -1: run forever.
// 0 or greater: run length.
//
// type = char | word | line | sent | title
//
//-------------------------------------------------------------------------------------------
static int32_t getIntParam(UnicodeString name, UnicodeString ¶ms, int32_t defaultVal) {
int32_t val = defaultVal;
name.append(" *= *(-?\\d+)");
UErrorCode status = U_ZERO_ERROR;
RegexMatcher m(name, params, 0, status);
if (m.find()) {
// The param exists. Convert the string to an int.
char valString[100];
int32_t paramLength = m.end(1, status) - m.start(1, status);
if (paramLength >= (int32_t)(sizeof(valString)-1)) {
paramLength = (int32_t)(sizeof(valString)-2);
}
params.extract(m.start(1, status), paramLength, valString, sizeof(valString));
val = strtol(valString, NULL, 10);
// Delete this parameter from the params string.
m.reset();
params = m.replaceFirst("", status);
}
U_ASSERT(U_SUCCESS(status));
return val;
}
#endif
static void testBreakBoundPreceding(RBBITest *test, UnicodeString ustr,
BreakIterator *bi,
int expected[],
int expectedcount)
{
int count = 0;
int i = 0;
int forward[50];
bi->setText(ustr);
for (i = bi->first(); i != BreakIterator::DONE; i = bi->next()) {
forward[count] = i;
if (count < expectedcount && expected[count] != i) {
test->errln("break forward test failed: expected %d but got %d",
expected[count], i);
break;
}
count ++;
}
if (count != expectedcount) {
printStringBreaks(ustr, expected, expectedcount);
test->errln("break forward test failed: missed %d match",
expectedcount - count);
return;
}
// testing boundaries
for (i = 1; i < expectedcount; i ++) {
int j = expected[i - 1];
if (!bi->isBoundary(j)) {
printStringBreaks(ustr, expected, expectedcount);
test->errln("isBoundary() failed. Expected boundary at position %d", j);
return;
}
for (j = expected[i - 1] + 1; j < expected[i]; j ++) {
if (bi->isBoundary(j)) {
printStringBreaks(ustr, expected, expectedcount);
test->errln("isBoundary() failed. Not expecting boundary at position %d", j);
return;
}
}
}
for (i = bi->last(); i != BreakIterator::DONE; i = bi->previous()) {
count --;
if (forward[count] != i) {
printStringBreaks(ustr, expected, expectedcount);
test->errln("happy break test previous() failed: expected %d but got %d",
forward[count], i);
break;
}
}
if (count != 0) {
printStringBreaks(ustr, expected, expectedcount);
test->errln("break test previous() failed: missed a match");
return;
}
// testing preceding
for (i = 0; i < expectedcount - 1; i ++) {
// int j = expected[i] + 1;
int j = ustr.moveIndex32(expected[i], 1);
for (; j <= expected[i + 1]; j ++) {
if (bi->preceding(j) != expected[i]) {
printStringBreaks(ustr, expected, expectedcount);
test->errln("preceding(): Not expecting boundary at position %d", j);
return;
}
}
}
}
void RBBITest::TestWordBreaks(void)
{
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
Locale locale("en");
UErrorCode status = U_ZERO_ERROR;
// BreakIterator *bi = BreakIterator::createCharacterInstance(locale, status);
BreakIterator *bi = BreakIterator::createWordInstance(locale, status);
// Replaced any C+J characters in a row with a random sequence of characters
// of the same length to make our C+J segmentation not get in the way.
static const char *strlist[] =
{
"\\U000e0032\\u0097\\u0f94\\uc2d8\\u05f4\\U000e0031\\u060d",
"\\U000e0037\\u2666\\u1202\\u003a\\U000e0031\\u064d\\u0bea\\u091c\\U000e0040\\u003b",
"\\u0589\\u3e99\\U0001d7f3\\U000e0074\\u1810\\u200e\\U000e004b\\u0027\\U000e0061\\u003a",
"\\u398c\\U000104a5\\U0001d173\\u102d\\u002e\\uca3b\\u002e\\u002c\\u5622",
"\\uac00\\u3588\\u009c\\u0953\\u194b",
"\\u200e\\U000e0072\\u0a4b\\U000e003f\\ufd2b\\u2027\\u002e\\u002e",
"\\u0602\\u2019\\ua191\\U000e0063\\u0a4c\\u003a\\ub4b5\\u003a\\u827f\\u002e",
"\\u2f1f\\u1634\\u05f8\\u0944\\u04f2\\u0cdf\\u1f9c\\u05f4\\u002e",
"\\U000e0042\\u002e\\u0fb8\\u09ef\\u0ed1\\u2044",
"\\u003b\\u024a\\u102e\\U000e0071\\u0600",
"\\u2027\\U000e0067\\u0a47\\u00b7",
"\\u1fcd\\u002c\\u07aa\\u0027\\u11b0",
"\\u002c\\U000e003c\\U0001d7f4\\u003a\\u0c6f\\u0027",
"\\u0589\\U000e006e\\u0a42\\U000104a5",
"\\u0f66\\u2523\\u003a\\u0cae\\U000e0047\\u003a",
"\\u003a\\u0f21\\u0668\\u0dab\\u003a\\u0655\\u00b7",
"\\u0027\\u11af\\U000e0057\\u0602",
"\\U0001d7f2\\U000e007\\u0004\\u0589",
"\\U000e0022\\u003a\\u10b3\\u003a\\ua21b\\u002e\\U000e0058\\u1732\\U000e002b",
"\\U0001d7f2\\U000e007d\\u0004\\u0589",
"\\u82ab\\u17e8\\u0736\\u2019\\U0001d64d",
"\\ub55c\\u0a68\\U000e0037\\u0cd6\\u002c\\ub959",
"\\U000e0065\\u302c\\uc986\\u09ee\\U000e0068",
"\\u0be8\\u002e\\u0c68\\u066e\\u136d\\ufc99\\u59e7",
"\\u0233\\U000e0020\\u0a69\\u0d6a",
"\\u206f\\u0741\\ub3ab\\u2019\\ubcac\\u2019",
"\\u18f4\\U000e0049\\u20e7\\u2027",
"\\ub315\\U0001d7e5\\U000e0073\\u0c47\\u06f2\\u0c6a\\u0037\\u10fe",
"\\ua183\\u102d\\u0bec\\u003a",
"\\u17e8\\u06e7\\u002e\\u096d\\u003b",
"\\u003a\\u0e57\\u0fad\\u002e",
"\\u002e\\U000e004c\\U0001d7ea\\u05bb\\ud0fd\\u02de",
"\\u32e6\\U0001d7f6\\u0fa1\\u206a\\U000e003c\\u0cec\\u003a",
"\\U000e005d\\u2044\\u0731\\u0650\\u0061",
"\\u003a\\u0664\\u00b7\\u1fba",
"\\u003b\\u0027\\u00b7\\u47a3",
"\\u2027\\U000e0067\\u0a42\\u00b7\\u4edf\\uc26c\\u003a\\u4186\\u041b",
"\\u0027\\u003a\\U0001d70f\\U0001d7df\\ubf4a\\U0001d7f5\\U0001d177\\u003a\\u0e51\\u1058\\U000e0058\\u00b7\\u0673",
"\\uc30d\\u002e\\U000e002c\\u0c48\\u003a\\ub5a1\\u0661\\u002c",
};
int loop;
if (U_FAILURE(status)) {
errcheckln(status, "Creation of break iterator failed %s", u_errorName(status));
return;
}
for (loop = 0; loop < (int)(sizeof(strlist) / sizeof(char *)); loop ++) {
// printf("looping %d\n", loop);
UnicodeString ustr = CharsToUnicodeString(strlist[loop]);
// RBBICharMonkey monkey;
RBBIWordMonkey monkey;
int expected[50];
int expectedcount = 0;
monkey.setText(ustr);
int i;
for (i = 0; i != BreakIterator::DONE; i = monkey.next(i)) {
expected[expectedcount ++] = i;
}
testBreakBoundPreceding(this, ustr, bi, expected, expectedcount);
}
delete bi;
#endif
}
void RBBITest::TestWordBoundary(void)
{
// <data><>\u1d4a\u206e<?>\u0603\U0001d7ff<>\u2019<></data>
Locale locale("en");
UErrorCode status = U_ZERO_ERROR;
// BreakIterator *bi = BreakIterator::createCharacterInstance(locale, status);
BreakIterator *bi = BreakIterator::createWordInstance(locale, status);
UChar str[50];
static const char *strlist[] =
{
"\\u200e\\U000e0072\\u0a4b\\U000e003f\\ufd2b\\u2027\\u002e\\u002e",
"\\U000e0042\\u002e\\u0fb8\\u09ef\\u0ed1\\u2044",
"\\u003b\\u024a\\u102e\\U000e0071\\u0600",
"\\u2027\\U000e0067\\u0a47\\u00b7",
"\\u1fcd\\u002c\\u07aa\\u0027\\u11b0",
"\\u002c\\U000e003c\\U0001d7f4\\u003a\\u0c6f\\u0027",
"\\u0589\\U000e006e\\u0a42\\U000104a5",
"\\u4f66\\ub523\\u003a\\uacae\\U000e0047\\u003a",
"\\u003a\\u0f21\\u0668\\u0dab\\u003a\\u0655\\u00b7",
"\\u0027\\u11af\\U000e0057\\u0602",
"\\U0001d7f2\\U000e007\\u0004\\u0589",
"\\U000e0022\\u003a\\u10b3\\u003a\\ua21b\\u002e\\U000e0058\\u1732\\U000e002b",
"\\U0001d7f2\\U000e007d\\u0004\\u0589",
"\\u82ab\\u17e8\\u0736\\u2019\\U0001d64d",
"\\u0e01\\ub55c\\u0a68\\U000e0037\\u0cd6\\u002c\\ub959",
"\\U000e0065\\u302c\\u09ee\\U000e0068",
"\\u0be8\\u002e\\u0c68\\u066e\\u136d\\ufc99\\u59e7",
"\\u0233\\U000e0020\\u0a69\\u0d6a",
"\\u206f\\u0741\\ub3ab\\u2019\\ubcac\\u2019",
"\\u58f4\\U000e0049\\u20e7\\u2027",
"\\U0001d7e5\\U000e0073\\u0c47\\u06f2\\u0c6a\\u0037\\u10fe",
"\\ua183\\u102d\\u0bec\\u003a",
"\\u17e8\\u06e7\\u002e\\u096d\\u003b",
"\\u003a\\u0e57\\u0fad\\u002e",
"\\u002e\\U000e004c\\U0001d7ea\\u05bb\\ud0fd\\u02de",
"\\u32e6\\U0001d7f6\\u0fa1\\u206a\\U000e003c\\u0cec\\u003a",
"\\ua2a5\\u0038\\u2044\\u002e\\u0c67\\U000e003c\\u05f4\\u2027\\u05f4\\u2019",
"\\u003a\\u0664\\u00b7\\u1fba",
"\\u003b\\u0027\\u00b7\\u47a3",
};
int loop;
if (U_FAILURE(status)) {
errcheckln(status, "Creation of break iterator failed %s", u_errorName(status));
return;
}
for (loop = 0; loop < (int)(sizeof(strlist) / sizeof(char *)); loop ++) {
// printf("looping %d\n", loop);
u_unescape(strlist[loop], str, 20);
UnicodeString ustr(str);
int forward[50];
int count = 0;
bi->setText(ustr);
int prev = 0;
int i;
for (i = bi->first(); i != BreakIterator::DONE; i = bi->next()) {
forward[count ++] = i;
if (i > prev) {
int j;
for (j = prev + 1; j < i; j ++) {
if (bi->isBoundary(j)) {
printStringBreaks(ustr, forward, count);
errln("happy boundary test failed: expected %d not a boundary",
j);
return;
}
}
}
if (!bi->isBoundary(i)) {
printStringBreaks(ustr, forward, count);
errln("happy boundary test failed: expected %d a boundary",
i);
return;
}
prev = i;
}
}
delete bi;
}
void RBBITest::TestLineBreaks(void)
{
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
Locale locale("en");
UErrorCode status = U_ZERO_ERROR;
BreakIterator *bi = BreakIterator::createLineInstance(locale, status);
const int32_t STRSIZE = 50;
UChar str[STRSIZE];
static const char *strlist[] =
{
"\\u300f\\ufdfc\\ub798\\u2011\\u2011\\u0020\\u0b43\\u002d\\ubeec\\ufffc",
"\\u24ba\\u2060\\u3405\\ub290\\u000d\\U000e0032\\ufe35\\u00a0\\u0361\\"
"U000112ed\\u0f0c\\u000a\\u308e\\ua875\\u0085\\u114d",
"\\ufffc\\u3063\\u2e08\\u30e3\\u000d\\u002d\\u0ed8\\u002f\\U00011a57\\"
"u2014\\U000e0105\\u118c\\u000a\\u07f8",
"\\u0668\\u192b\\u002f\\u2034\\ufe39\\u00b4\\u0cc8\\u2571\\u200b\\u003f",
"\\ufeff\\ufffc\\u3289\\u0085\\u2772\\u0020\\U000e010a\\u0020\\u2025\\u000a\\U000e0123",
"\\ufe3c\\u201c\\u000d\\u2025\\u2007\\u201c\\u002d\\u20a0\\u002d\\u30a7\\u17a4",
"\\u2772\\u0020\\U000e010a\\u0020\\u2025\\u000a\\U000e0123",
"\\u002d\\uff1b\\u02c8\\u2029\\ufeff\\u0f22\\u2044\\ufe09\\u003a\\u096d\\u2009\\u000a\\u06f7\\u02cc\\u1019\\u2060",
"\\u1781\\u0b68\\u0f0c\\u3010\\u0085\\U00011f7a\\u0020\\u0dd6\\u200b\\U000e007a\\u000a\\u2060\\u2026\\u002f\\u2026\\u24dc\\u101e\\u2014\\u2007\\u30a5",
"\\u2770\\u0020\\U000e010f\\u0020\\u2060\\u000a\\u02cc\\u0bcc\\u060d\\u30e7\\u0f3b\\u002f",
"\\ufeff\\u0028\\u003b\\U00012fec\\u2010\\u0020\\u0004\\u200b\\u0020\\u275c\\u002f\\u17b1",
"\\u20a9\\u2014\\u00a2\\u31f1\\u002f\\u0020\\u05b8\\u200b\\u0cc2\\u003b\\u060d\\u02c8\\ua4e8\\u002f\\u17d5",
"\\u002d\\u136f\\uff63\\u0084\\ua933\\u2028\\u002d\\u431b\\u200b\\u20b0",
"\\uade3\\u11d6\\u000a\\U0001107d\\u203a\\u201d\\ub070\\u000d\\u2024\\ufffc",
"\\uff5b\\u101c\\u1806\\u002f\\u2213\\uff5f",
"\\u2014\\u0a83\\ufdfc\\u003f\\u00a0\\u0020\\u000a\\u2991\\U0001d179\\u0020\\u201d\\U000125f6\\u0a67\\u20a7\\ufeff\\u043f",
"\\u169b\\U000e0130\\u002d\\u1041\\u0f3d\\u0abf\\u00b0\\u31fb\\u00a0\\u002d\\u02c8\\u003b",
"\\u2762\\u1680\\u002d\\u2028\\u0027\\u01dc\\ufe56\\u003a\\u000a\\uffe6\\u29fd\\u0020\\u30ee\\u007c\\U0001d178\\u0af1\\u0085",
"\\u3010\\u200b\\u2029\\ufeff\\ufe6a\\u275b\\U000e013b\\ufe37\\u24d4\\u002d\\u1806\\u256a\\u1806\\u247c\\u0085\\u17ac",
"\\u99ab\\u0027\\u003b\\u2026\\ueaf0\\u0020\\u0020\\u0313\\u0020\\u3099\\uff09\\u208e\\u2011\\u2007\\u2060\\u000a\\u0020\\u0020\\u300b\\u0bf9",
"\\u1806\\u060d\\u30f5\\u00b4\\u17e9\\u2544\\u2028\\u2024\\u2011\\u20a3\\u002d\\u09cc\\u1782\\u000d\\uff6f\\u0025",
"\\u002f\\uf22e\\u1944\\ufe3d\\u0020\\u206f\\u31b3\\u2014\\u002d\\u2025\\u0f0c\\u0085\\u2763",
"\\u002f\\u2563\\u202f\\u0085\\u17d5\\u200b\\u0020\\U000e0043\\u2014\\u058a\\u3d0a\\ufe57\\u2035\\u2028\\u2029",
"\\u20ae\\U0001d169\\u9293\\uff1f\\uff1f\\u0021\\u2012\\u2039\\u0085\\u02cc\\u00a2\\u0020\\U000e01ab\\u3085\\u0f3a\\u1806\\u0f0c\\u1945\\u000a\\U0001d7e7",
"\\uffe6\\u00a0\\u200b\\u0085\\u2116\\u255b\\U0001d7f7\\u178c\\ufffc",
"\\u02cc\\ufe6a\\u00a0\\u0021\\u002d\\u7490\\uec2e\\u200b\\u000a",
"\\uec2e\\u200b\\u000a\\u0020\\u2028\\u2014\\u8945",
"\\u7490\\uec2e\\u200b\\u000a\\u0020\\u2028\\u2014",
"\\u0020\\u2028\\u2014\\u8945\\u002c\\u005b",
"\\u000a\\ufe3c\\u201c\\u000d\\u2025\\u2007\\u201c\\u002d\\u20a0",
"\\u2473\\u0e9d\\u0020\\u0085\\u000a\\ufe3c\\u201c\\u000d\\u2025",
"\\U0001d16e\\ufffc\\u2025\\u0021\\u002d",
"\\ufffc\\u301b\\u0fa5\\U000e0103\\u2060\\u208e\\u17d5\\u034f\\u1009\\u003a\\u180e\\u2009\\u3111",
"\\u2014\\u0020\\u000a\\u17c5\\u24fc",
"\\ufffc\\u0020\\u2116\\uff6c\\u200b\\u0ac3\\U0001028f",
"\\uaeb0\\u0344\\u0085\\ufffc\\u073b\\u2010",
"\\ufeff\\u0589\\u0085\\u0eb8\\u30fd\\u002f\\u003a\\u2014\\ufe43",
"\\u09cc\\u256a\\u276d\\u002d\\u3085\\u000d\\u0e05\\u2028\\u0fbb",
"\\u2034\\u00bb\\u0ae6\\u300c\\u0020\\u31f8\\ufffc",
"\\u2116\\u0ed2\\uff64\\u02cd\\u2001\\u2060",
"\\u809d\\u2e02\\u0f0a\\uc48f\\u2540\\u000d\\u0cef\\u003a\\u0e4d"
"\\U000e0172\\U000e005c\\u17cf\\U00010ca6\\ufeff\\uf621\\u06f3\\uffe5"
"\\u0ea2\\ufeff\\udcea\\u3085\\ua874\\u000a\\u0020\\u000b\\u200b",
"\\ufe10\\u2060\\u1a5a\\u2060\\u17e4\\ufffc\\ubbe1\\ufe15\\u0020\\u00a0",
"\\u2060\\u2213\\u200b\\u2019\\uc2dc\\uff6a\\u1736\\u0085\\udb07",
};
int loop;
TEST_ASSERT_SUCCESS(status);
if (U_FAILURE(status)) {
return;
}
for (loop = 0; loop < (int)(sizeof(strlist) / sizeof(char *)); loop ++) {
// printf("looping %d\n", loop);
int32_t t = u_unescape(strlist[loop], str, STRSIZE);
if (t >= STRSIZE) {
TEST_ASSERT(FALSE);
continue;
}
UnicodeString ustr(str);
RBBILineMonkey monkey;
if (U_FAILURE(monkey.deferredStatus)) {
continue;
}
const int EXPECTEDSIZE = 50;
int expected[EXPECTEDSIZE];
int expectedcount = 0;
monkey.setText(ustr);
int i;
for (i = 0; i != BreakIterator::DONE; i = monkey.next(i)) {
if (expectedcount >= EXPECTEDSIZE) {
TEST_ASSERT(expectedcount < EXPECTEDSIZE);
return;
}
expected[expectedcount ++] = i;
}
testBreakBoundPreceding(this, ustr, bi, expected, expectedcount);
}
delete bi;
#endif
}
void RBBITest::TestSentBreaks(void)
{
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
Locale locale("en");
UErrorCode status = U_ZERO_ERROR;
BreakIterator *bi = BreakIterator::createSentenceInstance(locale, status);
UChar str[200];
static const char *strlist[] =
{
"Now\ris\nthe\r\ntime\n\rfor\r\r",
"This\n",
"Hello! how are you? I'am fine. Thankyou. How are you doing? This\n costs $20,00,000.",
"\"Sentence ending with a quote.\" Bye.",
" (This is it). Testing the sentence iterator. \"This isn't it.\"",
"Hi! This is a simple sample sentence. (This is it.) This is a simple sample sentence. \"This isn't it.\"",
"Hi! This is a simple sample sentence. It does not have to make any sense as you can see. ",
"Nel mezzo del cammin di nostra vita, mi ritrovai in una selva oscura. ",
"Che la dritta via aveo smarrita. He said, that I said, that you said!! ",
"Don't rock the boat.\\u2029Because I am the daddy, that is why. Not on my time (el timo.)!",
"\\U0001040a\\u203a\\u1217\\u2b23\\u000d\\uff3b\\u03dd\\uff57\\u0a69\\u104a\\ufe56\\ufe52"
"\\u3016\\U000e002f\\U000e0077\\u0662\\u1680\\u2984\\U000e006a\\u002e\\ua6ab\\u104a"
"\\u002e\\u019b\\u2005\\u002e\\u0477\\u0438\\u0085\\u0441\\u002e\\u5f61\\u202f"
"\\U0001019f\\uff08\\u27e8\\u055c\\u0352",
"\\u1f3e\\u004d\\u000a\\ua3e4\\U000e0023\\uff63\\u0c52\\u276d\\U0001d5de\\U0001d171"
"\\u0e38\\u17e5\\U00012fe6\\u0fa9\\u267f\\u1da3\\u0046\\u03ed\\udc72\\u0030"
"\\U0001d688\\u0b6d\\u0085\\u0c67\\u1f94\\u0c6c\\u9cb2\\u202a\\u180e\\u000b"
"\\u002e\\U000e005e\\u035b\\u061f\\u02c1\\U000e0025\\u0357\\u0969\\u202b"
"\\U000130c5\\u0486\\U000e0123\\u2019\\u01bc\\u2006\\u11ad\\u180e\\u2e05"
"\\u10b7\\u013e\\u000a\\u002e\\U00013ea4"
};
int loop;
if (U_FAILURE(status)) {
errcheckln(status, "Creation of break iterator failed %s", u_errorName(status));
return;
}
for (loop = 0; loop < (int)(sizeof(strlist) / sizeof(char *)); loop ++) {
u_unescape(strlist[loop], str, (int32_t)(sizeof(str) / sizeof(str[0])));
UnicodeString ustr(str);
RBBISentMonkey monkey;
if (U_FAILURE(monkey.deferredStatus)) {
continue;
}
const int EXPECTEDSIZE = 50;
int expected[EXPECTEDSIZE];
int expectedcount = 0;
monkey.setText(ustr);
int i;
for (i = 0; i != BreakIterator::DONE; i = monkey.next(i)) {
if (expectedcount >= EXPECTEDSIZE) {
TEST_ASSERT(expectedcount < EXPECTEDSIZE);
return;
}
expected[expectedcount ++] = i;
}
testBreakBoundPreceding(this, ustr, bi, expected, expectedcount);
}
delete bi;
#endif
}
void RBBITest::TestMonkey(char *params) {
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
UErrorCode status = U_ZERO_ERROR;
int32_t loopCount = 500;
int32_t seed = 1;
UnicodeString breakType = "all";
Locale locale("en");
UBool useUText = FALSE;
if (quick == FALSE) {
loopCount = 10000;
}
if (params) {
UnicodeString p(params);
loopCount = getIntParam("loop", p, loopCount);
seed = getIntParam("seed", p, seed);
RegexMatcher m(" *type *= *(char|word|line|sent|title) *", p, 0, status);
if (m.find()) {
breakType = m.group(1, status);
m.reset();
p = m.replaceFirst("", status);
}
RegexMatcher u(" *utext", p, 0, status);
if (u.find()) {
useUText = TRUE;
u.reset();
p = u.replaceFirst("", status);
}
// m.reset(p);
if (RegexMatcher(UNICODE_STRING_SIMPLE("\\S"), p, 0, status).find()) {
// Each option is stripped out of the option string as it is processed.
// All options have been checked. The option string should have been completely emptied..
char buf[100];
p.extract(buf, sizeof(buf), NULL, status);
buf[sizeof(buf)-1] = 0;
errln("Unrecognized or extra parameter: %s\n", buf);
return;
}
}
if (breakType == "char" || breakType == "all") {
RBBICharMonkey m;
BreakIterator *bi = BreakIterator::createCharacterInstance(locale, status);
if (U_SUCCESS(status)) {
RunMonkey(bi, m, "char", seed, loopCount, useUText);
if (breakType == "all" && useUText==FALSE) {
// Also run a quick test with UText when "all" is specified
RunMonkey(bi, m, "char", seed, loopCount, TRUE);
}
}
else {
errcheckln(status, "Creation of character break iterator failed %s", u_errorName(status));
}
delete bi;
}
if (breakType == "word" || breakType == "all") {
logln("Word Break Monkey Test");
RBBIWordMonkey m;
BreakIterator *bi = BreakIterator::createWordInstance(locale, status);
if (U_SUCCESS(status)) {
RunMonkey(bi, m, "word", seed, loopCount, useUText);
}
else {
errcheckln(status, "Creation of word break iterator failed %s", u_errorName(status));
}
delete bi;
}
if (breakType == "line" || breakType == "all") {
logln("Line Break Monkey Test");
RBBILineMonkey m;
BreakIterator *bi = BreakIterator::createLineInstance(locale, status);
if (loopCount >= 10) {
loopCount = loopCount / 5; // Line break runs slower than the others.
}
if (U_SUCCESS(status)) {
RunMonkey(bi, m, "line", seed, loopCount, useUText);
}
else {
errcheckln(status, "Creation of line break iterator failed %s", u_errorName(status));
}
delete bi;
}
if (breakType == "sent" || breakType == "all" ) {
logln("Sentence Break Monkey Test");
RBBISentMonkey m;
BreakIterator *bi = BreakIterator::createSentenceInstance(locale, status);
if (loopCount >= 10) {
loopCount = loopCount / 10; // Sentence runs slower than the other break types
}
if (U_SUCCESS(status)) {
RunMonkey(bi, m, "sentence", seed, loopCount, useUText);
}
else {
errcheckln(status, "Creation of line break iterator failed %s", u_errorName(status));
}
delete bi;
}
#endif
}
//
// Run a RBBI monkey test. Common routine, for all break iterator types.
// Parameters:
// bi - the break iterator to use
// mk - MonkeyKind, abstraction for obtaining expected results
// name - Name of test (char, word, etc.) for use in error messages
// seed - Seed for starting random number generator (parameter from user)
// numIterations
//
void RBBITest::RunMonkey(BreakIterator *bi, RBBIMonkeyKind &mk, const char *name, uint32_t seed,
int32_t numIterations, UBool useUText) {
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
const int32_t TESTSTRINGLEN = 500;
UnicodeString testText;
int32_t numCharClasses;
UVector *chClasses;
int expected[TESTSTRINGLEN*2 + 1];
int expectedCount = 0;
char expectedBreaks[TESTSTRINGLEN*2 + 1];
char forwardBreaks[TESTSTRINGLEN*2 + 1];
char reverseBreaks[TESTSTRINGLEN*2+1];
char isBoundaryBreaks[TESTSTRINGLEN*2+1];
char followingBreaks[TESTSTRINGLEN*2+1];
char precedingBreaks[TESTSTRINGLEN*2+1];
int i;
int loopCount = 0;
m_seed = seed;
numCharClasses = mk.charClasses()->size();
chClasses = mk.charClasses();
// Check for errors that occured during the construction of the MonkeyKind object.
// Can't report them where they occured because errln() is a method coming from intlTest,
// and is not visible outside of RBBITest :-(
if (U_FAILURE(mk.deferredStatus)) {
errln("status of \"%s\" in creation of RBBIMonkeyKind.", u_errorName(mk.deferredStatus));
return;
}
// Verify that the character classes all have at least one member.
for (i=0; i<numCharClasses; i++) {
UnicodeSet *s = (UnicodeSet *)chClasses->elementAt(i);
if (s == NULL || s->size() == 0) {
errln("Character Class #%d is null or of zero size.", i);
return;
}
}
while (loopCount < numIterations || numIterations == -1) {
if (numIterations == -1 && loopCount % 10 == 0) {
// If test is running in an infinite loop, display a periodic tic so
// we can tell that it is making progress.
fprintf(stderr, ".");
}
// Save current random number seed, so that we can recreate the random numbers
// for this loop iteration in event of an error.
seed = m_seed;
// Populate a test string with data.
testText.truncate(0);
for (i=0; i<TESTSTRINGLEN; i++) {
int32_t aClassNum = m_rand() % numCharClasses;
UnicodeSet *classSet = (UnicodeSet *)chClasses->elementAt(aClassNum);
int32_t charIdx = m_rand() % classSet->size();
UChar32 c = classSet->charAt(charIdx);
if (c < 0) { // TODO: deal with sets containing strings.
errln("c < 0");
break;
}
testText.append(c);
}
// Calculate the expected results for this test string.
mk.setText(testText);
memset(expectedBreaks, 0, sizeof(expectedBreaks));
expectedBreaks[0] = 1;
int32_t breakPos = 0;
expectedCount = 0;
for (;;) {
breakPos = mk.next(breakPos);
if (breakPos == -1) {
break;
}
if (breakPos > testText.length()) {
errln("breakPos > testText.length()");
}
expectedBreaks[breakPos] = 1;
U_ASSERT(expectedCount<testText.length());
expected[expectedCount ++] = breakPos;
}
// Find the break positions using forward iteration
memset(forwardBreaks, 0, sizeof(forwardBreaks));
if (useUText) {
UErrorCode status = U_ZERO_ERROR;
UText *testUText = utext_openReplaceable(NULL, &testText, &status);
// testUText = utext_openUnicodeString(testUText, &testText, &status);
bi->setText(testUText, status);
TEST_ASSERT_SUCCESS(status);
utext_close(testUText); // The break iterator does a shallow clone of the UText
// This UText can be closed immediately, so long as the
// testText string continues to exist.
} else {
bi->setText(testText);
}
for (i=bi->first(); i != BreakIterator::DONE; i=bi->next()) {
if (i < 0 || i > testText.length()) {
errln("%s break monkey test: Out of range value returned by breakIterator::next()", name);
break;
}
forwardBreaks[i] = 1;
}
// Find the break positions using reverse iteration
memset(reverseBreaks, 0, sizeof(reverseBreaks));
for (i=bi->last(); i != BreakIterator::DONE; i=bi->previous()) {
if (i < 0 || i > testText.length()) {
errln("%s break monkey test: Out of range value returned by breakIterator::next()", name);
break;
}
reverseBreaks[i] = 1;
}
// Find the break positions using isBoundary() tests.
memset(isBoundaryBreaks, 0, sizeof(isBoundaryBreaks));
U_ASSERT((int32_t)sizeof(isBoundaryBreaks) > testText.length());
for (i=0; i<=testText.length(); i++) {
isBoundaryBreaks[i] = bi->isBoundary(i);
}
// Find the break positions using the following() function.
// printf(".");
memset(followingBreaks, 0, sizeof(followingBreaks));
int32_t lastBreakPos = 0;
followingBreaks[0] = 1;
for (i=0; i<testText.length(); i++) {
breakPos = bi->following(i);
if (breakPos <= i ||
breakPos < lastBreakPos ||
breakPos > testText.length() ||
breakPos > lastBreakPos && lastBreakPos > i ) {
errln("%s break monkey test: "
"Out of range value returned by BreakIterator::following().\n"
"Random seed=%d index=%d; following returned %d; lastbreak=%d",
name, seed, i, breakPos, lastBreakPos);
break;
}
followingBreaks[breakPos] = 1;
lastBreakPos = breakPos;
}
// Find the break positions using the preceding() function.
memset(precedingBreaks, 0, sizeof(precedingBreaks));
lastBreakPos = testText.length();
precedingBreaks[testText.length()] = 1;
for (i=testText.length(); i>0; i--) {
breakPos = bi->preceding(i);
if (breakPos >= i ||
breakPos > lastBreakPos ||
breakPos < 0 && testText.getChar32Start(i)>0 ||
breakPos < lastBreakPos && lastBreakPos < testText.getChar32Start(i) ) {
errln("%s break monkey test: "
"Out of range value returned by BreakIterator::preceding().\n"
"index=%d; prev returned %d; lastBreak=%d" ,
name, i, breakPos, lastBreakPos);
if (breakPos >= 0 && breakPos < (int32_t)sizeof(precedingBreaks)) {
precedingBreaks[i] = 2; // Forces an error.
}
} else {
if (breakPos >= 0) {
precedingBreaks[breakPos] = 1;
}
lastBreakPos = breakPos;
}
}
// Compare the expected and actual results.
for (i=0; i<=testText.length(); i++) {
const char *errorType = NULL;
if (forwardBreaks[i] != expectedBreaks[i]) {
errorType = "next()";
} else if (reverseBreaks[i] != forwardBreaks[i]) {
errorType = "previous()";
} else if (isBoundaryBreaks[i] != expectedBreaks[i]) {
errorType = "isBoundary()";
} else if (followingBreaks[i] != expectedBreaks[i]) {
errorType = "following()";
} else if (precedingBreaks[i] != expectedBreaks[i]) {
errorType = "preceding()";
}
if (errorType != NULL) {
// Format a range of the test text that includes the failure as
// a data item that can be included in the rbbi test data file.
// Start of the range is the last point where expected and actual results
// both agreed that there was a break position.
int startContext = i;
int32_t count = 0;
for (;;) {
if (startContext==0) { break; }
startContext --;
if (expectedBreaks[startContext] != 0) {
if (count == 2) break;
count ++;
}
}
// End of range is two expected breaks past the start position.
int endContext = i + 1;
int ci;
for (ci=0; ci<2; ci++) { // Number of items to include in error text.
for (;;) {
if (endContext >= testText.length()) {break;}
if (expectedBreaks[endContext-1] != 0) {
if (count == 0) break;
count --;
}
endContext ++;
}
}
// Format looks like "<data>\\\uabcd\uabcd\\\U0001abcd...</data>"
UnicodeString errorText = "<data>";
/***if (strcmp(errorType, "next()") == 0) {
startContext = 0;
endContext = testText.length();
printStringBreaks(testText, expected, expectedCount);
}***/
for (ci=startContext; ci<endContext;) {
UnicodeString hexChars("0123456789abcdef");
UChar32 c;
int bn;
c = testText.char32At(ci);
if (ci == i) {
// This is the location of the error.
errorText.append("<?>");
} else if (expectedBreaks[ci] != 0) {
// This a non-error expected break position.
errorText.append("\\");
}
if (c < 0x10000) {
errorText.append("\\u");
for (bn=12; bn>=0; bn-=4) {
errorText.append(hexChars.charAt((c>>bn)&0xf));
}
} else {
errorText.append("\\U");
for (bn=28; bn>=0; bn-=4) {
errorText.append(hexChars.charAt((c>>bn)&0xf));
}
}
ci = testText.moveIndex32(ci, 1);
}
errorText.append("\\");
errorText.append("</data>\n");
// Output the error
char charErrorTxt[500];
UErrorCode status = U_ZERO_ERROR;
errorText.extract(charErrorTxt, sizeof(charErrorTxt), NULL, status);
charErrorTxt[sizeof(charErrorTxt)-1] = 0;
errln("%s break monkey test error. %s. Operation = %s; Random seed = %d; buf Idx = %d\n%s",
name, (expectedBreaks[i]? "break expected but not found" : "break found but not expected"),
errorType, seed, i, charErrorTxt);
break;
}
}
loopCount++;
}
#endif
}
//
// TestDebug - A place-holder test for debugging purposes.
// For putting in fragments of other tests that can be invoked
// for tracing without a lot of unwanted extra stuff happening.
//
void RBBITest::TestDebug(void) {
#if 0
UErrorCode status = U_ZERO_ERROR;
int pos = 0;
int ruleStatus = 0;
RuleBasedBreakIterator* bi =
// (RuleBasedBreakIterator *)BreakIterator::createLineInstance(Locale::getDefault(), status);
// (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::Locale("th"), status);
(RuleBasedBreakIterator *)BreakIterator::createSentenceInstance(Locale::getDefault(), status);
UnicodeString s("\\u2008\\u002e\\udc6a\\u37cd\\u71d0\\u2048\\U000e006a\\u002e\\u0046\\ufd3f\\u000a\\u002e");
// UnicodeString s("Aaa. Bcd");
s = s.unescape();
bi->setText(s);
UBool r = bi->isBoundary(8);
printf("%s", r?"true":"false");
return;
pos = bi->last();
do {
// ruleStatus = bi->getRuleStatus();
printf("%d\t%d\n", pos, ruleStatus);
pos = bi->previous();
} while (pos != BreakIterator::DONE);
#endif
}
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */