/*
* SdioDrv.c
*
* Copyright(c) 1998 - 2009 Texas Instruments. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Texas Instruments nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/i2c/twl4030.h>
#include <linux/errno.h>
#include <linux/clk.h>
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 31))
#include <plat/hardware.h>
#include <plat/board.h>
#include <plat/clock.h>
#include <plat/dma.h>
#include <plat/io.h>
#include <plat/resource.h>
#define IO_ADDRESS(pa) OMAP2_L4_IO_ADDRESS(pa)
#else
#include <mach/hardware.h>
#include <mach/board.h>
#include <mach/clock.h>
#include <mach/dma.h>
#include <mach/io.h>
#include <mach/resource.h>
#endif
typedef void *TI_HANDLE;
#include "host_platform.h"
#include "SdioDrvDbg.h"
#include "SdioDrv.h"
/* #define TI_SDIO_DEBUG */
#ifndef CONFIG_MMC_EMBEDDED_SDIO
#define SDIOWQ_NAME "sdio_wq"
/*
* HSMMC Address and DMA Settings
*/
static unsigned long TIWLAN_MMC_CONTROLLER = 2; /* MMC3 */
static unsigned long TIWLAN_MMC_CONTROLLER_BASE_ADDR = OMAP_HSMMC3_BASE;
#define TIWLAN_MMC_CONTROLLER_BASE_SIZE 512
#define TIWLAN_MMC_MAX_DMA 8192
static unsigned long TIWLAN_MMC_DMA_TX = OMAP34XX_DMA_MMC3_TX;
static unsigned long TIWLAN_MMC_DMA_RX = OMAP34XX_DMA_MMC3_RX;
static unsigned long OMAP_MMC_IRQ = INT_MMC3_IRQ;
#define OMAP_MMC_MASTER_CLOCK 96000000
/*
* HSMMC Host Controller Registers
*/
#define OMAP_HSMMC_SYSCONFIG 0x0010
#define OMAP_HSMMC_SYSSTATUS 0x0014
#define OMAP_HSMMC_CSRE 0x0024
#define OMAP_HSMMC_SYSTEST 0x0028
#define OMAP_HSMMC_CON 0x002C
#define OMAP_HSMMC_BLK 0x0104
#define OMAP_HSMMC_ARG 0x0108
#define OMAP_HSMMC_CMD 0x010C
#define OMAP_HSMMC_RSP10 0x0110
#define OMAP_HSMMC_RSP32 0x0114
#define OMAP_HSMMC_RSP54 0x0118
#define OMAP_HSMMC_RSP76 0x011C
#define OMAP_HSMMC_DATA 0x0120
#define OMAP_HSMMC_PSTATE 0x0124
#define OMAP_HSMMC_HCTL 0x0128
#define OMAP_HSMMC_SYSCTL 0x012C
#define OMAP_HSMMC_STAT 0x0130
#define OMAP_HSMMC_IE 0x0134
#define OMAP_HSMMC_ISE 0x0138
#define OMAP_HSMMC_AC12 0x013C
#define OMAP_HSMMC_CAPA 0x0140
#define OMAP_HSMMC_CUR_CAPA 0x0148
#define OMAP_HSMMC_REV 0x01FC
#define VS18 (1 << 26)
#define VS30 (1 << 25)
#define SRA (1 << 24)
#define SDVS18 (0x5 << 9)
#define SDVS30 (0x6 << 9)
#define SDVSCLR 0xFFFFF1FF
#define SDVSDET 0x00000400
#define SIDLE_MODE (0x2 << 3)
#define AUTOIDLE 0x1
#define SDBP (1 << 8)
#define DTO 0xE
#define ICE 0x1
#define ICS 0x2
#define CEN (1 << 2)
#define CLKD_MASK 0x0000FFC0
#define IE_EN_MASK 0x317F0137
#define INIT_STREAM (1 << 1)
#define DP_SELECT (1 << 21)
#define DDIR (1 << 4)
#define DMA_EN 0x1
#define MSBS (1 << 5)
#define BCE (1 << 1)
#define ONE_BIT (~(0x2))
#define EIGHT_BIT (~(0x20))
#define CC 0x1
#define TC 0x02
#define OD 0x1
#define BRW 0x400
#define BRR 0x800
#define BRE (1 << 11)
#define BWE (1 << 10)
#define SBGR (1 << 16)
#define CT (1 << 17)
#define SDIO_READ (1 << 31)
#define SDIO_BLKMODE (1 << 27)
#define OMAP_HSMMC_ERR (1 << 15) /* Any error */
#define OMAP_HSMMC_CMD_TIMEOUT (1 << 16) /* Com mand response time-out */
#define OMAP_HSMMC_DATA_TIMEOUT (1 << 20) /* Data response time-out */
#define OMAP_HSMMC_CMD_CRC (1 << 17) /* Command CRC error */
#define OMAP_HSMMC_DATA_CRC (1 << 21) /* Date CRC error */
#define OMAP_HSMMC_CARD_ERR (1 << 28) /* Card ERR */
#define OMAP_HSMMC_STAT_CLEAR 0xFFFFFFFF
#define INIT_STREAM_CMD 0x00000000
#define INT_CLEAR 0x00000000
#define BLK_CLEAR 0x00000000
/* SCM CONTROL_DEVCONF1 MMC1 overwrite but */
#define MMC1_ACTIVE_OVERWRITE (1 << 31)
#define sdio_blkmode_regaddr 0x2000
#define sdio_blkmode_mask 0xFF00
#define IO_RW_DIRECT_MASK 0xF000FF00
#define IO_RW_DIRECT_ARG_MASK 0x80001A00
#define RMASK (MMC_RSP_MASK | MMC_RSP_CRC)
#define MMC_TIMEOUT_MS 100 /*on the new 2430 it was 20, i changed back to 100*//* obc */
#define MMCA_VSN_4 4
#define VMMC1_DEV_GRP 0x27
#define P1_DEV_GRP 0x20
#define VMMC1_DEDICATED 0x2A
#define VSEL_3V 0x02
#define VSEL_18V 0x00
#define PBIAS_3V 0x03
#define PBIAS_18V 0x02
#define PBIAS_LITE 0x04A0
#define PBIAS_CLR 0x00
#define OMAP_MMC_REGS_BASE IO_ADDRESS(TIWLAN_MMC_CONTROLLER_BASE_ADDR)
/*
* MMC Host controller read/write API's.
*/
#define OMAP_HSMMC_READ_OFFSET(offset) (__raw_readl((OMAP_MMC_REGS_BASE) + (offset)))
#define OMAP_HSMMC_READ(reg) (__raw_readl((OMAP_MMC_REGS_BASE) + OMAP_HSMMC_##reg))
#define OMAP_HSMMC_WRITE(reg, val) (__raw_writel((val), (OMAP_MMC_REGS_BASE) + OMAP_HSMMC_##reg))
#define OMAP_HSMMC_SEND_COMMAND(cmd, arg) do \
{ \
OMAP_HSMMC_WRITE(ARG, arg); \
OMAP_HSMMC_WRITE(CMD, cmd); \
} while (0)
#define OMAP_HSMMC_CMD52_WRITE ((SD_IO_RW_DIRECT << 24) | (OMAP_HSMMC_CMD_SHORT_RESPONSE << 16))
#define OMAP_HSMMC_CMD52_READ (((SD_IO_RW_DIRECT << 24) | (OMAP_HSMMC_CMD_SHORT_RESPONSE << 16)) | DDIR)
#define OMAP_HSMMC_CMD53_WRITE (((SD_IO_RW_EXTENDED << 24) | (OMAP_HSMMC_CMD_SHORT_RESPONSE << 16)) | DP_SELECT)
#define OMAP_HSMMC_CMD53_READ (((SD_IO_RW_EXTENDED << 24) | (OMAP_HSMMC_CMD_SHORT_RESPONSE << 16)) | DP_SELECT | DDIR)
#define OMAP_HSMMC_CMD53_READ_DMA (OMAP_HSMMC_CMD53_READ | DMA_EN)
#define OMAP_HSMMC_CMD53_WRITE_DMA (OMAP_HSMMC_CMD53_WRITE | DMA_EN)
/* Macros to build commands 52 and 53 in format according to SDIO spec */
#define SDIO_CMD52_READ(v1,v2,v3,v4) (SDIO_RWFLAG(v1)|SDIO_FUNCN(v2)|SDIO_RAWFLAG(v3)| SDIO_ADDRREG(v4))
#define SDIO_CMD52_WRITE(v1,v2,v3,v4,v5) (SDIO_RWFLAG(v1)|SDIO_FUNCN(v2)|SDIO_RAWFLAG(v3)| SDIO_ADDRREG(v4)|(v5))
#define SDIO_CMD53_READ(v1,v2,v3,v4,v5,v6) (SDIO_RWFLAG(v1)|SDIO_FUNCN(v2)|SDIO_BLKM(v3)| SDIO_OPCODE(v4)|SDIO_ADDRREG(v5)|(v6&0x1ff))
#define SDIO_CMD53_WRITE(v1,v2,v3,v4,v5,v6) (SDIO_RWFLAG(v1)|SDIO_FUNCN(v2)|SDIO_BLKM(v3)| SDIO_OPCODE(v4)|SDIO_ADDRREG(v5)|(v6&0x1ff))
#define SDIODRV_MAX_LOOPS 50000
#define VMMC2_DEV_GRP 0x2B
#define VMMC2_DEDICATED 0x2E
#define VSEL_S2_18V 0x05
#define LDO_CLR 0x00
#define VSEL_S2_CLR 0x40
#define GPIO_0_BIT_POS 1 << 0
#define GPIO_1_BIT_POS 1 << 1
#define VSIM_DEV_GRP 0x37
#define VSIM_DEDICATED 0x3A
#define TWL4030_MODULE_PM_RECIEVER 0x13
typedef struct OMAP3430_sdiodrv
{
struct clk *fclk, *iclk, *dbclk;
int ifclks_enabled;
spinlock_t clk_lock;
int dma_tx_channel;
int dma_rx_channel;
int irq;
void (*BusTxnCB)(void* BusTxnHandle, int status);
void* BusTxnHandle;
unsigned int uBlkSize;
unsigned int uBlkSizeShift;
int async_status;
int (*wlanDrvIf_pm_resume)(void);
int (*wlanDrvIf_pm_suspend)(void);
struct device *dev;
dma_addr_t dma_read_addr;
size_t dma_read_size;
dma_addr_t dma_write_addr;
size_t dma_write_size;
struct workqueue_struct *sdio_wq; /* Work Queue */
struct work_struct sdiodrv_work;
} OMAP3430_sdiodrv_t;
struct omap_hsmmc_regs {
u32 hctl;
u32 capa;
u32 sysconfig;
u32 ise;
u32 ie;
u32 con;
u32 sysctl;
};
static struct omap_hsmmc_regs hsmmc_ctx;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 31))
static struct platform_device dummy_pdev = {
.dev = {
.bus = &platform_bus_type,
},
};
#endif
#define SDIO_DRIVER_NAME "TIWLAN_SDIO"
module_param(g_sdio_debug_level, int, 0644);
MODULE_PARM_DESC(g_sdio_debug_level, "debug level");
int g_sdio_debug_level = SDIO_DEBUGLEVEL_ERR;
EXPORT_SYMBOL(g_sdio_debug_level);
OMAP3430_sdiodrv_t g_drv;
static int sdiodrv_irq_requested = 0;
static int sdiodrv_iclk_got = 0;
static int sdiodrv_fclk_got = 0;
static void sdioDrv_hsmmc_save_ctx(void);
static void sdioDrv_hsmmc_restore_ctx(void);
static void sdiodrv_dma_shutdown(void);
#ifndef TI_SDIO_STANDALONE
void sdio_init( int sdcnum )
{
if( sdcnum <= 0 )
return;
TIWLAN_MMC_CONTROLLER = sdcnum - 1;
if( sdcnum == 2 ) {
TIWLAN_MMC_CONTROLLER_BASE_ADDR = OMAP_HSMMC2_BASE;
TIWLAN_MMC_DMA_TX = OMAP24XX_DMA_MMC2_TX;
TIWLAN_MMC_DMA_RX = OMAP24XX_DMA_MMC2_RX;
OMAP_MMC_IRQ = INT_MMC2_IRQ;
}
else if( sdcnum == 3 ) {
TIWLAN_MMC_CONTROLLER_BASE_ADDR = OMAP_HSMMC3_BASE;
TIWLAN_MMC_DMA_TX = OMAP34XX_DMA_MMC3_TX;
TIWLAN_MMC_DMA_RX = OMAP34XX_DMA_MMC3_RX;
OMAP_MMC_IRQ = INT_MMC3_IRQ;
}
}
#endif
static void sdioDrv_hsmmc_save_ctx(void)
{
/* MMC : context save */
hsmmc_ctx.hctl = OMAP_HSMMC_READ(HCTL);
hsmmc_ctx.capa = OMAP_HSMMC_READ(CAPA);
hsmmc_ctx.sysconfig = OMAP_HSMMC_READ(SYSCONFIG);
hsmmc_ctx.ise = OMAP_HSMMC_READ(ISE);
hsmmc_ctx.ie = OMAP_HSMMC_READ(IE);
hsmmc_ctx.con = OMAP_HSMMC_READ(CON);
hsmmc_ctx.sysctl = OMAP_HSMMC_READ(SYSCTL);
OMAP_HSMMC_WRITE(ISE, 0);
OMAP_HSMMC_WRITE(IE, 0);
}
static void sdioDrv_hsmmc_restore_ctx(void)
{
/* MMC : context restore */
OMAP_HSMMC_WRITE(HCTL, hsmmc_ctx.hctl);
OMAP_HSMMC_WRITE(CAPA, hsmmc_ctx.capa);
OMAP_HSMMC_WRITE(SYSCONFIG, hsmmc_ctx.sysconfig);
OMAP_HSMMC_WRITE(CON, hsmmc_ctx.con);
OMAP_HSMMC_WRITE(ISE, hsmmc_ctx.ise);
OMAP_HSMMC_WRITE(IE, hsmmc_ctx.ie);
OMAP_HSMMC_WRITE(SYSCTL, hsmmc_ctx.sysctl);
OMAP_HSMMC_WRITE(HCTL, OMAP_HSMMC_READ(HCTL) | SDBP);
}
void sdiodrv_task(struct work_struct *unused)
{
PDEBUG("sdiodrv_tasklet()\n");
if (g_drv.dma_read_addr != 0) {
dma_unmap_single(g_drv.dev, g_drv.dma_read_addr, g_drv.dma_read_size, DMA_FROM_DEVICE);
g_drv.dma_read_addr = 0;
g_drv.dma_read_size = 0;
}
if (g_drv.dma_write_addr != 0) {
dma_unmap_single(g_drv.dev, g_drv.dma_write_addr, g_drv.dma_write_size, DMA_TO_DEVICE);
g_drv.dma_write_addr = 0;
g_drv.dma_write_size = 0;
}
if (g_drv.BusTxnCB != NULL) {
g_drv.BusTxnCB(g_drv.BusTxnHandle, g_drv.async_status);
}
}
irqreturn_t sdiodrv_irq(int irq, void *drv)
{
int status;
PDEBUG("sdiodrv_irq()\n");
status = OMAP_HSMMC_READ(STAT);
OMAP_HSMMC_WRITE(ISE, 0);
g_drv.async_status = status & (OMAP_HSMMC_ERR);
if (g_drv.async_status) {
PERR("sdiodrv_irq: ERROR in STAT = 0x%x\n", status);
}
queue_work(g_drv.sdio_wq, &g_drv.sdiodrv_work);
return IRQ_HANDLED;
}
void sdiodrv_dma_read_cb(int lch, u16 ch_status, void *data)
{
PDEBUG("sdiodrv_dma_read_cb() channel=%d status=0x%x\n", lch, (int)ch_status);
g_drv.async_status = ch_status & (1 << 7);
queue_work(g_drv.sdio_wq, &g_drv.sdiodrv_work);
sdiodrv_dma_shutdown();
}
void sdiodrv_dma_write_cb(int lch, u16 ch_status, void *data)
{
sdiodrv_dma_shutdown();
}
int sdiodrv_dma_init(void)
{
int rc;
rc = omap_request_dma(TIWLAN_MMC_DMA_TX, "SDIO WRITE", sdiodrv_dma_write_cb, &g_drv, &g_drv.dma_tx_channel);
if (rc != 0) {
PERR("sdiodrv_dma_init() omap_request_dma(TIWLAN_MMC_DMA_TX) FAILED\n");
goto out;
}
rc = omap_request_dma(TIWLAN_MMC_DMA_RX, "SDIO READ", sdiodrv_dma_read_cb, &g_drv, &g_drv.dma_rx_channel);
if (rc != 0) {
PERR("sdiodrv_dma_init() omap_request_dma(TIWLAN_MMC_DMA_RX) FAILED\n");
goto freetx;
}
omap_set_dma_src_params(g_drv.dma_rx_channel,
0, // src_port is only for OMAP1
OMAP_DMA_AMODE_CONSTANT,
(TIWLAN_MMC_CONTROLLER_BASE_ADDR) + OMAP_HSMMC_DATA, 0, 0);
omap_set_dma_dest_params(g_drv.dma_tx_channel,
0, // dest_port is only for OMAP1
OMAP_DMA_AMODE_CONSTANT,
(TIWLAN_MMC_CONTROLLER_BASE_ADDR) + OMAP_HSMMC_DATA, 0, 0);
return 0;
freetx:
omap_free_dma(g_drv.dma_tx_channel);
out:
return rc;
}
static void sdiodrv_dma_shutdown(void)
{
omap_free_dma(g_drv.dma_tx_channel);
omap_free_dma(g_drv.dma_rx_channel);
} /* sdiodrv_dma_shutdown() */
static u32 sdiodrv_poll_status(u32 reg_offset, u32 stat, unsigned int msecs)
{
u32 status=0, loops=0;
do
{
status = OMAP_HSMMC_READ_OFFSET(reg_offset);
if(( status & stat))
{
break;
}
} while (loops++ < SDIODRV_MAX_LOOPS);
return status;
} /* sdiodrv_poll_status */
void dumpreg(void)
{
printk(KERN_ERR "\n MMCHS_SYSCONFIG for mmc3 = %x ", omap_readl( 0x480AD010 ));
printk(KERN_ERR "\n MMCHS_SYSSTATUS for mmc3 = %x ", omap_readl( 0x480AD014 ));
printk(KERN_ERR "\n MMCHS_CSRE for mmc3 = %x ", omap_readl( 0x480AD024 ));
printk(KERN_ERR "\n MMCHS_SYSTEST for mmc3 = %x ", omap_readl( 0x480AD028 ));
printk(KERN_ERR "\n MMCHS_CON for mmc3 = %x ", omap_readl( 0x480AD02C ));
printk(KERN_ERR "\n MMCHS_PWCNT for mmc3 = %x ", omap_readl( 0x480AD030 ));
printk(KERN_ERR "\n MMCHS_BLK for mmc3 = %x ", omap_readl( 0x480AD104 ));
printk(KERN_ERR "\n MMCHS_ARG for mmc3 = %x ", omap_readl( 0x480AD108 ));
printk(KERN_ERR "\n MMCHS_CMD for mmc3 = %x ", omap_readl( 0x480AD10C ));
printk(KERN_ERR "\n MMCHS_RSP10 for mmc3 = %x ", omap_readl( 0x480AD110 ));
printk(KERN_ERR "\n MMCHS_RSP32 for mmc3 = %x ", omap_readl( 0x480AD114 ));
printk(KERN_ERR "\n MMCHS_RSP54 for mmc3 = %x ", omap_readl( 0x480AD118 ));
printk(KERN_ERR "\n MMCHS_RSP76 for mmc3 = %x ", omap_readl( 0x480AD11C ));
printk(KERN_ERR "\n MMCHS_DATA for mmc3 = %x ", omap_readl( 0x480AD120 ));
printk(KERN_ERR "\n MMCHS_PSTATE for mmc3 = %x ", omap_readl( 0x480AD124 ));
printk(KERN_ERR "\n MMCHS_HCTL for mmc3 = %x ", omap_readl( 0x480AD128 ));
printk(KERN_ERR "\n MMCHS_SYSCTL for mmc3 = %x ", omap_readl( 0x480AD12C ));
printk(KERN_ERR "\n MMCHS_STAT for mmc3 = %x ", omap_readl( 0x480AD130 ));
printk(KERN_ERR "\n MMCHS_IE for mmc3 = %x ", omap_readl( 0x480AD134 ));
printk(KERN_ERR "\n MMCHS_ISE for mmc3 = %x ", omap_readl( 0x480AD138 ));
printk(KERN_ERR "\n MMCHS_AC12 for mmc3 = %x ", omap_readl( 0x480AD13C ));
printk(KERN_ERR "\n MMCHS_CAPA for mmc3 = %x ", omap_readl( 0x480AD140 ));
printk(KERN_ERR "\n MMCHS_CUR_CAPA for mmc3 = %x ", omap_readl( 0x480AD148 ));
}
//cmd flow p. 3609 obc
static int sdiodrv_send_command(u32 cmdreg, u32 cmdarg)
{
OMAP_HSMMC_WRITE(STAT, OMAP_HSMMC_STAT_CLEAR);
OMAP_HSMMC_SEND_COMMAND(cmdreg, cmdarg);
return sdiodrv_poll_status(OMAP_HSMMC_STAT, CC, MMC_TIMEOUT_MS);
} /* sdiodrv_send_command() */
/*
* Disable clock to the card
*/
static void OMAP3430_mmc_stop_clock(void)
{
OMAP_HSMMC_WRITE(SYSCTL, OMAP_HSMMC_READ(SYSCTL) & ~CEN);
if ((OMAP_HSMMC_READ(SYSCTL) & CEN) != 0x0)
{
PERR("MMC clock not stoped, clock freq can not be altered\n");
}
} /* OMAP3430_mmc_stop_clock */
/*
* Reset the SD system
*/
int OMAP3430_mmc_reset(void)
{
int status, loops=0;
//p. 3598 - need to set SOFTRESET to 0x1 0bc
OMAP_HSMMC_WRITE(SYSCTL, OMAP_HSMMC_READ(SYSCTL) | SRA);
while ((status = OMAP_HSMMC_READ(SYSCTL) & SRA) && loops++ < SDIODRV_MAX_LOOPS);
if (status & SRA)
{
PERR("OMAP3430_mmc_reset() MMC reset FAILED!! status=0x%x\n",status);
}
return status;
} /* OMAP3430_mmc_reset */
//p. 3611
static void OMAP3430_mmc_set_clock(unsigned int clock, OMAP3430_sdiodrv_t *host)
{
u16 dsor = 0;
unsigned long regVal;
int status;
PDEBUG("OMAP3430_mmc_set_clock(%d)\n",clock);
if (clock) {
/* Enable MMC_SD_CLK */
dsor = OMAP_MMC_MASTER_CLOCK / clock;
if (dsor < 1) {
dsor = 1;
}
if (OMAP_MMC_MASTER_CLOCK / dsor > clock) {
dsor++;
}
if (dsor > 250) {
dsor = 250;
}
}
OMAP3430_mmc_stop_clock();
regVal = OMAP_HSMMC_READ(SYSCTL);
regVal = regVal & ~(CLKD_MASK);//p. 3652
regVal = regVal | (dsor << 6);
regVal = regVal | (DTO << 16);//data timeout
OMAP_HSMMC_WRITE(SYSCTL, regVal);
OMAP_HSMMC_WRITE(SYSCTL, OMAP_HSMMC_READ(SYSCTL) | ICE);//internal clock enable. obc not mentioned in the spec
/*
* wait till the the clock is stable (ICS) bit is set
*/
status = sdiodrv_poll_status(OMAP_HSMMC_SYSCTL, ICS, MMC_TIMEOUT_MS);
if(!(status & ICS)) {
PERR("OMAP3430_mmc_set_clock() clock not stable!! status=0x%x\n",status);
}
/*
* Enable clock to the card
*/
OMAP_HSMMC_WRITE(SYSCTL, OMAP_HSMMC_READ(SYSCTL) | CEN);
} /* OMAP3430_mmc_set_clock() */
static void sdiodrv_free_resources(void)
{
if(g_drv.ifclks_enabled) {
sdioDrv_clk_disable();
}
if (sdiodrv_fclk_got) {
clk_put(g_drv.fclk);
sdiodrv_fclk_got = 0;
}
if (sdiodrv_iclk_got) {
clk_put(g_drv.iclk);
sdiodrv_iclk_got = 0;
}
if (sdiodrv_irq_requested) {
free_irq(OMAP_MMC_IRQ, &g_drv);
sdiodrv_irq_requested = 0;
}
}
int sdioDrv_InitHw(void)
{
return 0;
} /* sdioDrv_InitHw */
void sdiodrv_shutdown(void)
{
PDEBUG("entering %s()\n" , __FUNCTION__ );
sdiodrv_free_resources();
PDEBUG("exiting %s\n", __FUNCTION__);
} /* sdiodrv_shutdown() */
static int sdiodrv_send_data_xfer_commad(u32 cmd, u32 cmdarg, int length, u32 buffer_enable_status, unsigned int bBlkMode)
{
int status;
PDEBUG("%s() writing CMD 0x%x ARG 0x%x\n",__FUNCTION__, cmd, cmdarg);
/* block mode */
if(bBlkMode) {
/*
* Bits 31:16 of BLK reg: NBLK Blocks count for current transfer.
* in case of Block MOde the lenght is treated here as number of blocks
* (and not as a length).
* Bits 11:0 of BLK reg: BLEN Transfer Block Size. in case of block mode set that field to block size.
*/
OMAP_HSMMC_WRITE(BLK, (length << 16) | (g_drv.uBlkSize << 0));
/*
* In CMD reg:
* BCE: Block Count Enable
* MSBS: Multi/Single block select
*/
cmd |= MSBS | BCE ;
} else {
OMAP_HSMMC_WRITE(BLK, length);
}
status = sdiodrv_send_command(cmd, cmdarg);
if(!(status & CC)) {
PERR("sdiodrv_send_data_xfer_commad() SDIO Command error! STAT = 0x%x\n", status);
return 0;
}
PDEBUG("%s() length = %d(%dw) BLK = 0x%x\n",
__FUNCTION__, length,((length + 3) >> 2), OMAP_HSMMC_READ(BLK));
return sdiodrv_poll_status(OMAP_HSMMC_PSTATE, buffer_enable_status, MMC_TIMEOUT_MS);
} /* sdiodrv_send_data_xfer_commad() */
int sdiodrv_data_xfer_sync(u32 cmd, u32 cmdarg, void *data, int length, u32 buffer_enable_status)
{
u32 buf_start, buf_end, data32;
int status;
status = sdiodrv_send_data_xfer_commad(cmd, cmdarg, length, buffer_enable_status, 0);
if(!(status & buffer_enable_status))
{
PERR("sdiodrv_data_xfer_sync() buffer disabled! length = %d BLK = 0x%x PSTATE = 0x%x\n",
length, OMAP_HSMMC_READ(BLK), status);
return -1;
}
buf_end = (u32)data+(u32)length;
//obc need to check BRE/BWE every time, see p. 3605
/*
* Read loop
*/
if (buffer_enable_status == BRE)
{
if (((u32)data & 3) == 0) /* 4 bytes aligned */
{
for (buf_start = (u32)data; (u32)data < buf_end; data += sizeof(unsigned long))
{
*((unsigned long*)(data)) = OMAP_HSMMC_READ(DATA);
}
}
else /* 2 bytes aligned */
{
for (buf_start = (u32)data; (u32)data < buf_end; data += sizeof(unsigned long))
{
data32 = OMAP_HSMMC_READ(DATA);
*((unsigned short *)data) = (unsigned short)data32;
*((unsigned short *)data + 1) = (unsigned short)(data32 >> 16);
}
}
}
/*
* Write loop
*/
else
{
if (((u32)data & 3) == 0) /* 4 bytes aligned */
{
for (buf_start = (u32)data; (u32)data < buf_end; data += sizeof(unsigned long))
{
OMAP_HSMMC_WRITE(DATA,*((unsigned long*)(data)));
}
}
else /* 2 bytes aligned */
{
for (buf_start = (u32)data; (u32)data < buf_end; data += sizeof(unsigned long))
{
OMAP_HSMMC_WRITE(DATA,*((unsigned short*)data) | *((unsigned short*)data+1) << 16 );
}
}
}
status = sdiodrv_poll_status(OMAP_HSMMC_STAT, TC, MMC_TIMEOUT_MS);
if(!(status & TC))
{
PERR("sdiodrv_data_xfer_sync() transfer error! STAT = 0x%x\n", status);
return -1;
}
return 0;
} /* sdiodrv_data_xfer_sync() */
int sdioDrv_ConnectBus (void * fCbFunc,
void * hCbArg,
unsigned int uBlkSizeShift,
unsigned int uSdioThreadPriority)
{
g_drv.BusTxnCB = fCbFunc;
g_drv.BusTxnHandle = hCbArg;
g_drv.uBlkSizeShift = uBlkSizeShift;
g_drv.uBlkSize = 1 << uBlkSizeShift;
INIT_WORK(&g_drv.sdiodrv_work, sdiodrv_task);
return sdioDrv_InitHw ();
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_DisconnectBus (void)
{
/* Disable clocks to handle driver stop command */
sdioDrv_clk_disable();
return 0;
}
//p.3609 cmd flow
int sdioDrv_ExecuteCmd (unsigned int uCmd,
unsigned int uArg,
unsigned int uRespType,
void * pResponse,
unsigned int uLen)
{
unsigned int uCmdReg = 0;
unsigned int uStatus = 0;
unsigned int uResponse = 0;
PDEBUG("sdioDrv_ExecuteCmd() starting cmd %02x arg %08x\n", (int)uCmd, (int)uArg);
sdioDrv_clk_enable(); /* To make sure we have clocks enable */
uCmdReg = (uCmd << 24) | (uRespType << 16) ;
uStatus = sdiodrv_send_command(uCmdReg, uArg);
if (!(uStatus & CC))
{
PERR("sdioDrv_ExecuteCmd() SDIO Command error status = 0x%x\n", uStatus);
return -1;
}
if ((uLen > 0) && (uLen <= 4))/*obc - Len > 4 ? shouldn't read anything ? */
{
uResponse = OMAP_HSMMC_READ(RSP10);
memcpy (pResponse, (char *)&uResponse, uLen);
PDEBUG("sdioDrv_ExecuteCmd() response = 0x%x\n", uResponse);
}
return 0;
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_ReadSync (unsigned int uFunc,
unsigned int uHwAddr,
void * pData,
unsigned int uLen,
unsigned int bIncAddr,
unsigned int bMore)
{
unsigned int uCmdArg;
int iStatus;
// printk(KERN_INFO "in sdioDrv_ReadSync\n");
uCmdArg = SDIO_CMD53_READ(0, uFunc, 0, bIncAddr, uHwAddr, uLen);
iStatus = sdiodrv_data_xfer_sync(OMAP_HSMMC_CMD53_READ, uCmdArg, pData, uLen, BRE);
if (iStatus != 0) {
PERR("sdioDrv_ReadSync() FAILED!!\n");
}
#ifdef TI_SDIO_DEBUG
if (uLen == 1)
printk(KERN_INFO "R53: [0x%x](%u) = 0x%x\n", uHwAddr, uLen, (unsigned)(*(char *)pData));
else if (uLen == 2)
printk(KERN_INFO "R53: [0x%x](%u) = 0x%x\n", uHwAddr, uLen, (unsigned)(*(short *)pData));
else if (uLen == 4)
printk(KERN_INFO "R53: [0x%x](%u) = 0x%x\n", uHwAddr, uLen, (unsigned)(*(long *)pData));
else
printk(KERN_INFO "R53: [0x%x](%u)\n", uHwAddr, uLen);
#endif
return iStatus;
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_ReadAsync (unsigned int uFunc,
unsigned int uHwAddr,
void * pData,
unsigned int uLen,
unsigned int bBlkMode,
unsigned int bIncAddr,
unsigned int bMore)
{
int iStatus;
unsigned int uCmdArg;
unsigned int uNumBlks;
unsigned int uDmaBlockCount;
unsigned int uNumOfElem;
dma_addr_t dma_bus_address;
#ifdef TI_SDIO_DEBUG
printk(KERN_INFO "R53: [0x%x](%u) F[%d]\n", uHwAddr, uLen, uFunc);
#endif
//printk(KERN_INFO "in sdioDrv_ReadAsync\n");
if (bBlkMode)
{
/* For block mode use number of blocks instead of length in bytes */
uNumBlks = uLen >> g_drv.uBlkSizeShift;
uDmaBlockCount = uNumBlks;
/* due to the DMA config to 32Bit per element (OMAP_DMA_DATA_TYPE_S32) the division is by 4 */
uNumOfElem = g_drv.uBlkSize >> 2;
}
else
{
uNumBlks = uLen;
uDmaBlockCount = 1;
uNumOfElem = (uLen + 3) >> 2;
}
uCmdArg = SDIO_CMD53_READ(0, uFunc, bBlkMode, bIncAddr, uHwAddr, uNumBlks);
iStatus = sdiodrv_send_data_xfer_commad(OMAP_HSMMC_CMD53_READ_DMA, uCmdArg, uNumBlks, BRE, bBlkMode);
if (!(iStatus & BRE))
{
PERR("sdioDrv_ReadAsync() buffer disabled! length = %d BLK = 0x%x PSTATE = 0x%x, BlkMode = %d\n",
uLen, OMAP_HSMMC_READ(BLK), iStatus, bBlkMode);
goto err;
}
sdiodrv_dma_init();
PDEBUG("sdiodrv_read_async() dma_ch=%d \n",g_drv.dma_rx_channel);
dma_bus_address = dma_map_single(g_drv.dev, pData, uLen, DMA_FROM_DEVICE);
if (!dma_bus_address) {
PERR("sdioDrv_ReadAsync: dma_map_single failed\n");
goto err;
}
if (g_drv.dma_read_addr != 0) {
printk(KERN_ERR "sdioDrv_ReadAsync: previous DMA op is not finished!\n");
BUG();
}
g_drv.dma_read_addr = dma_bus_address;
g_drv.dma_read_size = uLen;
omap_set_dma_dest_params (g_drv.dma_rx_channel,
0, // dest_port is only for OMAP1
OMAP_DMA_AMODE_POST_INC,
dma_bus_address,
0, 0);
omap_set_dma_transfer_params(g_drv.dma_rx_channel, OMAP_DMA_DATA_TYPE_S32, uNumOfElem , uDmaBlockCount , OMAP_DMA_SYNC_FRAME, TIWLAN_MMC_DMA_RX, OMAP_DMA_SRC_SYNC);
omap_start_dma(g_drv.dma_rx_channel);
/* Continued at sdiodrv_irq() after DMA transfer is finished */
#ifdef TI_SDIO_DEBUG
printk(KERN_INFO "R53: [0x%x](%u) (A)\n", uHwAddr, uLen);
#endif
return 0;
err:
return -1;
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_WriteSync (unsigned int uFunc,
unsigned int uHwAddr,
void * pData,
unsigned int uLen,
unsigned int bIncAddr,
unsigned int bMore)
{
unsigned int uCmdArg;
int iStatus;
// printk(KERN_INFO "in sdioDrv_WriteSync\n");
uCmdArg = SDIO_CMD53_WRITE(1, uFunc, 0, bIncAddr, uHwAddr, uLen);
iStatus = sdiodrv_data_xfer_sync(OMAP_HSMMC_CMD53_WRITE, uCmdArg, pData, uLen, BWE);
if (iStatus != 0)
{
PERR("sdioDrv_WriteSync() FAILED!!\n");
}
#ifdef TI_SDIO_DEBUG
if (uLen == 1)
printk(KERN_INFO "W53: [0x%x](%u) < 0x%x\n", uHwAddr, uLen, (unsigned)(*(char *)pData));
else if (uLen == 2)
printk(KERN_INFO "W53: [0x%x](%u) < 0x%x\n", uHwAddr, uLen, (unsigned)(*(short *)pData));
else if (uLen == 4)
printk(KERN_INFO "W53: [0x%x](%u) < 0x%x\n", uHwAddr, uLen, (unsigned)(*(long *)pData));
else
printk(KERN_INFO "W53: [0x%x](%u)\n", uHwAddr, uLen);
#endif
return iStatus;
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_WriteAsync (unsigned int uFunc,
unsigned int uHwAddr,
void * pData,
unsigned int uLen,
unsigned int bBlkMode,
unsigned int bIncAddr,
unsigned int bMore)
{
int iStatus;
unsigned int uCmdArg;
unsigned int uNumBlks;
unsigned int uDmaBlockCount;
unsigned int uNumOfElem;
dma_addr_t dma_bus_address;
#ifdef TI_SDIO_DEBUG
printk(KERN_INFO "W53: [0x%x](%u) F[%d] B[%d] I[%d]\n", uHwAddr, uLen, uFunc, bBlkMode, bIncAddr);
#endif
// printk(KERN_INFO "in sdioDrv_WriteAsync\n");
if (bBlkMode)
{
/* For block mode use number of blocks instead of length in bytes */
uNumBlks = uLen >> g_drv.uBlkSizeShift;
uDmaBlockCount = uNumBlks;
/* due to the DMA config to 32Bit per element (OMAP_DMA_DATA_TYPE_S32) the division is by 4 */
uNumOfElem = g_drv.uBlkSize >> 2;
}
else
{
uNumBlks = uLen;
uDmaBlockCount = 1;
uNumOfElem = (uLen + 3) >> 2;
}
uCmdArg = SDIO_CMD53_WRITE(1, uFunc, bBlkMode, bIncAddr, uHwAddr, uNumBlks);
iStatus = sdiodrv_send_data_xfer_commad(OMAP_HSMMC_CMD53_WRITE_DMA, uCmdArg, uNumBlks, BWE, bBlkMode);
if (!(iStatus & BWE))
{
PERR("sdioDrv_WriteAsync() buffer disabled! length = %d, BLK = 0x%x, Status = 0x%x\n",
uLen, OMAP_HSMMC_READ(BLK), iStatus);
goto err;
}
OMAP_HSMMC_WRITE(ISE, TC);
sdiodrv_dma_init();
dma_bus_address = dma_map_single(g_drv.dev, pData, uLen, DMA_TO_DEVICE);
if (!dma_bus_address) {
PERR("sdioDrv_WriteAsync: dma_map_single failed\n");
goto err;
}
if (g_drv.dma_write_addr != 0) {
PERR("sdioDrv_WriteAsync: previous DMA op is not finished!\n");
BUG();
}
g_drv.dma_write_addr = dma_bus_address;
g_drv.dma_write_size = uLen;
omap_set_dma_src_params (g_drv.dma_tx_channel,
0, // src_port is only for OMAP1
OMAP_DMA_AMODE_POST_INC,
dma_bus_address,
0, 0);
omap_set_dma_transfer_params(g_drv.dma_tx_channel, OMAP_DMA_DATA_TYPE_S32, uNumOfElem, uDmaBlockCount, OMAP_DMA_SYNC_FRAME, TIWLAN_MMC_DMA_TX, OMAP_DMA_DST_SYNC);
omap_start_dma(g_drv.dma_tx_channel);
/* Continued at sdiodrv_irq() after DMA transfer is finished */
return 0;
err:
return -1;
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_ReadSyncBytes (unsigned int uFunc,
unsigned int uHwAddr,
unsigned char *pData,
unsigned int uLen,
unsigned int bMore)
{
unsigned int uCmdArg;
unsigned int i;
int iStatus;
for (i = 0; i < uLen; i++) {
uCmdArg = SDIO_CMD52_READ(0, uFunc, 0, uHwAddr);
iStatus = sdiodrv_send_command(OMAP_HSMMC_CMD52_READ, uCmdArg);
if (!(iStatus & CC)) {
PERR("sdioDrv_ReadSyncBytes() SDIO Command error status = 0x%x\n", iStatus);
return -1;
}
else {
*pData = (unsigned char)(OMAP_HSMMC_READ(RSP10));
}
#ifdef TI_SDIO_DEBUG
printk(KERN_INFO "R52: [0x%x](%u) = 0x%x\n", uHwAddr, uLen, (unsigned)*pData);
#endif
uHwAddr++;
pData++;
}
return 0;
}
/*--------------------------------------------------------------------------------------*/
int sdioDrv_WriteSyncBytes (unsigned int uFunc,
unsigned int uHwAddr,
unsigned char *pData,
unsigned int uLen,
unsigned int bMore)
{
unsigned int uCmdArg;
unsigned int i;
int iStatus;
for (i = 0; i < uLen; i++) {
#ifdef TI_SDIO_DEBUG
printk(KERN_INFO "W52: [0x%x](%u) < 0x%x\n", uHwAddr, uLen, (unsigned)*pData);
#endif
uCmdArg = SDIO_CMD52_WRITE(1, uFunc, 0, uHwAddr, *pData);
iStatus = sdiodrv_send_command(OMAP_HSMMC_CMD52_WRITE, uCmdArg);
if (!(iStatus & CC)) {
PERR("sdioDrv_WriteSyncBytes() SDIO Command error status = 0x%x\n", iStatus);
return -1;
}
uHwAddr++;
pData++;
}
return 0;
}
static int sdioDrv_probe(struct platform_device *pdev)
{
int rc;
u32 status;
#ifdef SDIO_1_BIT /* see also in SdioAdapter.c */
unsigned long clock_rate = 6000000;
#else
unsigned long clock_rate = 24000000;
#endif
printk(KERN_INFO "TIWLAN SDIO probe: initializing mmc%d device\n", pdev->id + 1);
/* remember device struct for future DMA operations */
g_drv.dev = &pdev->dev;
g_drv.irq = platform_get_irq(pdev, 0);
if (g_drv.irq < 0)
return -ENXIO;
rc= request_irq(OMAP_MMC_IRQ, sdiodrv_irq, 0, SDIO_DRIVER_NAME, &g_drv);
if (rc != 0) {
PERR("sdioDrv_InitHw() - request_irq FAILED!!\n");
return rc;
}
sdiodrv_irq_requested = 1;
spin_lock_init(&g_drv.clk_lock);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 31))
dummy_pdev.id = TIWLAN_MMC_CONTROLLER;
dev_set_name(&dummy_pdev.dev, "mmci-omap-hs.%lu", TIWLAN_MMC_CONTROLLER);
g_drv.fclk = clk_get(&dummy_pdev.dev, "fck");
#else
g_drv.fclk = clk_get(&pdev->dev, "mmchs_fck");
#endif
if (IS_ERR(g_drv.fclk)) {
rc = PTR_ERR(g_drv.fclk);
PERR("clk_get(fclk) FAILED !!!\n");
goto err;
}
sdiodrv_fclk_got = 1;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 31))
g_drv.iclk = clk_get(&dummy_pdev.dev, "ick");
#else
g_drv.iclk = clk_get(&pdev->dev, "mmchs_ick");
#endif
if (IS_ERR(g_drv.iclk)) {
rc = PTR_ERR(g_drv.iclk);
PERR("clk_get(iclk) FAILED !!!\n");
goto err;
}
sdiodrv_iclk_got = 1;
rc = sdioDrv_clk_enable();
if (rc) {
PERR("sdioDrv_probe : clk_enable FAILED !!!\n");
goto err;
}
OMAP3430_mmc_reset();
//obc - init sequence p. 3600,3617
/* 1.8V */
OMAP_HSMMC_WRITE(CAPA, OMAP_HSMMC_READ(CAPA) | VS18);
OMAP_HSMMC_WRITE(HCTL, OMAP_HSMMC_READ(HCTL) | SDVS18);//SDVS fits p. 3650
/* clock gating */
OMAP_HSMMC_WRITE(SYSCONFIG, OMAP_HSMMC_READ(SYSCONFIG) | AUTOIDLE);
/* bus power */
OMAP_HSMMC_WRITE(HCTL, OMAP_HSMMC_READ(HCTL) | SDBP);//SDBP fits p. 3650
/* interrupts */
OMAP_HSMMC_WRITE(ISE, 0);
OMAP_HSMMC_WRITE(IE, IE_EN_MASK);
//p. 3601 suggests moving to the end
OMAP3430_mmc_set_clock(clock_rate, &g_drv);
printk(KERN_INFO "SDIO clock Configuration is now set to %dMhz\n",(int)clock_rate/1000000);
/* Bus width */
#ifdef SDIO_1_BIT /* see also in SdioAdapter.c */
PDEBUG("%s() setting %d data lines\n",__FUNCTION__, 1);
OMAP_HSMMC_WRITE(HCTL, OMAP_HSMMC_READ(HCTL) & (ONE_BIT));
#else
PDEBUG("%s() setting %d data lines\n",__FUNCTION__, 4);
OMAP_HSMMC_WRITE(HCTL, OMAP_HSMMC_READ(HCTL) | (1 << 1));//DTW 4 bits - p. 3650
#endif
/* send the init sequence. 80 clocks of synchronization in the SDIO */
//doesn't match p. 3601,3617 - obc
OMAP_HSMMC_WRITE( CON, OMAP_HSMMC_READ(CON) | INIT_STREAM);
OMAP_HSMMC_SEND_COMMAND( 0, 0);
status = sdiodrv_poll_status(OMAP_HSMMC_STAT, CC, MMC_TIMEOUT_MS);
if (!(status & CC)) {
PERR("sdioDrv_InitHw() SDIO Command error status = 0x%x\n", status);
rc = -1;
goto err;
}
OMAP_HSMMC_WRITE(CON, OMAP_HSMMC_READ(CON) & ~INIT_STREAM);
/* Disabling clocks for now */
sdioDrv_clk_disable();
return 0;
err:
sdiodrv_free_resources();
return rc;
}
static int sdioDrv_remove(struct platform_device *pdev)
{
printk(KERN_INFO "sdioDrv_remove: calling sdiodrv_shutdown\n");
sdiodrv_shutdown();
return 0;
}
#ifdef CONFIG_PM
static int sdioDrv_suspend(struct platform_device *pdev, pm_message_t state)
{
printk(KERN_INFO "TISDIO: sdioDrv is suspending\n");
return 0;
}
/* Routine to resume the MMC device */
static int sdioDrv_resume(struct platform_device *pdev)
{
printk(KERN_INFO "TISDIO: sdioDrv is resuming\n");
return 0;
}
#else
#define sdioDrv_suspend NULL
#define sdioDrv_resume NULL
#endif
static struct platform_driver sdioDrv_struct = {
.probe = sdioDrv_probe,
.remove = sdioDrv_remove,
.suspend = sdioDrv_suspend,
.resume = sdioDrv_resume,
.driver = {
.name = SDIO_DRIVER_NAME,
},
};
void sdioDrv_register_pm(int (*wlanDrvIf_Start)(void),
int (*wlanDrvIf_Stop)(void))
{
g_drv.wlanDrvIf_pm_resume = wlanDrvIf_Start;
g_drv.wlanDrvIf_pm_suspend = wlanDrvIf_Stop;
}
int sdioDrv_clk_enable(void)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&g_drv.clk_lock, flags);
if (g_drv.ifclks_enabled)
goto done;
ret = clk_enable(g_drv.iclk);
if (ret)
goto clk_en_err1;
ret = clk_enable(g_drv.fclk);
if (ret)
goto clk_en_err2;
g_drv.ifclks_enabled = 1;
sdioDrv_hsmmc_restore_ctx();
done:
spin_unlock_irqrestore(&g_drv.clk_lock, flags);
return ret;
clk_en_err2:
clk_disable(g_drv.iclk);
clk_en_err1 :
spin_unlock_irqrestore(&g_drv.clk_lock, flags);
return ret;
}
void sdioDrv_clk_disable(void)
{
unsigned long flags;
spin_lock_irqsave(&g_drv.clk_lock, flags);
if (!g_drv.ifclks_enabled)
goto done;
sdioDrv_hsmmc_save_ctx();
clk_disable(g_drv.fclk);
clk_disable(g_drv.iclk);
g_drv.ifclks_enabled = 0;
done:
spin_unlock_irqrestore(&g_drv.clk_lock, flags);
}
#ifdef TI_SDIO_STANDALONE
static int __init sdioDrv_init(void)
#else
int __init sdioDrv_init(int sdcnum)
#endif
{
memset(&g_drv, 0, sizeof(g_drv));
memset(&hsmmc_ctx, 0, sizeof(hsmmc_ctx));
printk(KERN_INFO "TIWLAN SDIO init\n");
#ifndef TI_SDIO_STANDALONE
sdio_init( sdcnum );
#endif
g_drv.sdio_wq = create_freezeable_workqueue(SDIOWQ_NAME);
if (!g_drv.sdio_wq) {
printk("TISDIO: Fail to create SDIO WQ\n");
return -EINVAL;
}
/* Register the sdio driver */
return platform_driver_register(&sdioDrv_struct);
}
#ifdef TI_SDIO_STANDALONE
static
#endif
void __exit sdioDrv_exit(void)
{
/* Unregister sdio driver */
platform_driver_unregister(&sdioDrv_struct);
if (g_drv.sdio_wq)
destroy_workqueue(g_drv.sdio_wq);
}
#ifdef TI_SDIO_STANDALONE
module_init(sdioDrv_init);
module_exit(sdioDrv_exit);
#endif
EXPORT_SYMBOL(sdioDrv_ConnectBus);
EXPORT_SYMBOL(sdioDrv_DisconnectBus);
EXPORT_SYMBOL(sdioDrv_ExecuteCmd);
EXPORT_SYMBOL(sdioDrv_ReadSync);
EXPORT_SYMBOL(sdioDrv_WriteSync);
EXPORT_SYMBOL(sdioDrv_ReadAsync);
EXPORT_SYMBOL(sdioDrv_WriteAsync);
EXPORT_SYMBOL(sdioDrv_ReadSyncBytes);
EXPORT_SYMBOL(sdioDrv_WriteSyncBytes);
EXPORT_SYMBOL(sdioDrv_register_pm);
MODULE_DESCRIPTION("TI WLAN SDIO driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS(SDIO_DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");
#endif