/* * Copyright (c) 2008, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <boot/boot.h> #include <boot/flash.h> #include <msm7k/dmov.h> #include <msm7k/nand.h> #include <msm7k/shared.h> #define VERBOSE 0 typedef struct dmov_ch dmov_ch; struct dmov_ch { volatile unsigned cmd; volatile unsigned result; volatile unsigned status; volatile unsigned config; }; static void dmov_prep_ch(dmov_ch *ch, unsigned id) { ch->cmd = DMOV_CMD_PTR(id); ch->result = DMOV_RSLT(id); ch->status = DMOV_STATUS(id); ch->config = DMOV_CONFIG(id); } #define SRC_CRCI_NAND_CMD CMD_SRC_CRCI(DMOV_NAND_CRCI_CMD) #define DST_CRCI_NAND_CMD CMD_DST_CRCI(DMOV_NAND_CRCI_CMD) #define SRC_CRCI_NAND_DATA CMD_SRC_CRCI(DMOV_NAND_CRCI_DATA) #define DST_CRCI_NAND_DATA CMD_DST_CRCI(DMOV_NAND_CRCI_DATA) static unsigned CFG0, CFG1; #define CFG1_WIDE_FLASH (1U << 1) #define paddr(n) ((unsigned) (n)) static int dmov_exec_cmdptr(unsigned id, unsigned *ptr) { dmov_ch ch; unsigned n; dmov_prep_ch(&ch, id); writel(DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(paddr(ptr)), ch.cmd); while(!(readl(ch.status) & DMOV_STATUS_RSLT_VALID)) ; n = readl(ch.status); while(DMOV_STATUS_RSLT_COUNT(n)) { n = readl(ch.result); if(n != 0x80000002) { dprintf("ERROR: result: %x\n", n); dprintf("ERROR: flush: %x %x %x %x\n", readl(DMOV_FLUSH0(DMOV_NAND_CHAN)), readl(DMOV_FLUSH1(DMOV_NAND_CHAN)), readl(DMOV_FLUSH2(DMOV_NAND_CHAN)), readl(DMOV_FLUSH3(DMOV_NAND_CHAN))); } n = readl(ch.status); } return 0; } static unsigned flash_maker = 0; static unsigned flash_device = 0; static void flash_read_id(dmov_s *cmdlist, unsigned *ptrlist) { dmov_s *cmd = cmdlist; unsigned *ptr = ptrlist; unsigned *data = ptrlist + 4; data[0] = 0 | 4; data[1] = NAND_CMD_FETCH_ID; data[2] = 1; data[3] = 0; data[4] = 0; cmd[0].cmd = 0 | CMD_OCB; cmd[0].src = paddr(&data[0]); cmd[0].dst = NAND_FLASH_CHIP_SELECT; cmd[0].len = 4; cmd[1].cmd = DST_CRCI_NAND_CMD; cmd[1].src = paddr(&data[1]); cmd[1].dst = NAND_FLASH_CMD; cmd[1].len = 4; cmd[2].cmd = 0; cmd[2].src = paddr(&data[2]); cmd[2].dst = NAND_EXEC_CMD; cmd[2].len = 4; cmd[3].cmd = SRC_CRCI_NAND_DATA; cmd[3].src = NAND_FLASH_STATUS; cmd[3].dst = paddr(&data[3]); cmd[3].len = 4; cmd[4].cmd = CMD_OCU | CMD_LC; cmd[4].src = NAND_READ_ID; cmd[4].dst = paddr(&data[4]); cmd[4].len = 4; ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP; dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr); #if VERBOSE dprintf("status: %x\n", data[3]); #endif dprintf("nandid: %x maker %b device %b\n", data[4], data[4] & 0xff, (data[4] >> 8) & 0xff); flash_maker = data[4] & 0xff; flash_device = (data[4] >> 8) & 0xff; } static int flash_erase_block(dmov_s *cmdlist, unsigned *ptrlist, unsigned page) { dmov_s *cmd = cmdlist; unsigned *ptr = ptrlist; unsigned *data = ptrlist + 4; /* only allow erasing on block boundaries */ if(page & 63) return -1; data[0] = NAND_CMD_BLOCK_ERASE; data[1] = page; data[2] = 0; data[3] = 0 | 4; data[4] = 1; data[5] = 0xeeeeeeee; data[6] = CFG0 & (~(7 << 6)); /* CW_PER_PAGE = 0 */ data[7] = CFG1; cmd[0].cmd = DST_CRCI_NAND_CMD | CMD_OCB; cmd[0].src = paddr(&data[0]); cmd[0].dst = NAND_FLASH_CMD; cmd[0].len = 16; cmd[1].cmd = 0; cmd[1].src = paddr(&data[6]); cmd[1].dst = NAND_DEV0_CFG0; cmd[1].len = 8; cmd[2].cmd = 0; cmd[2].src = paddr(&data[4]); cmd[2].dst = NAND_EXEC_CMD; cmd[2].len = 4; cmd[3].cmd = SRC_CRCI_NAND_DATA | CMD_OCU | CMD_LC; cmd[3].src = NAND_FLASH_STATUS; cmd[3].dst = paddr(&data[5]); cmd[3].len = 4; ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP; dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr); #if VERBOSE dprintf("status: %x\n", data[5]); #endif /* we fail if there was an operation error, a mpu error, or the ** erase success bit was not set. */ if(data[5] & 0x110) return -1; if(!(data[5] & 0x80)) return -1; return 0; } struct data_flash_io { unsigned cmd; unsigned addr0; unsigned addr1; unsigned chipsel; unsigned cfg0; unsigned cfg1; unsigned exec; unsigned ecc_cfg; unsigned ecc_cfg_save; struct { unsigned flash_status; unsigned buffer_status; } result[4]; }; static int _flash_read_page(dmov_s *cmdlist, unsigned *ptrlist, unsigned page, void *_addr, void *_spareaddr) { dmov_s *cmd = cmdlist; unsigned *ptr = ptrlist; struct data_flash_io *data = (void*) (ptrlist + 4); unsigned addr = (unsigned) _addr; unsigned spareaddr = (unsigned) _spareaddr; unsigned n; data->cmd = NAND_CMD_PAGE_READ_ECC; data->addr0 = page << 16; data->addr1 = (page >> 16) & 0xff; data->chipsel = 0 | 4; /* flash0 + undoc bit */ /* GO bit for the EXEC register */ data->exec = 1; data->cfg0 = CFG0; data->cfg1 = CFG1; data->ecc_cfg = 0x203; /* save existing ecc config */ cmd->cmd = CMD_OCB; cmd->src = NAND_EBI2_ECC_BUF_CFG; cmd->dst = paddr(&data->ecc_cfg_save); cmd->len = 4; cmd++; for(n = 0; n < 4; n++) { /* write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst */ cmd->cmd = DST_CRCI_NAND_CMD; cmd->src = paddr(&data->cmd); cmd->dst = NAND_FLASH_CMD; cmd->len = ((n == 0) ? 16 : 4); cmd++; if (n == 0) { /* block on cmd ready, set configuration */ cmd->cmd = 0; cmd->src = paddr(&data->cfg0); cmd->dst = NAND_DEV0_CFG0; cmd->len = 8; cmd++; /* set our ecc config */ cmd->cmd = 0; cmd->src = paddr(&data->ecc_cfg); cmd->dst = NAND_EBI2_ECC_BUF_CFG; cmd->len = 4; cmd++; } /* kick the execute register */ cmd->cmd = 0; cmd->src = paddr(&data->exec); cmd->dst = NAND_EXEC_CMD; cmd->len = 4; cmd++; /* block on data ready, then read the status register */ cmd->cmd = SRC_CRCI_NAND_DATA; cmd->src = NAND_FLASH_STATUS; cmd->dst = paddr(&data->result[n]); cmd->len = 8; cmd++; /* read data block */ cmd->cmd = 0; cmd->src = NAND_FLASH_BUFFER; cmd->dst = addr + n * 516; cmd->len = ((n < 3) ? 516 : 500); cmd++; } /* read extra data */ cmd->cmd = 0; cmd->src = NAND_FLASH_BUFFER + 500; cmd->dst = spareaddr; cmd->len = 16; cmd++; /* restore saved ecc config */ cmd->cmd = CMD_OCU | CMD_LC; cmd->src = paddr(&data->ecc_cfg_save); cmd->dst = NAND_EBI2_ECC_BUF_CFG; cmd->len = 4; ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP; dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr); #if VERBOSE dprintf("read page %d: status: %x %x %x %x\n", page, data[5], data[6], data[7], data[8]); for(n = 0; n < 4; n++) { ptr = (unsigned*)(addr + 512 * n); dprintf("data%d: %x %x %x %x\n", n, ptr[0], ptr[1], ptr[2], ptr[3]); ptr = (unsigned*)(spareaddr + 16 * n); dprintf("spare data%d %x %x %x %x\n", n, ptr[0], ptr[1], ptr[2], ptr[3]); } #endif /* if any of the writes failed (0x10), or there was a ** protection violation (0x100), we lose */ for(n = 0; n < 4; n++) { if (data->result[n].flash_status & 0x110) { return -1; } } return 0; } static int _flash_write_page(dmov_s *cmdlist, unsigned *ptrlist, unsigned page, const void *_addr, const void *_spareaddr) { dmov_s *cmd = cmdlist; unsigned *ptr = ptrlist; struct data_flash_io *data = (void*) (ptrlist + 4); unsigned addr = (unsigned) _addr; unsigned spareaddr = (unsigned) _spareaddr; unsigned n; data->cmd = NAND_CMD_PRG_PAGE; data->addr0 = page << 16; data->addr1 = (page >> 16) & 0xff; data->chipsel = 0 | 4; /* flash0 + undoc bit */ data->cfg0 = CFG0; data->cfg1 = CFG1; /* GO bit for the EXEC register */ data->exec = 1; data->ecc_cfg = 0x203; /* save existing ecc config */ cmd->cmd = CMD_OCB; cmd->src = NAND_EBI2_ECC_BUF_CFG; cmd->dst = paddr(&data->ecc_cfg_save); cmd->len = 4; cmd++; for(n = 0; n < 4; n++) { /* write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst */ cmd->cmd = DST_CRCI_NAND_CMD; cmd->src = paddr(&data->cmd); cmd->dst = NAND_FLASH_CMD; cmd->len = ((n == 0) ? 16 : 4); cmd++; if (n == 0) { /* set configuration */ cmd->cmd = 0; cmd->src = paddr(&data->cfg0); cmd->dst = NAND_DEV0_CFG0; cmd->len = 8; cmd++; /* set our ecc config */ cmd->cmd = 0; cmd->src = paddr(&data->ecc_cfg); cmd->dst = NAND_EBI2_ECC_BUF_CFG; cmd->len = 4; cmd++; } /* write data block */ cmd->cmd = 0; cmd->src = addr + n * 516; cmd->dst = NAND_FLASH_BUFFER; cmd->len = ((n < 3) ? 516 : 510); cmd++; if (n == 3) { /* write extra data */ cmd->cmd = 0; cmd->src = spareaddr; cmd->dst = NAND_FLASH_BUFFER + 500; cmd->len = 16; cmd++; } /* kick the execute register */ cmd->cmd = 0; cmd->src = paddr(&data->exec); cmd->dst = NAND_EXEC_CMD; cmd->len = 4; cmd++; /* block on data ready, then read the status register */ cmd->cmd = SRC_CRCI_NAND_DATA; cmd->src = NAND_FLASH_STATUS; cmd->dst = paddr(&data->result[n]); cmd->len = 8; cmd++; } /* restore saved ecc config */ cmd->cmd = CMD_OCU | CMD_LC; cmd->src = paddr(&data->ecc_cfg_save); cmd->dst = NAND_EBI2_ECC_BUF_CFG; cmd->len = 4; ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP; dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr); #if VERBOSE dprintf("write page %d: status: %x %x %x %x\n", page, data[5], data[6], data[7], data[8]); #endif /* if any of the writes failed (0x10), or there was a ** protection violation (0x100), or the program success ** bit (0x80) is unset, we lose */ for(n = 0; n < 4; n++) { if(data->result[n].flash_status & 0x110) return -1; if(!(data->result[n].flash_status & 0x80)) return -1; } return 0; } unsigned nand_cfg0; unsigned nand_cfg1; static int flash_read_config(dmov_s *cmdlist, unsigned *ptrlist) { cmdlist[0].cmd = CMD_OCB; cmdlist[0].src = NAND_DEV0_CFG0; cmdlist[0].dst = paddr(&CFG0); cmdlist[0].len = 4; cmdlist[1].cmd = CMD_OCU | CMD_LC; cmdlist[1].src = NAND_DEV0_CFG1; cmdlist[1].dst = paddr(&CFG1); cmdlist[1].len = 4; *ptrlist = (paddr(cmdlist) >> 3) | CMD_PTR_LP; dmov_exec_cmdptr(DMOV_NAND_CHAN, ptrlist); if((CFG0 == 0) || (CFG1 == 0)) { return -1; } dprintf("nandcfg: %x %x (initial)\n", CFG0, CFG1); CFG0 = (3 << 6) /* 4 codeword per page for 2k nand */ | (516 << 9) /* 516 user data bytes */ | (10 << 19) /* 10 parity bytes */ | (5 << 27) /* 5 address cycles */ | (1 << 30) /* Read status before data */ | (1 << 31) /* Send read cmd */ /* 0 spare bytes for 16 bit nand or 1 spare bytes for 8 bit */ | ((nand_cfg1 & CFG1_WIDE_FLASH) ? (0 << 23) : (1 << 23)); CFG1 = (0 << 0) /* Enable ecc */ | (7 << 2) /* 8 recovery cycles */ | (0 << 5) /* Allow CS deassertion */ | (465 << 6) /* Bad block marker location */ | (0 << 16) /* Bad block in user data area */ | (2 << 17) /* 6 cycle tWB/tRB */ | (nand_cfg1 & CFG1_WIDE_FLASH); /* preserve wide flash flag */ dprintf("nandcfg: %x %x (used)\n", CFG0, CFG1); return 0; } static unsigned *flash_ptrlist; static dmov_s *flash_cmdlist; static void *flash_spare; static void *flash_data; int flash_init(void) { flash_ptrlist = alloc(1024); flash_cmdlist = alloc(1024); flash_data = alloc(2048); flash_spare = alloc(64); if(flash_read_config(flash_cmdlist, flash_ptrlist)) { dprintf("ERROR: could not read CFG0/CFG1 state\n"); for(;;); } flash_read_id(flash_cmdlist, flash_ptrlist); return 0; } int flash_erase(ptentry *ptn) { unsigned block = ptn->start; unsigned count = ptn->length; while(count-- > 0) { if(flash_erase_block(flash_cmdlist, flash_ptrlist, block * 64)) { dprintf("cannot erase @ %d (bad block?)\n", block); } block++; } return 0; } int flash_read_ext(ptentry *ptn, unsigned extra_per_page, unsigned offset, void *data, unsigned bytes) { unsigned page = (ptn->start * 64) + (offset / 2048); unsigned lastpage = (ptn->start + ptn->length) * 64; unsigned count = (bytes + 2047 + extra_per_page) / (2048 + extra_per_page); unsigned *spare = (unsigned*) flash_spare; unsigned errors = 0; unsigned char *image = data; if(offset & 2047) return -1; while(page < lastpage) { if(count == 0) { dprintf("flash_read_image: success (%d errors)\n", errors); return 0; } if(_flash_read_page(flash_cmdlist, flash_ptrlist, page++, image, spare)) { errors++; continue; } image += 2048; memcpy(image, spare, extra_per_page); image += extra_per_page; count -= 1; } /* could not find enough valid pages before we hit the end */ dprintf("flash_read_image: failed (%d errors)\n", errors); return 0xffffffff; } int flash_write(ptentry *ptn, unsigned extra_per_page, const void *data, unsigned bytes) { unsigned page = ptn->start * 64; unsigned lastpage = (ptn->start + ptn->length) * 64; unsigned *spare = (unsigned*) flash_spare; const unsigned char *image = data; unsigned wsize = 2048 + extra_per_page; unsigned n; int r; for(n = 0; n < 16; n++) spare[n] = 0xffffffff; while(bytes > 0) { if(bytes < wsize) { dprintf("flash_write_image: image undersized (%d < %d)\n", bytes, wsize); return -1; } if(page >= lastpage) { dprintf("flash_write_image: out of space\n"); return -1; } if((page & 63) == 0) { if(flash_erase_block(flash_cmdlist, flash_ptrlist, page)) { dprintf("flash_write_image: bad block @ %d\n", page >> 6); page += 64; continue; } } if(extra_per_page) { r = _flash_write_page(flash_cmdlist, flash_ptrlist, page++, image, image + 2048); } else { r = _flash_write_page(flash_cmdlist, flash_ptrlist, page++, image, spare); } if(r) { dprintf("flash_write_image: write failure @ page %d (src %d)\n", page, image - (const unsigned char *)data); image -= (page & 63) * wsize; bytes += (page & 63) * wsize; page &= ~63; if(flash_erase_block(flash_cmdlist, flash_ptrlist, page)) { dprintf("flash_write_image: erase failure @ page %d\n", page); } dprintf("flash_write_image: restart write @ page %d (src %d)\n", page, image - (const unsigned char *)data); page += 64; continue; } image += wsize; bytes -= wsize; } /* erase any remaining pages in the partition */ page = (page + 63) & (~63); while(page < lastpage){ if(flash_erase_block(flash_cmdlist, flash_ptrlist, page)) { dprintf("flash_write_image: bad block @ %d\n", page >> 6); } page += 64; } dprintf("flash_write_image: success\n"); return 0; } static int flash_read_page(unsigned page, void *data, void *extra) { return _flash_read_page(flash_cmdlist, flash_ptrlist, page, data, extra); }