/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <ctype.h> #include <errno.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mount.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include "cutils/misc.h" #include "cutils/properties.h" #include "edify/expr.h" #include "mincrypt/sha.h" #include "minzip/DirUtil.h" #include "mtdutils/mounts.h" #include "mtdutils/mtdutils.h" #include "updater.h" #include "applypatch/applypatch.h" #ifdef USE_EXT4 #include "make_ext4fs.h" #endif // mount(fs_type, partition_type, location, mount_point) // // fs_type="yaffs2" partition_type="MTD" location=partition // fs_type="ext4" partition_type="EMMC" location=device Value* MountFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 4) { return ErrorAbort(state, "%s() expects 4 args, got %d", name, argc); } char* fs_type; char* partition_type; char* location; char* mount_point; if (ReadArgs(state, argv, 4, &fs_type, &partition_type, &location, &mount_point) < 0) { return NULL; } if (strlen(fs_type) == 0) { ErrorAbort(state, "fs_type argument to %s() can't be empty", name); goto done; } if (strlen(partition_type) == 0) { ErrorAbort(state, "partition_type argument to %s() can't be empty", name); goto done; } if (strlen(location) == 0) { ErrorAbort(state, "location argument to %s() can't be empty", name); goto done; } if (strlen(mount_point) == 0) { ErrorAbort(state, "mount_point argument to %s() can't be empty", name); goto done; } mkdir(mount_point, 0755); if (strcmp(partition_type, "MTD") == 0) { mtd_scan_partitions(); const MtdPartition* mtd; mtd = mtd_find_partition_by_name(location); if (mtd == NULL) { fprintf(stderr, "%s: no mtd partition named \"%s\"", name, location); result = strdup(""); goto done; } if (mtd_mount_partition(mtd, mount_point, fs_type, 0 /* rw */) != 0) { fprintf(stderr, "mtd mount of %s failed: %s\n", location, strerror(errno)); result = strdup(""); goto done; } result = mount_point; } else { if (mount(location, mount_point, fs_type, MS_NOATIME | MS_NODEV | MS_NODIRATIME, "") < 0) { fprintf(stderr, "%s: failed to mount %s at %s: %s\n", name, location, mount_point, strerror(errno)); result = strdup(""); } else { result = mount_point; } } done: free(fs_type); free(partition_type); free(location); if (result != mount_point) free(mount_point); return StringValue(result); } // is_mounted(mount_point) Value* IsMountedFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 1) { return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc); } char* mount_point; if (ReadArgs(state, argv, 1, &mount_point) < 0) { return NULL; } if (strlen(mount_point) == 0) { ErrorAbort(state, "mount_point argument to unmount() can't be empty"); goto done; } scan_mounted_volumes(); const MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point); if (vol == NULL) { result = strdup(""); } else { result = mount_point; } done: if (result != mount_point) free(mount_point); return StringValue(result); } Value* UnmountFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 1) { return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc); } char* mount_point; if (ReadArgs(state, argv, 1, &mount_point) < 0) { return NULL; } if (strlen(mount_point) == 0) { ErrorAbort(state, "mount_point argument to unmount() can't be empty"); goto done; } scan_mounted_volumes(); const MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point); if (vol == NULL) { fprintf(stderr, "unmount of %s failed; no such volume\n", mount_point); result = strdup(""); } else { unmount_mounted_volume(vol); result = mount_point; } done: if (result != mount_point) free(mount_point); return StringValue(result); } // format(fs_type, partition_type, location) // // fs_type="yaffs2" partition_type="MTD" location=partition // fs_type="ext4" partition_type="EMMC" location=device Value* FormatFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; if (argc != 3) { return ErrorAbort(state, "%s() expects 3 args, got %d", name, argc); } char* fs_type; char* partition_type; char* location; if (ReadArgs(state, argv, 3, &fs_type, &partition_type, &location) < 0) { return NULL; } if (strlen(fs_type) == 0) { ErrorAbort(state, "fs_type argument to %s() can't be empty", name); goto done; } if (strlen(partition_type) == 0) { ErrorAbort(state, "partition_type argument to %s() can't be empty", name); goto done; } if (strlen(location) == 0) { ErrorAbort(state, "location argument to %s() can't be empty", name); goto done; } if (strcmp(partition_type, "MTD") == 0) { mtd_scan_partitions(); const MtdPartition* mtd = mtd_find_partition_by_name(location); if (mtd == NULL) { fprintf(stderr, "%s: no mtd partition named \"%s\"", name, location); result = strdup(""); goto done; } MtdWriteContext* ctx = mtd_write_partition(mtd); if (ctx == NULL) { fprintf(stderr, "%s: can't write \"%s\"", name, location); result = strdup(""); goto done; } if (mtd_erase_blocks(ctx, -1) == -1) { mtd_write_close(ctx); fprintf(stderr, "%s: failed to erase \"%s\"", name, location); result = strdup(""); goto done; } if (mtd_write_close(ctx) != 0) { fprintf(stderr, "%s: failed to close \"%s\"", name, location); result = strdup(""); goto done; } result = location; #ifdef USE_EXT4 } else if (strcmp(fs_type, "ext4") == 0) { reset_ext4fs_info(); int status = make_ext4fs(location, NULL, NULL, 0, 0, 0); if (status != 0) { fprintf(stderr, "%s: make_ext4fs failed (%d) on %s", name, status, location); result = strdup(""); goto done; } result = location; #endif } else { fprintf(stderr, "%s: unsupported fs_type \"%s\" partition_type \"%s\"", name, fs_type, partition_type); } done: free(fs_type); free(partition_type); if (result != location) free(location); return StringValue(result); } Value* DeleteFn(const char* name, State* state, int argc, Expr* argv[]) { char** paths = malloc(argc * sizeof(char*)); int i; for (i = 0; i < argc; ++i) { paths[i] = Evaluate(state, argv[i]); if (paths[i] == NULL) { int j; for (j = 0; j < i; ++i) { free(paths[j]); } free(paths); return NULL; } } bool recursive = (strcmp(name, "delete_recursive") == 0); int success = 0; for (i = 0; i < argc; ++i) { if ((recursive ? dirUnlinkHierarchy(paths[i]) : unlink(paths[i])) == 0) ++success; free(paths[i]); } free(paths); char buffer[10]; sprintf(buffer, "%d", success); return StringValue(strdup(buffer)); } Value* ShowProgressFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc); } char* frac_str; char* sec_str; if (ReadArgs(state, argv, 2, &frac_str, &sec_str) < 0) { return NULL; } double frac = strtod(frac_str, NULL); int sec = strtol(sec_str, NULL, 10); UpdaterInfo* ui = (UpdaterInfo*)(state->cookie); fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec); free(sec_str); return StringValue(frac_str); } Value* SetProgressFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc); } char* frac_str; if (ReadArgs(state, argv, 1, &frac_str) < 0) { return NULL; } double frac = strtod(frac_str, NULL); UpdaterInfo* ui = (UpdaterInfo*)(state->cookie); fprintf(ui->cmd_pipe, "set_progress %f\n", frac); return StringValue(frac_str); } // package_extract_dir(package_path, destination_path) Value* PackageExtractDirFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 2) { return ErrorAbort(state, "%s() expects 2 args, got %d", name, argc); } char* zip_path; char* dest_path; if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL; ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip; // To create a consistent system image, never use the clock for timestamps. struct utimbuf timestamp = { 1217592000, 1217592000 }; // 8/1/2008 default bool success = mzExtractRecursive(za, zip_path, dest_path, MZ_EXTRACT_FILES_ONLY, ×tamp, NULL, NULL); free(zip_path); free(dest_path); return StringValue(strdup(success ? "t" : "")); } // package_extract_file(package_path, destination_path) // or // package_extract_file(package_path) // to return the entire contents of the file as the result of this // function (the char* returned is actually a FileContents*). Value* PackageExtractFileFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1 && argc != 2) { return ErrorAbort(state, "%s() expects 1 or 2 args, got %d", name, argc); } bool success = false; if (argc == 2) { // The two-argument version extracts to a file. char* zip_path; char* dest_path; if (ReadArgs(state, argv, 2, &zip_path, &dest_path) < 0) return NULL; ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip; const ZipEntry* entry = mzFindZipEntry(za, zip_path); if (entry == NULL) { fprintf(stderr, "%s: no %s in package\n", name, zip_path); goto done2; } FILE* f = fopen(dest_path, "wb"); if (f == NULL) { fprintf(stderr, "%s: can't open %s for write: %s\n", name, dest_path, strerror(errno)); goto done2; } success = mzExtractZipEntryToFile(za, entry, fileno(f)); fclose(f); done2: free(zip_path); free(dest_path); return StringValue(strdup(success ? "t" : "")); } else { // The one-argument version returns the contents of the file // as the result. char* zip_path; Value* v = malloc(sizeof(Value)); v->type = VAL_BLOB; v->size = -1; v->data = NULL; if (ReadArgs(state, argv, 1, &zip_path) < 0) return NULL; ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip; const ZipEntry* entry = mzFindZipEntry(za, zip_path); if (entry == NULL) { fprintf(stderr, "%s: no %s in package\n", name, zip_path); goto done1; } v->size = mzGetZipEntryUncompLen(entry); v->data = malloc(v->size); if (v->data == NULL) { fprintf(stderr, "%s: failed to allocate %ld bytes for %s\n", name, (long)v->size, zip_path); goto done1; } success = mzExtractZipEntryToBuffer(za, entry, (unsigned char *)v->data); done1: free(zip_path); if (!success) { free(v->data); v->data = NULL; v->size = -1; } return v; } } // symlink target src1 src2 ... // unlinks any previously existing src1, src2, etc before creating symlinks. Value* SymlinkFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc == 0) { return ErrorAbort(state, "%s() expects 1+ args, got %d", name, argc); } char* target; target = Evaluate(state, argv[0]); if (target == NULL) return NULL; char** srcs = ReadVarArgs(state, argc-1, argv+1); if (srcs == NULL) { free(target); return NULL; } int i; for (i = 0; i < argc-1; ++i) { if (unlink(srcs[i]) < 0) { if (errno != ENOENT) { fprintf(stderr, "%s: failed to remove %s: %s\n", name, srcs[i], strerror(errno)); } } if (symlink(target, srcs[i]) < 0) { fprintf(stderr, "%s: failed to symlink %s to %s: %s\n", name, srcs[i], target, strerror(errno)); } free(srcs[i]); } free(srcs); return StringValue(strdup("")); } Value* SetPermFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; bool recursive = (strcmp(name, "set_perm_recursive") == 0); int min_args = 4 + (recursive ? 1 : 0); if (argc < min_args) { return ErrorAbort(state, "%s() expects %d+ args, got %d", name, argc); } char** args = ReadVarArgs(state, argc, argv); if (args == NULL) return NULL; char* end; int i; int uid = strtoul(args[0], &end, 0); if (*end != '\0' || args[0][0] == 0) { ErrorAbort(state, "%s: \"%s\" not a valid uid", name, args[0]); goto done; } int gid = strtoul(args[1], &end, 0); if (*end != '\0' || args[1][0] == 0) { ErrorAbort(state, "%s: \"%s\" not a valid gid", name, args[1]); goto done; } if (recursive) { int dir_mode = strtoul(args[2], &end, 0); if (*end != '\0' || args[2][0] == 0) { ErrorAbort(state, "%s: \"%s\" not a valid dirmode", name, args[2]); goto done; } int file_mode = strtoul(args[3], &end, 0); if (*end != '\0' || args[3][0] == 0) { ErrorAbort(state, "%s: \"%s\" not a valid filemode", name, args[3]); goto done; } for (i = 4; i < argc; ++i) { dirSetHierarchyPermissions(args[i], uid, gid, dir_mode, file_mode); } } else { int mode = strtoul(args[2], &end, 0); if (*end != '\0' || args[2][0] == 0) { ErrorAbort(state, "%s: \"%s\" not a valid mode", name, args[2]); goto done; } for (i = 3; i < argc; ++i) { if (chown(args[i], uid, gid) < 0) { fprintf(stderr, "%s: chown of %s to %d %d failed: %s\n", name, args[i], uid, gid, strerror(errno)); } if (chmod(args[i], mode) < 0) { fprintf(stderr, "%s: chmod of %s to %o failed: %s\n", name, args[i], mode, strerror(errno)); } } } result = strdup(""); done: for (i = 0; i < argc; ++i) { free(args[i]); } free(args); return StringValue(result); } Value* GetPropFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc); } char* key; key = Evaluate(state, argv[0]); if (key == NULL) return NULL; char value[PROPERTY_VALUE_MAX]; property_get(key, value, ""); free(key); return StringValue(strdup(value)); } // file_getprop(file, key) // // interprets 'file' as a getprop-style file (key=value pairs, one // per line, # comment lines and blank lines okay), and returns the value // for 'key' (or "" if it isn't defined). Value* FileGetPropFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; char* buffer = NULL; char* filename; char* key; if (ReadArgs(state, argv, 2, &filename, &key) < 0) { return NULL; } struct stat st; if (stat(filename, &st) < 0) { ErrorAbort(state, "%s: failed to stat \"%s\": %s", name, filename, strerror(errno)); goto done; } #define MAX_FILE_GETPROP_SIZE 65536 if (st.st_size > MAX_FILE_GETPROP_SIZE) { ErrorAbort(state, "%s too large for %s (max %d)", filename, name, MAX_FILE_GETPROP_SIZE); goto done; } buffer = malloc(st.st_size+1); if (buffer == NULL) { ErrorAbort(state, "%s: failed to alloc %d bytes", name, st.st_size+1); goto done; } FILE* f = fopen(filename, "rb"); if (f == NULL) { ErrorAbort(state, "%s: failed to open %s: %s", name, filename, strerror(errno)); goto done; } if (fread(buffer, 1, st.st_size, f) != st.st_size) { ErrorAbort(state, "%s: failed to read %d bytes from %s", name, st.st_size+1, filename); fclose(f); goto done; } buffer[st.st_size] = '\0'; fclose(f); char* line = strtok(buffer, "\n"); do { // skip whitespace at start of line while (*line && isspace(*line)) ++line; // comment or blank line: skip to next line if (*line == '\0' || *line == '#') continue; char* equal = strchr(line, '='); if (equal == NULL) { ErrorAbort(state, "%s: malformed line \"%s\": %s not a prop file?", name, line, filename); goto done; } // trim whitespace between key and '=' char* key_end = equal-1; while (key_end > line && isspace(*key_end)) --key_end; key_end[1] = '\0'; // not the key we're looking for if (strcmp(key, line) != 0) continue; // skip whitespace after the '=' to the start of the value char* val_start = equal+1; while(*val_start && isspace(*val_start)) ++val_start; // trim trailing whitespace char* val_end = val_start + strlen(val_start)-1; while (val_end > val_start && isspace(*val_end)) --val_end; val_end[1] = '\0'; result = strdup(val_start); break; } while ((line = strtok(NULL, "\n"))); if (result == NULL) result = strdup(""); done: free(filename); free(key); free(buffer); return StringValue(result); } static bool write_raw_image_cb(const unsigned char* data, int data_len, void* ctx) { int r = mtd_write_data((MtdWriteContext*)ctx, (const char *)data, data_len); if (r == data_len) return true; fprintf(stderr, "%s\n", strerror(errno)); return false; } // write_raw_image(file, partition) Value* WriteRawImageFn(const char* name, State* state, int argc, Expr* argv[]) { char* result = NULL; char* partition; char* filename; if (ReadArgs(state, argv, 2, &filename, &partition) < 0) { return NULL; } if (strlen(partition) == 0) { ErrorAbort(state, "partition argument to %s can't be empty", name); goto done; } if (strlen(filename) == 0) { ErrorAbort(state, "file argument to %s can't be empty", name); goto done; } mtd_scan_partitions(); const MtdPartition* mtd = mtd_find_partition_by_name(partition); if (mtd == NULL) { fprintf(stderr, "%s: no mtd partition named \"%s\"\n", name, partition); result = strdup(""); goto done; } MtdWriteContext* ctx = mtd_write_partition(mtd); if (ctx == NULL) { fprintf(stderr, "%s: can't write mtd partition \"%s\"\n", name, partition); result = strdup(""); goto done; } bool success; FILE* f = fopen(filename, "rb"); if (f == NULL) { fprintf(stderr, "%s: can't open %s: %s\n", name, filename, strerror(errno)); result = strdup(""); goto done; } success = true; char* buffer = malloc(BUFSIZ); int read; while (success && (read = fread(buffer, 1, BUFSIZ, f)) > 0) { int wrote = mtd_write_data(ctx, buffer, read); success = success && (wrote == read); if (!success) { fprintf(stderr, "mtd_write_data to %s failed: %s\n", partition, strerror(errno)); } } free(buffer); fclose(f); if (mtd_erase_blocks(ctx, -1) == -1) { fprintf(stderr, "%s: error erasing blocks of %s\n", name, partition); } if (mtd_write_close(ctx) != 0) { fprintf(stderr, "%s: error closing write of %s\n", name, partition); } printf("%s %s partition from %s\n", success ? "wrote" : "failed to write", partition, filename); result = success ? partition : strdup(""); done: if (result != partition) free(partition); free(filename); return StringValue(result); } // apply_patch_space(bytes) Value* ApplyPatchSpaceFn(const char* name, State* state, int argc, Expr* argv[]) { char* bytes_str; if (ReadArgs(state, argv, 1, &bytes_str) < 0) { return NULL; } char* endptr; size_t bytes = strtol(bytes_str, &endptr, 10); if (bytes == 0 && endptr == bytes_str) { ErrorAbort(state, "%s(): can't parse \"%s\" as byte count\n\n", name, bytes_str); free(bytes_str); return NULL; } return StringValue(strdup(CacheSizeCheck(bytes) ? "" : "t")); } // apply_patch(srcfile, tgtfile, tgtsha1, tgtsize, sha1_1, patch_1, ...) Value* ApplyPatchFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 6 || (argc % 2) == 1) { return ErrorAbort(state, "%s(): expected at least 6 args and an " "even number, got %d", name, argc); } char* source_filename; char* target_filename; char* target_sha1; char* target_size_str; if (ReadArgs(state, argv, 4, &source_filename, &target_filename, &target_sha1, &target_size_str) < 0) { return NULL; } char* endptr; size_t target_size = strtol(target_size_str, &endptr, 10); if (target_size == 0 && endptr == target_size_str) { ErrorAbort(state, "%s(): can't parse \"%s\" as byte count", name, target_size_str); free(source_filename); free(target_filename); free(target_sha1); free(target_size_str); return NULL; } int patchcount = (argc-4) / 2; Value** patches = ReadValueVarArgs(state, argc-4, argv+4); int i; for (i = 0; i < patchcount; ++i) { if (patches[i*2]->type != VAL_STRING) { ErrorAbort(state, "%s(): sha-1 #%d is not string", name, i); break; } if (patches[i*2+1]->type != VAL_BLOB) { ErrorAbort(state, "%s(): patch #%d is not blob", name, i); break; } } if (i != patchcount) { for (i = 0; i < patchcount*2; ++i) { FreeValue(patches[i]); } free(patches); return NULL; } char** patch_sha_str = malloc(patchcount * sizeof(char*)); for (i = 0; i < patchcount; ++i) { patch_sha_str[i] = patches[i*2]->data; patches[i*2]->data = NULL; FreeValue(patches[i*2]); patches[i] = patches[i*2+1]; } int result = applypatch(source_filename, target_filename, target_sha1, target_size, patchcount, patch_sha_str, patches); for (i = 0; i < patchcount; ++i) { FreeValue(patches[i]); } free(patch_sha_str); free(patches); return StringValue(strdup(result == 0 ? "t" : "")); } // apply_patch_check(file, [sha1_1, ...]) Value* ApplyPatchCheckFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1) { return ErrorAbort(state, "%s(): expected at least 1 arg, got %d", name, argc); } char* filename; if (ReadArgs(state, argv, 1, &filename) < 0) { return NULL; } int patchcount = argc-1; char** sha1s = ReadVarArgs(state, argc-1, argv+1); int result = applypatch_check(filename, patchcount, sha1s); int i; for (i = 0; i < patchcount; ++i) { free(sha1s[i]); } free(sha1s); return StringValue(strdup(result == 0 ? "t" : "")); } Value* UIPrintFn(const char* name, State* state, int argc, Expr* argv[]) { char** args = ReadVarArgs(state, argc, argv); if (args == NULL) { return NULL; } int size = 0; int i; for (i = 0; i < argc; ++i) { size += strlen(args[i]); } char* buffer = malloc(size+1); size = 0; for (i = 0; i < argc; ++i) { strcpy(buffer+size, args[i]); size += strlen(args[i]); free(args[i]); } free(args); buffer[size] = '\0'; char* line = strtok(buffer, "\n"); while (line) { fprintf(((UpdaterInfo*)(state->cookie))->cmd_pipe, "ui_print %s\n", line); line = strtok(NULL, "\n"); } fprintf(((UpdaterInfo*)(state->cookie))->cmd_pipe, "ui_print\n"); return StringValue(buffer); } Value* RunProgramFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1) { return ErrorAbort(state, "%s() expects at least 1 arg", name); } char** args = ReadVarArgs(state, argc, argv); if (args == NULL) { return NULL; } char** args2 = malloc(sizeof(char*) * (argc+1)); memcpy(args2, args, sizeof(char*) * argc); args2[argc] = NULL; fprintf(stderr, "about to run program [%s] with %d args\n", args2[0], argc); pid_t child = fork(); if (child == 0) { execv(args2[0], args2); fprintf(stderr, "run_program: execv failed: %s\n", strerror(errno)); _exit(1); } int status; waitpid(child, &status, 0); if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { fprintf(stderr, "run_program: child exited with status %d\n", WEXITSTATUS(status)); } } else if (WIFSIGNALED(status)) { fprintf(stderr, "run_program: child terminated by signal %d\n", WTERMSIG(status)); } int i; for (i = 0; i < argc; ++i) { free(args[i]); } free(args); free(args2); char buffer[20]; sprintf(buffer, "%d", status); return StringValue(strdup(buffer)); } // Take a sha-1 digest and return it as a newly-allocated hex string. static char* PrintSha1(uint8_t* digest) { char* buffer = malloc(SHA_DIGEST_SIZE*2 + 1); int i; const char* alphabet = "0123456789abcdef"; for (i = 0; i < SHA_DIGEST_SIZE; ++i) { buffer[i*2] = alphabet[(digest[i] >> 4) & 0xf]; buffer[i*2+1] = alphabet[digest[i] & 0xf]; } buffer[i*2] = '\0'; return buffer; } // sha1_check(data) // to return the sha1 of the data (given in the format returned by // read_file). // // sha1_check(data, sha1_hex, [sha1_hex, ...]) // returns the sha1 of the file if it matches any of the hex // strings passed, or "" if it does not equal any of them. // Value* Sha1CheckFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc < 1) { return ErrorAbort(state, "%s() expects at least 1 arg", name); } Value** args = ReadValueVarArgs(state, argc, argv); if (args == NULL) { return NULL; } if (args[0]->size < 0) { fprintf(stderr, "%s(): no file contents received", name); return StringValue(strdup("")); } uint8_t digest[SHA_DIGEST_SIZE]; SHA(args[0]->data, args[0]->size, digest); FreeValue(args[0]); if (argc == 1) { return StringValue(PrintSha1(digest)); } int i; uint8_t* arg_digest = malloc(SHA_DIGEST_SIZE); for (i = 1; i < argc; ++i) { if (args[i]->type != VAL_STRING) { fprintf(stderr, "%s(): arg %d is not a string; skipping", name, i); } else if (ParseSha1(args[i]->data, arg_digest) != 0) { // Warn about bad args and skip them. fprintf(stderr, "%s(): error parsing \"%s\" as sha-1; skipping", name, args[i]->data); } else if (memcmp(digest, arg_digest, SHA_DIGEST_SIZE) == 0) { break; } FreeValue(args[i]); } if (i >= argc) { // Didn't match any of the hex strings; return false. return StringValue(strdup("")); } // Found a match; free all the remaining arguments and return the // matched one. int j; for (j = i+1; j < argc; ++j) { FreeValue(args[j]); } return args[i]; } // Read a local file and return its contents (the char* returned // is actually a FileContents*). Value* ReadFileFn(const char* name, State* state, int argc, Expr* argv[]) { if (argc != 1) { return ErrorAbort(state, "%s() expects 1 arg, got %d", name, argc); } char* filename; if (ReadArgs(state, argv, 1, &filename) < 0) return NULL; Value* v = malloc(sizeof(Value)); v->type = VAL_BLOB; FileContents fc; if (LoadFileContents(filename, &fc) != 0) { ErrorAbort(state, "%s() loading \"%s\" failed: %s", name, filename, strerror(errno)); free(filename); free(v); free(fc.data); return NULL; } v->size = fc.size; v->data = (char*)fc.data; free(filename); return v; } void RegisterInstallFunctions() { RegisterFunction("mount", MountFn); RegisterFunction("is_mounted", IsMountedFn); RegisterFunction("unmount", UnmountFn); RegisterFunction("format", FormatFn); RegisterFunction("show_progress", ShowProgressFn); RegisterFunction("set_progress", SetProgressFn); RegisterFunction("delete", DeleteFn); RegisterFunction("delete_recursive", DeleteFn); RegisterFunction("package_extract_dir", PackageExtractDirFn); RegisterFunction("package_extract_file", PackageExtractFileFn); RegisterFunction("symlink", SymlinkFn); RegisterFunction("set_perm", SetPermFn); RegisterFunction("set_perm_recursive", SetPermFn); RegisterFunction("getprop", GetPropFn); RegisterFunction("file_getprop", FileGetPropFn); RegisterFunction("write_raw_image", WriteRawImageFn); RegisterFunction("apply_patch", ApplyPatchFn); RegisterFunction("apply_patch_check", ApplyPatchCheckFn); RegisterFunction("apply_patch_space", ApplyPatchSpaceFn); RegisterFunction("read_file", ReadFileFn); RegisterFunction("sha1_check", Sha1CheckFn); RegisterFunction("ui_print", UIPrintFn); RegisterFunction("run_program", RunProgramFn); }