/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This file contains codegen and support common to all supported * ARM variants. It is included by: * * Codegen-$(TARGET_ARCH_VARIANT).c * * which combines this common code with specific support found in the * applicable directory below this one. */ /* Load a word at base + displacement. Displacement must be word multiple */ static ArmLIR *loadWordDisp(CompilationUnit *cUnit, int rBase, int displacement, int rDest) { return loadBaseDisp(cUnit, NULL, rBase, displacement, rDest, kWord, INVALID_SREG); } static ArmLIR *storeWordDisp(CompilationUnit *cUnit, int rBase, int displacement, int rSrc) { return storeBaseDisp(cUnit, rBase, displacement, rSrc, kWord); } /* * Load a Dalvik register into a physical register. Take care when * using this routine, as it doesn't perform any bookkeeping regarding * register liveness. That is the responsibility of the caller. */ static void loadValueDirect(CompilationUnit *cUnit, RegLocation rlSrc, int reg1) { rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc); if (rlSrc.location == kLocPhysReg) { genRegCopy(cUnit, reg1, rlSrc.lowReg); } else if (rlSrc.location == kLocRetval) { loadWordDisp(cUnit, rGLUE, offsetof(InterpState, retval), reg1); } else { assert(rlSrc.location == kLocDalvikFrame); loadWordDisp(cUnit, rFP, dvmCompilerS2VReg(cUnit, rlSrc.sRegLow) << 2, reg1); } } /* * Similar to loadValueDirect, but clobbers and allocates the target * register. Should be used when loading to a fixed register (for example, * loading arguments to an out of line call. */ static void loadValueDirectFixed(CompilationUnit *cUnit, RegLocation rlSrc, int reg1) { dvmCompilerClobber(cUnit, reg1); dvmCompilerMarkInUse(cUnit, reg1); loadValueDirect(cUnit, rlSrc, reg1); } /* * Load a Dalvik register pair into a physical register[s]. Take care when * using this routine, as it doesn't perform any bookkeeping regarding * register liveness. That is the responsibility of the caller. */ static void loadValueDirectWide(CompilationUnit *cUnit, RegLocation rlSrc, int regLo, int regHi) { rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc); if (rlSrc.location == kLocPhysReg) { genRegCopyWide(cUnit, regLo, regHi, rlSrc.lowReg, rlSrc.highReg); } else if (rlSrc.location == kLocRetval) { loadBaseDispWide(cUnit, NULL, rGLUE, offsetof(InterpState, retval), regLo, regHi, INVALID_SREG); } else { assert(rlSrc.location == kLocDalvikFrame); loadBaseDispWide(cUnit, NULL, rFP, dvmCompilerS2VReg(cUnit, rlSrc.sRegLow) << 2, regLo, regHi, INVALID_SREG); } } /* * Similar to loadValueDirect, but clobbers and allocates the target * registers. Should be used when loading to a fixed registers (for example, * loading arguments to an out of line call. */ static void loadValueDirectWideFixed(CompilationUnit *cUnit, RegLocation rlSrc, int regLo, int regHi) { dvmCompilerClobber(cUnit, regLo); dvmCompilerClobber(cUnit, regHi); dvmCompilerMarkInUse(cUnit, regLo); dvmCompilerMarkInUse(cUnit, regHi); loadValueDirectWide(cUnit, rlSrc, regLo, regHi); } static RegLocation loadValue(CompilationUnit *cUnit, RegLocation rlSrc, RegisterClass opKind) { rlSrc = dvmCompilerEvalLoc(cUnit, rlSrc, opKind, false); if (rlSrc.location == kLocDalvikFrame) { loadValueDirect(cUnit, rlSrc, rlSrc.lowReg); rlSrc.location = kLocPhysReg; dvmCompilerMarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow); } else if (rlSrc.location == kLocRetval) { loadWordDisp(cUnit, rGLUE, offsetof(InterpState, retval), rlSrc.lowReg); rlSrc.location = kLocPhysReg; dvmCompilerClobber(cUnit, rlSrc.lowReg); } return rlSrc; } static void storeValue(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc) { LIR *defStart; LIR *defEnd; assert(!rlDest.wide); assert(!rlSrc.wide); dvmCompilerKillNullCheckedLoc(cUnit, rlDest); rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc); rlDest = dvmCompilerUpdateLoc(cUnit, rlDest); if (rlSrc.location == kLocPhysReg) { if (dvmCompilerIsLive(cUnit, rlSrc.lowReg) || (rlDest.location == kLocPhysReg)) { // Src is live or Dest has assigned reg. rlDest = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, false); genRegCopy(cUnit, rlDest.lowReg, rlSrc.lowReg); } else { // Just re-assign the registers. Dest gets Src's regs rlDest.lowReg = rlSrc.lowReg; dvmCompilerClobber(cUnit, rlSrc.lowReg); } } else { // Load Src either into promoted Dest or temps allocated for Dest rlDest = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, false); loadValueDirect(cUnit, rlSrc, rlDest.lowReg); } // Dest is now live and dirty (until/if we flush it to home location) dvmCompilerMarkLive(cUnit, rlDest.lowReg, rlDest.sRegLow); dvmCompilerMarkDirty(cUnit, rlDest.lowReg); if (rlDest.location == kLocRetval) { storeBaseDisp(cUnit, rGLUE, offsetof(InterpState, retval), rlDest.lowReg, kWord); dvmCompilerClobber(cUnit, rlDest.lowReg); } else { dvmCompilerResetDefLoc(cUnit, rlDest); if (dvmCompilerLiveOut(cUnit, rlDest.sRegLow)) { defStart = (LIR *)cUnit->lastLIRInsn; int vReg = dvmCompilerS2VReg(cUnit, rlDest.sRegLow); storeBaseDisp(cUnit, rFP, vReg << 2, rlDest.lowReg, kWord); dvmCompilerMarkClean(cUnit, rlDest.lowReg); defEnd = (LIR *)cUnit->lastLIRInsn; dvmCompilerMarkDef(cUnit, rlDest, defStart, defEnd); } } } static RegLocation loadValueWide(CompilationUnit *cUnit, RegLocation rlSrc, RegisterClass opKind) { assert(rlSrc.wide); rlSrc = dvmCompilerEvalLoc(cUnit, rlSrc, opKind, false); if (rlSrc.location == kLocDalvikFrame) { loadValueDirectWide(cUnit, rlSrc, rlSrc.lowReg, rlSrc.highReg); rlSrc.location = kLocPhysReg; dvmCompilerMarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow); dvmCompilerMarkLive(cUnit, rlSrc.highReg, dvmCompilerSRegHi(rlSrc.sRegLow)); } else if (rlSrc.location == kLocRetval) { loadBaseDispWide(cUnit, NULL, rGLUE, offsetof(InterpState, retval), rlSrc.lowReg, rlSrc.highReg, INVALID_SREG); rlSrc.location = kLocPhysReg; dvmCompilerClobber(cUnit, rlSrc.lowReg); dvmCompilerClobber(cUnit, rlSrc.highReg); } return rlSrc; } static void storeValueWide(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc) { LIR *defStart; LIR *defEnd; assert(FPREG(rlSrc.lowReg)==FPREG(rlSrc.highReg)); assert(rlDest.wide); assert(rlSrc.wide); dvmCompilerKillNullCheckedLoc(cUnit, rlDest); if (rlSrc.location == kLocPhysReg) { if (dvmCompilerIsLive(cUnit, rlSrc.lowReg) || dvmCompilerIsLive(cUnit, rlSrc.highReg) || (rlDest.location == kLocPhysReg)) { // Src is live or Dest has assigned reg. rlDest = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, false); genRegCopyWide(cUnit, rlDest.lowReg, rlDest.highReg, rlSrc.lowReg, rlSrc.highReg); } else { // Just re-assign the registers. Dest gets Src's regs rlDest.lowReg = rlSrc.lowReg; rlDest.highReg = rlSrc.highReg; dvmCompilerClobber(cUnit, rlSrc.lowReg); dvmCompilerClobber(cUnit, rlSrc.highReg); } } else { // Load Src either into promoted Dest or temps allocated for Dest rlDest = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, false); loadValueDirectWide(cUnit, rlSrc, rlDest.lowReg, rlDest.highReg); } // Dest is now live and dirty (until/if we flush it to home location) dvmCompilerMarkLive(cUnit, rlDest.lowReg, rlDest.sRegLow); dvmCompilerMarkLive(cUnit, rlDest.highReg, dvmCompilerSRegHi(rlDest.sRegLow)); dvmCompilerMarkDirty(cUnit, rlDest.lowReg); dvmCompilerMarkDirty(cUnit, rlDest.highReg); dvmCompilerMarkPair(cUnit, rlDest.lowReg, rlDest.highReg); if (rlDest.location == kLocRetval) { storeBaseDispWide(cUnit, rGLUE, offsetof(InterpState, retval), rlDest.lowReg, rlDest.highReg); dvmCompilerClobber(cUnit, rlDest.lowReg); dvmCompilerClobber(cUnit, rlDest.highReg); } else { dvmCompilerResetDefLocWide(cUnit, rlDest); if (dvmCompilerLiveOut(cUnit, rlDest.sRegLow) || dvmCompilerLiveOut(cUnit, dvmCompilerSRegHi(rlDest.sRegLow))) { defStart = (LIR *)cUnit->lastLIRInsn; int vReg = dvmCompilerS2VReg(cUnit, rlDest.sRegLow); assert((vReg+1) == dvmCompilerS2VReg(cUnit, dvmCompilerSRegHi(rlDest.sRegLow))); storeBaseDispWide(cUnit, rFP, vReg << 2, rlDest.lowReg, rlDest.highReg); dvmCompilerMarkClean(cUnit, rlDest.lowReg); dvmCompilerMarkClean(cUnit, rlDest.highReg); defEnd = (LIR *)cUnit->lastLIRInsn; dvmCompilerMarkDefWide(cUnit, rlDest, defStart, defEnd); } } } /* * Perform null-check on a register. sReg is the ssa register being checked, * and mReg is the machine register holding the actual value. If internal state * indicates that sReg has been checked before the check request is ignored. */ static ArmLIR *genNullCheck(CompilationUnit *cUnit, int sReg, int mReg, int dOffset, ArmLIR *pcrLabel) { /* This particular Dalvik register has been null-checked */ if (dvmIsBitSet(cUnit->regPool->nullCheckedRegs, sReg)) { return pcrLabel; } dvmSetBit(cUnit->regPool->nullCheckedRegs, sReg); return genRegImmCheck(cUnit, kArmCondEq, mReg, 0, dOffset, pcrLabel); } /* * Perform a "reg cmp reg" operation and jump to the PCR region if condition * satisfies. */ static ArmLIR *genRegRegCheck(CompilationUnit *cUnit, ArmConditionCode cond, int reg1, int reg2, int dOffset, ArmLIR *pcrLabel) { ArmLIR *res; res = opRegReg(cUnit, kOpCmp, reg1, reg2); ArmLIR *branch = opCondBranch(cUnit, cond); genCheckCommon(cUnit, dOffset, branch, pcrLabel); return res; } /* * Perform zero-check on a register. Similar to genNullCheck but the value being * checked does not have a corresponding Dalvik register. */ static ArmLIR *genZeroCheck(CompilationUnit *cUnit, int mReg, int dOffset, ArmLIR *pcrLabel) { return genRegImmCheck(cUnit, kArmCondEq, mReg, 0, dOffset, pcrLabel); } /* Perform bound check on two registers */ static ArmLIR *genBoundsCheck(CompilationUnit *cUnit, int rIndex, int rBound, int dOffset, ArmLIR *pcrLabel) { return genRegRegCheck(cUnit, kArmCondCs, rIndex, rBound, dOffset, pcrLabel); } /* * Jump to the out-of-line handler in ARM mode to finish executing the * remaining of more complex instructions. */ static void genDispatchToHandler(CompilationUnit *cUnit, TemplateOpCode opCode) { /* * NOTE - In practice BLX only needs one operand, but since the assembler * may abort itself and retry due to other out-of-range conditions we * cannot really use operand[0] to store the absolute target address since * it may get clobbered by the final relative offset. Therefore, * we fake BLX_1 is a two operand instruction and the absolute target * address is stored in operand[1]. */ dvmCompilerClobberHandlerRegs(cUnit); newLIR2(cUnit, kThumbBlx1, (int) gDvmJit.codeCache + templateEntryOffsets[opCode], (int) gDvmJit.codeCache + templateEntryOffsets[opCode]); newLIR2(cUnit, kThumbBlx2, (int) gDvmJit.codeCache + templateEntryOffsets[opCode], (int) gDvmJit.codeCache + templateEntryOffsets[opCode]); }