/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <fcntl.h> #include <errno.h> #include <math.h> #include <poll.h> #include <unistd.h> #include <dirent.h> #include <sys/select.h> #include <linux/akm8973.h> #include <cutils/log.h> #include "AkmSensor.h" /*****************************************************************************/ AkmSensor::AkmSensor() : SensorBase(AKM_DEVICE_NAME, "compass"), mEnabled(0), mPendingMask(0), mInputReader(32) { memset(mPendingEvents, 0, sizeof(mPendingEvents)); mPendingEvents[Accelerometer].version = sizeof(sensors_event_t); mPendingEvents[Accelerometer].sensor = ID_A; mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER; mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH; mPendingEvents[MagneticField].version = sizeof(sensors_event_t); mPendingEvents[MagneticField].sensor = ID_M; mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD; mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH; mPendingEvents[Orientation ].version = sizeof(sensors_event_t); mPendingEvents[Orientation ].sensor = ID_O; mPendingEvents[Orientation ].type = SENSOR_TYPE_ORIENTATION; mPendingEvents[Orientation ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH; for (int i=0 ; i<numSensors ; i++) mDelays[i] = 200000000; // 200 ms by default // read the actual value of all sensors if they're enabled already struct input_absinfo absinfo; short flags = 0; open_device(); if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) { if (flags) { mEnabled |= 1<<Accelerometer; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo)) { mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) { mPendingEvents[Accelerometer].acceleration.y = absinfo.value * CONVERT_A_Y; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) { mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z; } } } if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) { if (flags) { mEnabled |= 1<<MagneticField; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_X), &absinfo)) { mPendingEvents[MagneticField].magnetic.x = absinfo.value * CONVERT_M_X; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Y), &absinfo)) { mPendingEvents[MagneticField].magnetic.y = absinfo.value * CONVERT_M_Y; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Z), &absinfo)) { mPendingEvents[MagneticField].magnetic.z = absinfo.value * CONVERT_M_Z; } } } if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) { if (flags) { mEnabled |= 1<<Orientation; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_YAW), &absinfo)) { mPendingEvents[Orientation].orientation.azimuth = absinfo.value; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PITCH), &absinfo)) { mPendingEvents[Orientation].orientation.pitch = absinfo.value; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ROLL), &absinfo)) { mPendingEvents[Orientation].orientation.roll = -absinfo.value; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ORIENT_STATUS), &absinfo)) { mPendingEvents[Orientation].orientation.status = uint8_t(absinfo.value & SENSOR_STATE_MASK); } } } // disable temperature sensor, since it is not reported flags = 0; ioctl(dev_fd, ECS_IOCTL_APP_SET_TFLAG, &flags); if (!mEnabled) { close_device(); } } AkmSensor::~AkmSensor() { } int AkmSensor::enable(int32_t handle, int en) { int what = -1; switch (handle) { case ID_A: what = Accelerometer; break; case ID_M: what = MagneticField; break; case ID_O: what = Orientation; break; } if (uint32_t(what) >= numSensors) return -EINVAL; int newState = en ? 1 : 0; int err = 0; if ((uint32_t(newState)<<what) != (mEnabled & (1<<what))) { if (!mEnabled) { open_device(); } int cmd; switch (what) { case Accelerometer: cmd = ECS_IOCTL_APP_SET_AFLAG; break; case MagneticField: cmd = ECS_IOCTL_APP_SET_MVFLAG; break; case Orientation: cmd = ECS_IOCTL_APP_SET_MFLAG; break; } short flags = newState; err = ioctl(dev_fd, cmd, &flags); err = err<0 ? -errno : 0; LOGE_IF(err, "ECS_IOCTL_APP_SET_XXX failed (%s)", strerror(-err)); if (!err) { mEnabled &= ~(1<<what); mEnabled |= (uint32_t(flags)<<what); update_delay(); } if (!mEnabled) { close_device(); } } return err; } int AkmSensor::setDelay(int32_t handle, int64_t ns) { #ifdef ECS_IOCTL_APP_SET_DELAY int what = -1; switch (handle) { case ID_A: what = Accelerometer; break; case ID_M: what = MagneticField; break; case ID_O: what = Orientation; break; } if (uint32_t(what) >= numSensors) return -EINVAL; if (ns < 0) return -EINVAL; mDelays[what] = ns; return update_delay(); #else return -1; #endif } int AkmSensor::update_delay() { if (mEnabled) { uint64_t wanted = -1LLU; for (int i=0 ; i<numSensors ; i++) { if (mEnabled & (1<<i)) { uint64_t ns = mDelays[i]; wanted = wanted < ns ? wanted : ns; } } short delay = int64_t(wanted) / 1000000; if (ioctl(dev_fd, ECS_IOCTL_APP_SET_DELAY, &delay)) { return -errno; } } return 0; } int AkmSensor::readEvents(sensors_event_t* data, int count) { if (count < 1) return -EINVAL; ssize_t n = mInputReader.fill(data_fd); if (n < 0) return n; int numEventReceived = 0; input_event const* event; while (count && mInputReader.readEvent(&event)) { int type = event->type; if (type == EV_ABS) { processEvent(event->code, event->value); mInputReader.next(); } else if (type == EV_SYN) { int64_t time = timevalToNano(event->time); for (int j=0 ; count && mPendingMask && j<numSensors ; j++) { if (mPendingMask & (1<<j)) { mPendingMask &= ~(1<<j); mPendingEvents[j].timestamp = time; if (mEnabled & (1<<j)) { *data++ = mPendingEvents[j]; count--; numEventReceived++; } } } if (!mPendingMask) { mInputReader.next(); } } else { LOGE("AkmSensor: unknown event (type=%d, code=%d)", type, event->code); mInputReader.next(); } } return numEventReceived; } void AkmSensor::processEvent(int code, int value) { switch (code) { case EVENT_TYPE_ACCEL_X: mPendingMask |= 1<<Accelerometer; mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X; break; case EVENT_TYPE_ACCEL_Y: mPendingMask |= 1<<Accelerometer; mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y; break; case EVENT_TYPE_ACCEL_Z: mPendingMask |= 1<<Accelerometer; mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z; break; case EVENT_TYPE_MAGV_X: mPendingMask |= 1<<MagneticField; mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M_X; break; case EVENT_TYPE_MAGV_Y: mPendingMask |= 1<<MagneticField; mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M_Y; break; case EVENT_TYPE_MAGV_Z: mPendingMask |= 1<<MagneticField; mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M_Z; break; case EVENT_TYPE_YAW: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O_Y; break; case EVENT_TYPE_PITCH: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O_P; break; case EVENT_TYPE_ROLL: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.roll = value * CONVERT_O_R; break; case EVENT_TYPE_ORIENT_STATUS: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.status = uint8_t(value & SENSOR_STATE_MASK); break; } }