// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // A "smart" pointer type with reference tracking. Every pointer to a // particular object is kept on a circular linked list. When the last pointer // to an object is destroyed or reassigned, the object is deleted. // // Used properly, this deletes the object when the last reference goes away. // There are several caveats: // - Like all reference counting schemes, cycles lead to leaks. // - Each smart pointer is actually two pointers (8 bytes instead of 4). // - Every time a pointer is released, the entire list of pointers to that // object is traversed. This class is therefore NOT SUITABLE when there // will often be more than two or three pointers to a particular object. // - References are only tracked as long as linked_ptr<> objects are copied. // If a linked_ptr<> is converted to a raw pointer and back, BAD THINGS // will happen (double deletion). // // A good use of this class is storing object references in STL containers. // You can safely put linked_ptr<> in a vector<>. // Other uses may not be as good. // // Note: If you use an incomplete type with linked_ptr<>, the class // *containing* linked_ptr<> must have a constructor and destructor (even // if they do nothing!). // // Thread Safety: // A linked_ptr is NOT thread safe. Copying a linked_ptr object is // effectively a read-write operation. // // Alternative: to linked_ptr is shared_ptr, which // - is also two pointers in size (8 bytes for 32 bit addresses) // - is thread safe for copying and deletion // - supports weak_ptrs #ifndef BASE_LINKED_PTR_H_ #define BASE_LINKED_PTR_H_ #include "base/logging.h" // for CHECK macros // This is used internally by all instances of linked_ptr<>. It needs to be // a non-template class because different types of linked_ptr<> can refer to // the same object (linked_ptr<Superclass>(obj) vs linked_ptr<Subclass>(obj)). // So, it needs to be possible for different types of linked_ptr to participate // in the same circular linked list, so we need a single class type here. // // DO NOT USE THIS CLASS DIRECTLY YOURSELF. Use linked_ptr<T>. class linked_ptr_internal { public: // Create a new circle that includes only this instance. void join_new() { next_ = this; } // Join an existing circle. void join(linked_ptr_internal const* ptr) { next_ = ptr->next_; ptr->next_ = this; } // Leave whatever circle we're part of. Returns true iff we were the // last member of the circle. Once this is done, you can join() another. bool depart() { if (next_ == this) return true; linked_ptr_internal const* p = next_; while (p->next_ != this) p = p->next_; p->next_ = next_; return false; } private: mutable linked_ptr_internal const* next_; }; template <typename T> class linked_ptr { public: typedef T element_type; // Take over ownership of a raw pointer. This should happen as soon as // possible after the object is created. explicit linked_ptr(T* ptr = NULL) { capture(ptr); } ~linked_ptr() { depart(); } // Copy an existing linked_ptr<>, adding ourselves to the list of references. template <typename U> linked_ptr(linked_ptr<U> const& ptr) { copy(&ptr); } linked_ptr(linked_ptr const& ptr) { DCHECK_NE(&ptr, this); copy(&ptr); } // Assignment releases the old value and acquires the new. template <typename U> linked_ptr& operator=(linked_ptr<U> const& ptr) { depart(); copy(&ptr); return *this; } linked_ptr& operator=(linked_ptr const& ptr) { if (&ptr != this) { depart(); copy(&ptr); } return *this; } // Smart pointer members. void reset(T* ptr = NULL) { depart(); capture(ptr); } T* get() const { return value_; } T* operator->() const { return value_; } T& operator*() const { return *value_; } // Release ownership of the pointed object and returns it. // Sole ownership by this linked_ptr object is required. T* release() { bool last = link_.depart(); CHECK(last); T* v = value_; value_ = NULL; return v; } bool operator==(const T* p) const { return value_ == p; } bool operator!=(const T* p) const { return value_ != p; } template <typename U> bool operator==(linked_ptr<U> const& ptr) const { return value_ == ptr.get(); } template <typename U> bool operator!=(linked_ptr<U> const& ptr) const { return value_ != ptr.get(); } private: template <typename U> friend class linked_ptr; T* value_; linked_ptr_internal link_; void depart() { if (link_.depart()) delete value_; } void capture(T* ptr) { value_ = ptr; link_.join_new(); } template <typename U> void copy(linked_ptr<U> const* ptr) { value_ = ptr->get(); if (value_) link_.join(&ptr->link_); else link_.join_new(); } }; template<typename T> inline bool operator==(T* ptr, const linked_ptr<T>& x) { return ptr == x.get(); } template<typename T> inline bool operator!=(T* ptr, const linked_ptr<T>& x) { return ptr != x.get(); } // A function to convert T* into linked_ptr<T> // Doing e.g. make_linked_ptr(new FooBarBaz<type>(arg)) is a shorter notation // for linked_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) template <typename T> linked_ptr<T> make_linked_ptr(T* ptr) { return linked_ptr<T>(ptr); } #endif // BASE_LINKED_PTR_H_