// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_REF_COUNTED_H_ #define BASE_REF_COUNTED_H_ #include "base/atomic_ref_count.h" #include "base/thread_collision_warner.h" namespace base { namespace subtle { class RefCountedBase { public: static bool ImplementsThreadSafeReferenceCounting() { return false; } bool HasOneRef() const { return ref_count_ == 1; } protected: RefCountedBase(); ~RefCountedBase(); void AddRef(); // Returns true if the object should self-delete. bool Release(); private: int ref_count_; #ifndef NDEBUG bool in_dtor_; #endif DFAKE_MUTEX(add_release_); DISALLOW_COPY_AND_ASSIGN(RefCountedBase); }; class RefCountedThreadSafeBase { public: static bool ImplementsThreadSafeReferenceCounting() { return true; } bool HasOneRef() const; protected: RefCountedThreadSafeBase(); ~RefCountedThreadSafeBase(); void AddRef(); // Returns true if the object should self-delete. bool Release(); private: AtomicRefCount ref_count_; #ifndef NDEBUG bool in_dtor_; #endif DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase); }; } // namespace subtle // // A base class for reference counted classes. Otherwise, known as a cheap // knock-off of WebKit's RefCounted<T> class. To use this guy just extend your // class from it like so: // // class MyFoo : public base::RefCounted<MyFoo> { // ... // private: // friend class base::RefCounted<MyFoo>; // ~MyFoo(); // }; // // You should always make your destructor private, to avoid any code deleting // the object accidently while there are references to it. template <class T> class RefCounted : public subtle::RefCountedBase { public: RefCounted() { } ~RefCounted() { } void AddRef() { subtle::RefCountedBase::AddRef(); } void Release() { if (subtle::RefCountedBase::Release()) { delete static_cast<T*>(this); } } private: DISALLOW_COPY_AND_ASSIGN(RefCounted<T>); }; // Forward declaration. template <class T, typename Traits> class RefCountedThreadSafe; // Default traits for RefCountedThreadSafe<T>. Deletes the object when its ref // count reaches 0. Overload to delete it on a different thread etc. template<typename T> struct DefaultRefCountedThreadSafeTraits { static void Destruct(T* x) { // Delete through RefCountedThreadSafe to make child classes only need to be // friend with RefCountedThreadSafe instead of this struct, which is an // implementation detail. RefCountedThreadSafe<T, DefaultRefCountedThreadSafeTraits>::DeleteInternal(x); } }; // // A thread-safe variant of RefCounted<T> // // class MyFoo : public base::RefCountedThreadSafe<MyFoo> { // ... // }; // // If you're using the default trait, then you should add compile time // asserts that no one else is deleting your object. i.e. // private: // friend class base::RefCountedThreadSafe<MyFoo>; // ~MyFoo(); template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T> > class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase { public: RefCountedThreadSafe() { } ~RefCountedThreadSafe() { } void AddRef() { subtle::RefCountedThreadSafeBase::AddRef(); } void Release() { if (subtle::RefCountedThreadSafeBase::Release()) { Traits::Destruct(static_cast<T*>(this)); } } private: friend struct DefaultRefCountedThreadSafeTraits<T>; static void DeleteInternal(T* x) { delete x; } DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe); }; // // A wrapper for some piece of data so we can place other things in // scoped_refptrs<>. // template<typename T> class RefCountedData : public base::RefCounted< base::RefCountedData<T> > { public: RefCountedData() : data() {} RefCountedData(const T& in_value) : data(in_value) {} T data; }; } // namespace base // // A smart pointer class for reference counted objects. Use this class instead // of calling AddRef and Release manually on a reference counted object to // avoid common memory leaks caused by forgetting to Release an object // reference. Sample usage: // // class MyFoo : public RefCounted<MyFoo> { // ... // }; // // void some_function() { // scoped_refptr<MyFoo> foo = new MyFoo(); // foo->Method(param); // // |foo| is released when this function returns // } // // void some_other_function() { // scoped_refptr<MyFoo> foo = new MyFoo(); // ... // foo = NULL; // explicitly releases |foo| // ... // if (foo) // foo->Method(param); // } // // The above examples show how scoped_refptr<T> acts like a pointer to T. // Given two scoped_refptr<T> classes, it is also possible to exchange // references between the two objects, like so: // // { // scoped_refptr<MyFoo> a = new MyFoo(); // scoped_refptr<MyFoo> b; // // b.swap(a); // // now, |b| references the MyFoo object, and |a| references NULL. // } // // To make both |a| and |b| in the above example reference the same MyFoo // object, simply use the assignment operator: // // { // scoped_refptr<MyFoo> a = new MyFoo(); // scoped_refptr<MyFoo> b; // // b = a; // // now, |a| and |b| each own a reference to the same MyFoo object. // } // template <class T> class scoped_refptr { public: scoped_refptr() : ptr_(NULL) { } scoped_refptr(T* p) : ptr_(p) { if (ptr_) ptr_->AddRef(); } scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) { if (ptr_) ptr_->AddRef(); } template <typename U> scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) { if (ptr_) ptr_->AddRef(); } ~scoped_refptr() { if (ptr_) ptr_->Release(); } T* get() const { return ptr_; } operator T*() const { return ptr_; } T* operator->() const { return ptr_; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. T* release() { T* retVal = ptr_; ptr_ = NULL; return retVal; } scoped_refptr<T>& operator=(T* p) { // AddRef first so that self assignment should work if (p) p->AddRef(); if (ptr_ ) ptr_ ->Release(); ptr_ = p; return *this; } scoped_refptr<T>& operator=(const scoped_refptr<T>& r) { return *this = r.ptr_; } template <typename U> scoped_refptr<T>& operator=(const scoped_refptr<U>& r) { return *this = r.get(); } void swap(T** pp) { T* p = ptr_; ptr_ = *pp; *pp = p; } void swap(scoped_refptr<T>& r) { swap(&r.ptr_); } protected: T* ptr_; }; // Handy utility for creating a scoped_refptr<T> out of a T* explicitly without // having to retype all the template arguments template <typename T> scoped_refptr<T> make_scoped_refptr(T* t) { return scoped_refptr<T>(t); } #endif // BASE_REF_COUNTED_H_