/* ******************************************************************************* * * Copyright (C) 2009-2010, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: normalizer2impl.h * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2009nov22 * created by: Markus W. Scherer */ #ifndef __NORMALIZER2IMPL_H__ #define __NORMALIZER2IMPL_H__ #include "unicode/utypes.h" #if !UCONFIG_NO_NORMALIZATION #include "unicode/normalizer2.h" #include "unicode/udata.h" #include "unicode/unistr.h" #include "unicode/unorm.h" #include "mutex.h" #include "uset_imp.h" #include "utrie2.h" U_NAMESPACE_BEGIN class Hangul { public: /* Korean Hangul and Jamo constants */ enum { JAMO_L_BASE=0x1100, /* "lead" jamo */ JAMO_V_BASE=0x1161, /* "vowel" jamo */ JAMO_T_BASE=0x11a7, /* "trail" jamo */ HANGUL_BASE=0xac00, JAMO_L_COUNT=19, JAMO_V_COUNT=21, JAMO_T_COUNT=28, JAMO_VT_COUNT=JAMO_V_COUNT*JAMO_T_COUNT, HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT, HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT }; static inline UBool isHangul(UChar32 c) { return HANGUL_BASE<=c && c<HANGUL_LIMIT; } static inline UBool isHangulWithoutJamoT(UChar c) { c-=HANGUL_BASE; return c<HANGUL_COUNT && c%JAMO_T_COUNT==0; } static inline UBool isJamoL(UChar32 c) { return (uint32_t)(c-JAMO_L_BASE)<JAMO_L_COUNT; } static inline UBool isJamoV(UChar32 c) { return (uint32_t)(c-JAMO_V_BASE)<JAMO_V_COUNT; } /** * Decomposes c, which must be a Hangul syllable, into buffer * and returns the length of the decomposition (2 or 3). */ static inline int32_t decompose(UChar32 c, UChar buffer[3]) { c-=HANGUL_BASE; UChar32 c2=c%JAMO_T_COUNT; c/=JAMO_T_COUNT; buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); if(c2==0) { return 2; } else { buffer[2]=(UChar)(JAMO_T_BASE+c2); return 3; } } private: Hangul(); // no instantiation }; class Normalizer2Impl; class ReorderingBuffer : public UMemory { public: ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest) : impl(ni), str(dest), start(NULL), reorderStart(NULL), limit(NULL), remainingCapacity(0), lastCC(0) {} ~ReorderingBuffer() { if(start!=NULL) { str.releaseBuffer((int32_t)(limit-start)); } } UBool init(int32_t destCapacity, UErrorCode &errorCode); UBool isEmpty() const { return start==limit; } int32_t length() const { return (int32_t)(limit-start); } UChar *getStart() { return start; } UChar *getLimit() { return limit; } uint8_t getLastCC() const { return lastCC; } UBool equals(const UChar *start, const UChar *limit) const; // For Hangul composition, replacing the Leading consonant Jamo with the syllable. void setLastChar(UChar c) { *(limit-1)=c; } UBool append(UChar32 c, uint8_t cc, UErrorCode &errorCode) { return (c<=0xffff) ? appendBMP((UChar)c, cc, errorCode) : appendSupplementary(c, cc, errorCode); } // s must be in NFD, otherwise change the implementation. UBool append(const UChar *s, int32_t length, uint8_t leadCC, uint8_t trailCC, UErrorCode &errorCode); UBool appendBMP(UChar c, uint8_t cc, UErrorCode &errorCode) { if(remainingCapacity==0 && !resize(1, errorCode)) { return FALSE; } if(lastCC<=cc || cc==0) { *limit++=c; lastCC=cc; if(cc<=1) { reorderStart=limit; } } else { insert(c, cc); } --remainingCapacity; return TRUE; } UBool appendZeroCC(UChar32 c, UErrorCode &errorCode); UBool appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode); void remove(); void removeSuffix(int32_t suffixLength); void setReorderingLimit(UChar *newLimit) { remainingCapacity+=(int32_t)(limit-newLimit); reorderStart=limit=newLimit; lastCC=0; } private: /* * TODO: Revisit whether it makes sense to track reorderStart. * It is set to after the last known character with cc<=1, * which stops previousCC() before it reads that character and looks up its cc. * previousCC() is normally only called from insert(). * In other words, reorderStart speeds up the insertion of a combining mark * into a multi-combining mark sequence where it does not belong at the end. * This might not be worth the trouble. * On the other hand, it's not a huge amount of trouble. * * We probably need it for UNORM_SIMPLE_APPEND. */ UBool appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode); void insert(UChar32 c, uint8_t cc); static void writeCodePoint(UChar *p, UChar32 c) { if(c<=0xffff) { *p=(UChar)c; } else { p[0]=U16_LEAD(c); p[1]=U16_TRAIL(c); } } UBool resize(int32_t appendLength, UErrorCode &errorCode); const Normalizer2Impl &impl; UnicodeString &str; UChar *start, *reorderStart, *limit; int32_t remainingCapacity; uint8_t lastCC; // private backward iterator void setIterator() { codePointStart=limit; } void skipPrevious(); // Requires start<codePointStart. uint8_t previousCC(); // Returns 0 if there is no previous character. UChar *codePointStart, *codePointLimit; }; class U_COMMON_API Normalizer2Impl : public UMemory { public: Normalizer2Impl() : memory(NULL), normTrie(NULL) { fcdTrieSingleton.fInstance=NULL; } ~Normalizer2Impl(); void load(const char *packageName, const char *name, UErrorCode &errorCode); void addPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const; // low-level properties ------------------------------------------------ *** const UTrie2 *getNormTrie() const { return normTrie; } const UTrie2 *getFCDTrie(UErrorCode &errorCode) const ; uint16_t getNorm16(UChar32 c) const { return UTRIE2_GET16(normTrie, c); } UNormalizationCheckResult getCompQuickCheck(uint16_t norm16) const { if(norm16<minNoNo || MIN_YES_YES_WITH_CC<=norm16) { return UNORM_YES; } else if(minMaybeYes<=norm16) { return UNORM_MAYBE; } else { return UNORM_NO; } } UBool isCompNo(uint16_t norm16) const { return minNoNo<=norm16 && norm16<minMaybeYes; } UBool isDecompYes(uint16_t norm16) const { return norm16<minYesNo || minMaybeYes<=norm16; } uint8_t getCC(uint16_t norm16) const { if(norm16>=MIN_NORMAL_MAYBE_YES) { return (uint8_t)norm16; } if(norm16<minNoNo || limitNoNo<=norm16) { return 0; } return getCCFromNoNo(norm16); } static uint8_t getCCFromYesOrMaybe(uint16_t norm16) { return norm16>=MIN_NORMAL_MAYBE_YES ? (uint8_t)norm16 : 0; } uint16_t getFCD16(UChar32 c) const { return UTRIE2_GET16(fcdTrie(), c); } uint16_t getFCD16FromSingleLead(UChar c) const { return UTRIE2_GET16_FROM_U16_SINGLE_LEAD(fcdTrie(), c); } uint16_t getFCD16FromSupplementary(UChar32 c) const { return UTRIE2_GET16_FROM_SUPP(fcdTrie(), c); } uint16_t getFCD16FromSurrogatePair(UChar c, UChar c2) const { return getFCD16FromSupplementary(U16_GET_SUPPLEMENTARY(c, c2)); } void setFCD16FromNorm16(UChar32 start, UChar32 end, uint16_t norm16, UTrie2 *newFCDTrie, UErrorCode &errorCode) const; /** * Get the decomposition for one code point. * @param c code point * @param buffer out-only buffer for algorithmic decompositions * @param length out-only, takes the length of the decomposition, if any * @return pointer to the decomposition, or NULL if none */ const UChar *getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const; enum { MIN_CCC_LCCC_CP=0x300 }; enum { MIN_YES_YES_WITH_CC=0xff01, JAMO_VT=0xff00, MIN_NORMAL_MAYBE_YES=0xfe00, JAMO_L=1, MAX_DELTA=0x40 }; enum { // Byte offsets from the start of the data, after the generic header. IX_NORM_TRIE_OFFSET, IX_EXTRA_DATA_OFFSET, IX_RESERVED2_OFFSET, IX_RESERVED3_OFFSET, IX_RESERVED4_OFFSET, IX_RESERVED5_OFFSET, IX_RESERVED6_OFFSET, IX_TOTAL_SIZE, // Code point thresholds for quick check codes. IX_MIN_DECOMP_NO_CP, IX_MIN_COMP_NO_MAYBE_CP, // Norm16 value thresholds for quick check combinations and types of extra data. IX_MIN_YES_NO, IX_MIN_NO_NO, IX_LIMIT_NO_NO, IX_MIN_MAYBE_YES, IX_RESERVED14, IX_RESERVED15, IX_COUNT }; enum { MAPPING_HAS_CCC_LCCC_WORD=0x80, MAPPING_PLUS_COMPOSITION_LIST=0x40, MAPPING_NO_COMP_BOUNDARY_AFTER=0x20, MAPPING_LENGTH_MASK=0x1f }; enum { COMP_1_LAST_TUPLE=0x8000, COMP_1_TRIPLE=1, COMP_1_TRAIL_LIMIT=0x3400, COMP_1_TRAIL_MASK=0x7ffe, COMP_1_TRAIL_SHIFT=9, // 10-1 for the "triple" bit COMP_2_TRAIL_SHIFT=6, COMP_2_TRAIL_MASK=0xffc0 }; // higher-level functionality ------------------------------------------ *** const UChar *decompose(const UChar *src, const UChar *limit, ReorderingBuffer *buffer, UErrorCode &errorCode) const; void decomposeAndAppend(const UChar *src, const UChar *limit, UBool doDecompose, ReorderingBuffer &buffer, UErrorCode &errorCode) const; UBool compose(const UChar *src, const UChar *limit, UBool onlyContiguous, UBool doCompose, ReorderingBuffer &buffer, UErrorCode &errorCode) const; const UChar *composeQuickCheck(const UChar *src, const UChar *limit, UBool onlyContiguous, UNormalizationCheckResult *pQCResult) const; void composeAndAppend(const UChar *src, const UChar *limit, UBool doCompose, UBool onlyContiguous, ReorderingBuffer &buffer, UErrorCode &errorCode) const; const UChar *makeFCD(const UChar *src, const UChar *limit, ReorderingBuffer *buffer, UErrorCode &errorCode) const; void makeFCDAndAppend(const UChar *src, const UChar *limit, UBool doMakeFCD, ReorderingBuffer &buffer, UErrorCode &errorCode) const; UBool hasDecompBoundary(UChar32 c, UBool before) const; UBool isDecompInert(UChar32 c) const { return isDecompYesAndZeroCC(getNorm16(c)); } UBool hasCompBoundaryBefore(UChar32 c) const { return c<minCompNoMaybeCP || hasCompBoundaryBefore(c, getNorm16(c)); } UBool hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const; UBool hasFCDBoundaryBefore(UChar32 c) const { return c<MIN_CCC_LCCC_CP || getFCD16(c)<=0xff; } UBool hasFCDBoundaryAfter(UChar32 c) const { uint16_t fcd16=getFCD16(c); return fcd16<=1 || (fcd16&0xff)==0; } UBool isFCDInert(UChar32 c) const { return getFCD16(c)<=1; } private: static UBool U_CALLCONV isAcceptable(void *context, const char *type, const char *name, const UDataInfo *pInfo); UBool isMaybe(uint16_t norm16) const { return minMaybeYes<=norm16 && norm16<=JAMO_VT; } UBool isMaybeOrNonZeroCC(uint16_t norm16) const { return norm16>=minMaybeYes; } static UBool isInert(uint16_t norm16) { return norm16==0; } // static UBool isJamoL(uint16_t norm16) const { return norm16==1; } static UBool isJamoVT(uint16_t norm16) { return norm16==JAMO_VT; } UBool isHangul(uint16_t norm16) const { return norm16==minYesNo; } UBool isCompYesAndZeroCC(uint16_t norm16) const { return norm16<minNoNo; } // UBool isCompYes(uint16_t norm16) const { // return norm16>=MIN_YES_YES_WITH_CC || norm16<minNoNo; // } // UBool isCompYesOrMaybe(uint16_t norm16) const { // return norm16<minNoNo || minMaybeYes<=norm16; // } // UBool hasZeroCCFromDecompYes(uint16_t norm16) const { // return norm16<=MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT; // } UBool isDecompYesAndZeroCC(uint16_t norm16) const { return norm16<minYesNo || norm16==JAMO_VT || (minMaybeYes<=norm16 && norm16<=MIN_NORMAL_MAYBE_YES); } /** * A little faster and simpler than isDecompYesAndZeroCC() but does not include * the MaybeYes which combine-forward and have ccc=0. * (Standard Unicode 5.2 normalization does not have such characters.) */ UBool isMostDecompYesAndZeroCC(uint16_t norm16) const { return norm16<minYesNo || norm16==MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT; } UBool isDecompNoAlgorithmic(uint16_t norm16) const { return norm16>=limitNoNo; } // For use with isCompYes(). // Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC. // static uint8_t getCCFromYes(uint16_t norm16) { // return norm16>=MIN_YES_YES_WITH_CC ? (uint8_t)norm16 : 0; // } uint8_t getCCFromNoNo(uint16_t norm16) const { const uint16_t *mapping=getMapping(norm16); if(*mapping&MAPPING_HAS_CCC_LCCC_WORD) { return (uint8_t)mapping[1]; } else { return 0; } } // requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC() uint8_t getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const; // Requires algorithmic-NoNo. UChar32 mapAlgorithmic(UChar32 c, uint16_t norm16) const { return c+norm16-(minMaybeYes-MAX_DELTA-1); } // Requires minYesNo<norm16<limitNoNo. const uint16_t *getMapping(uint16_t norm16) const { return extraData+norm16; } const uint16_t *getCompositionsListForDecompYes(uint16_t norm16) const { if(norm16==0 || MIN_NORMAL_MAYBE_YES<=norm16) { return NULL; } else if(norm16<minMaybeYes) { return extraData+norm16; // for yesYes; if Jamo L: harmless empty list } else { return maybeYesCompositions+norm16-minMaybeYes; } } const uint16_t *getCompositionsListForComposite(uint16_t norm16) const { const uint16_t *list=extraData+norm16; // composite has both mapping & compositions list return list+ // mapping pointer 1+ // +1 to skip the first unit with the mapping lenth (*list&MAPPING_LENGTH_MASK)+ // + mapping length ((*list>>7)&1); // +1 if MAPPING_HAS_CCC_LCCC_WORD } const UChar *copyLowPrefixFromNulTerminated(const UChar *src, UChar32 minNeedDataCP, ReorderingBuffer *buffer, UErrorCode &errorCode) const; UBool decomposeShort(const UChar *src, const UChar *limit, ReorderingBuffer &buffer, UErrorCode &errorCode) const; UBool decompose(UChar32 c, uint16_t norm16, ReorderingBuffer &buffer, UErrorCode &errorCode) const; static int32_t combine(const uint16_t *list, UChar32 trail); void recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, UBool onlyContiguous) const; UBool hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const; const UChar *findPreviousCompBoundary(const UChar *start, const UChar *p) const; const UChar *findNextCompBoundary(const UChar *p, const UChar *limit) const; const UTrie2 *fcdTrie() const { return (const UTrie2 *)fcdTrieSingleton.fInstance; } const UChar *findPreviousFCDBoundary(const UChar *start, const UChar *p) const; const UChar *findNextFCDBoundary(const UChar *p, const UChar *limit) const; UDataMemory *memory; UVersionInfo dataVersion; // Code point thresholds for quick check codes. UChar32 minDecompNoCP; UChar32 minCompNoMaybeCP; // Norm16 value thresholds for quick check combinations and types of extra data. uint16_t minYesNo; uint16_t minNoNo; uint16_t limitNoNo; uint16_t minMaybeYes; UTrie2 *normTrie; const uint16_t *maybeYesCompositions; const uint16_t *extraData; // mappings and/or compositions for yesYes, yesNo & noNo characters SimpleSingleton fcdTrieSingleton; }; /** * ICU-internal shortcut for quick access to standard Unicode normalization. */ class U_COMMON_API Normalizer2Factory { public: static const Normalizer2 *getNFCInstance(UErrorCode &errorCode); static const Normalizer2 *getNFDInstance(UErrorCode &errorCode); static const Normalizer2 *getFCDInstance(UErrorCode &errorCode); static const Normalizer2 *getFCCInstance(UErrorCode &errorCode); static const Normalizer2 *getNFKCInstance(UErrorCode &errorCode); static const Normalizer2 *getNFKDInstance(UErrorCode &errorCode); static const Normalizer2 *getNFKC_CFInstance(UErrorCode &errorCode); static const Normalizer2 *getNoopInstance(UErrorCode &errorCode); static const Normalizer2 *getInstance(UNormalizationMode mode, UErrorCode &errorCode); static const Normalizer2Impl *getNFCImpl(UErrorCode &errorCode); static const Normalizer2Impl *getNFKCImpl(UErrorCode &errorCode); static const Normalizer2Impl *getNFKC_CFImpl(UErrorCode &errorCode); // Get the Impl instance of the Normalizer2. // Must be used only when it is known that norm2 is a Normalizer2WithImpl instance. static const Normalizer2Impl *getImpl(const Normalizer2 *norm2); static const UTrie2 *getFCDTrie(UErrorCode &errorCode); private: Normalizer2Factory(); // No instantiation. }; U_NAMESPACE_END U_CAPI int32_t U_EXPORT2 unorm2_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode); /** * Get the NF*_QC property for a code point, for u_getIntPropertyValue(). * @internal */ U_CFUNC UNormalizationCheckResult U_EXPORT2 unorm_getQuickCheck(UChar32 c, UNormalizationMode mode); /** * Internal API, used by collation code. * Get access to the internal FCD trie table to be able to perform * incremental, per-code unit, FCD checks in collation. * One pointer is sufficient because the trie index values are offset * by the index size, so that the same pointer is used to access the trie data. * Code points at fcdHighStart and above have a zero FCD value. * @internal */ U_CAPI const uint16_t * U_EXPORT2 unorm_getFCDTrieIndex(UChar32 &fcdHighStart, UErrorCode *pErrorCode); /** * Internal API, used by collation code. * Get the FCD value for a code unit, with * bits 15..8 lead combining class * bits 7..0 trail combining class * * If c is a lead surrogate and the value is not 0, * then some of c's associated supplementary code points have a non-zero FCD value. * * @internal */ static inline uint16_t unorm_getFCD16(const uint16_t *fcdTrieIndex, UChar c) { return fcdTrieIndex[_UTRIE2_INDEX_FROM_U16_SINGLE_LEAD(fcdTrieIndex, c)]; } /** * Internal API, used by collation code. * Get the FCD value of the next code point (post-increment), with * bits 15..8 lead combining class * bits 7..0 trail combining class * * @internal */ static inline uint16_t unorm_nextFCD16(const uint16_t *fcdTrieIndex, UChar32 fcdHighStart, const UChar *&s, const UChar *limit) { UChar32 c=*s++; uint16_t fcd=fcdTrieIndex[_UTRIE2_INDEX_FROM_U16_SINGLE_LEAD(fcdTrieIndex, c)]; if(fcd!=0 && U16_IS_LEAD(c)) { UChar c2; if(s!=limit && U16_IS_TRAIL(c2=*s)) { ++s; c=U16_GET_SUPPLEMENTARY(c, c2); if(c<fcdHighStart) { fcd=fcdTrieIndex[_UTRIE2_INDEX_FROM_SUPP(fcdTrieIndex, c)]; } else { fcd=0; } } else /* unpaired lead surrogate */ { fcd=0; } } return fcd; } /** * Internal API, used by collation code. * Get the FCD value of the previous code point (pre-decrement), with * bits 15..8 lead combining class * bits 7..0 trail combining class * * @internal */ static inline uint16_t unorm_prevFCD16(const uint16_t *fcdTrieIndex, UChar32 fcdHighStart, const UChar *start, const UChar *&s) { UChar32 c=*--s; uint16_t fcd; if(!U16_IS_SURROGATE(c)) { fcd=fcdTrieIndex[_UTRIE2_INDEX_FROM_U16_SINGLE_LEAD(fcdTrieIndex, c)]; } else { UChar c2; if(U16_IS_SURROGATE_TRAIL(c) && s!=start && U16_IS_LEAD(c2=*(s-1))) { --s; c=U16_GET_SUPPLEMENTARY(c2, c); if(c<fcdHighStart) { fcd=fcdTrieIndex[_UTRIE2_INDEX_FROM_SUPP(fcdTrieIndex, c)]; } else { fcd=0; } } else /* unpaired surrogate */ { fcd=0; } } return fcd; } /** * Format of Normalizer2 .nrm data files. * Format version 1.0. * * Normalizer2 .nrm data files provide data for the Unicode Normalization algorithms. * ICU ships with data files for standard Unicode Normalization Forms * NFC and NFD (nfc.nrm), NFKC and NFKD (nfkc.nrm) and NFKC_Casefold (nfkc_cf.nrm). * Custom (application-specific) data can be built into additional .nrm files * with the gennorm2 build tool. * * Normalizer2.getInstance() causes a .nrm file to be loaded, unless it has been * cached already. Internally, Normalizer2Impl.load() reads the .nrm file. * * A .nrm file begins with a standard ICU data file header * (DataHeader, see ucmndata.h and unicode/udata.h). * The UDataInfo.dataVersion field usually contains the Unicode version * for which the data was generated. * * After the header, the file contains the following parts. * Constants are defined as enum values of the Normalizer2Impl class. * * Many details of the data structures are described in the design doc * which is at http://site.icu-project.org/design/normalization/custom * * int32_t indexes[indexesLength]; -- indexesLength=indexes[IX_NORM_TRIE_OFFSET]/4; * * The first eight indexes are byte offsets in ascending order. * Each byte offset marks the start of the next part in the data file, * and the end of the previous one. * When two consecutive byte offsets are the same, then the corresponding part is empty. * Byte offsets are offsets from after the header, * that is, from the beginning of the indexes[]. * Each part starts at an offset with proper alignment for its data. * If necessary, the previous part may include padding bytes to achieve this alignment. * * minDecompNoCP=indexes[IX_MIN_DECOMP_NO_CP] is the lowest code point * with a decomposition mapping, that is, with NF*D_QC=No. * minCompNoMaybeCP=indexes[IX_MIN_COMP_NO_MAYBE_CP] is the lowest code point * with NF*C_QC=No (has a one-way mapping) or Maybe (combines backward). * * The next four indexes are thresholds of 16-bit trie values for ranges of * values indicating multiple normalization properties. * minYesNo=indexes[IX_MIN_YES_NO]; * minNoNo=indexes[IX_MIN_NO_NO]; * limitNoNo=indexes[IX_LIMIT_NO_NO]; * minMaybeYes=indexes[IX_MIN_MAYBE_YES]; * See the normTrie description below and the design doc for details. * * UTrie2 normTrie; -- see utrie2_impl.h and utrie2.h * * The trie holds the main normalization data. Each code point is mapped to a 16-bit value. * Rather than using independent bits in the value (which would require more than 16 bits), * information is extracted primarily via range checks. * For example, a 16-bit value norm16 in the range minYesNo<=norm16<minNoNo * means that the character has NF*C_QC=Yes and NF*D_QC=No properties, * which means it has a two-way (round-trip) decomposition mapping. * Values in the range 2<=norm16<limitNoNo are also directly indexes into the extraData * pointing to mappings, composition lists, or both. * Value norm16==0 means that the character is normalization-inert, that is, * it does not have a mapping, does not participate in composition, has a zero * canonical combining class, and forms a boundary where text before it and after it * can be normalized independently. * For details about how multiple properties are encoded in 16-bit values * see the design doc. * Note that the encoding cannot express all combinations of the properties involved; * it only supports those combinations that are allowed by * the Unicode Normalization algorithms. Details are in the design doc as well. * The gennorm2 tool only builds .nrm files for data that conforms to the limitations. * * The trie has a value for each lead surrogate code unit representing the "worst case" * properties of the 1024 supplementary characters whose UTF-16 form starts with * the lead surrogate. If all of the 1024 supplementary characters are normalization-inert, * then their lead surrogate code unit has the trie value 0. * When the lead surrogate unit's value exceeds the quick check minimum during processing, * the properties for the full supplementary code point need to be looked up. * * uint16_t maybeYesCompositions[MIN_NORMAL_MAYBE_YES-minMaybeYes]; * uint16_t extraData[]; * * There is only one byte offset for the end of these two arrays. * The split between them is given by the constant and variable mentioned above. * * The maybeYesCompositions array contains composition lists for characters that * combine both forward (as starters in composition pairs) * and backward (as trailing characters in composition pairs). * Such characters do not occur in Unicode 5.2 but are allowed by * the Unicode Normalization algorithms. * If there are no such characters, then minMaybeYes==MIN_NORMAL_MAYBE_YES * and the maybeYesCompositions array is empty. * If there are such characters, then minMaybeYes is subtracted from their norm16 values * to get the index into this array. * * The extraData array contains composition lists for "YesYes" characters, * followed by mappings and optional composition lists for "YesNo" characters, * followed by only mappings for "NoNo" characters. * (Referring to pairs of NFC/NFD quick check values.) * The norm16 values of those characters are directly indexes into the extraData array. * * The data structures for composition lists and mappings are described in the design doc. */ #endif /* !UCONFIG_NO_NORMALIZATION */ #endif /* __NORMALIZER2IMPL_H__ */