/* ********************************************************************** * Copyright (C) 2000-2009, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * file name: ucnvhz.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2000oct16 * created by: Ram Viswanadha * 10/31/2000 Ram Implemented offsets logic function * */ #include "unicode/utypes.h" #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION #include "cmemory.h" #include "unicode/ucnv.h" #include "unicode/ucnv_cb.h" #include "unicode/uset.h" #include "ucnv_bld.h" #include "ucnv_cnv.h" #include "ucnv_imp.h" #define UCNV_TILDE 0x7E /* ~ */ #define UCNV_OPEN_BRACE 0x7B /* { */ #define UCNV_CLOSE_BRACE 0x7D /* } */ #define SB_ESCAPE "\x7E\x7D" #define DB_ESCAPE "\x7E\x7B" #define TILDE_ESCAPE "\x7E\x7E" #define ESC_LEN 2 #define CONCAT_ESCAPE_MACRO( args, targetIndex,targetLength,strToAppend, err, len,sourceIndex){ \ while(len-->0){ \ if(targetIndex < targetLength){ \ args->target[targetIndex] = (unsigned char) *strToAppend; \ if(args->offsets!=NULL){ \ *(offsets++) = sourceIndex-1; \ } \ targetIndex++; \ } \ else{ \ args->converter->charErrorBuffer[(int)args->converter->charErrorBufferLength++] = (unsigned char) *strToAppend; \ *err =U_BUFFER_OVERFLOW_ERROR; \ } \ strToAppend++; \ } \ } typedef struct{ UConverter* gbConverter; int32_t targetIndex; int32_t sourceIndex; UBool isEscapeAppended; UBool isStateDBCS; UBool isTargetUCharDBCS; UBool isEmptySegment; }UConverterDataHZ; static void _HZOpen(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode){ UConverter *gbConverter; if(pArgs->onlyTestIsLoadable) { ucnv_canCreateConverter("GBK", errorCode); /* errorCode carries result */ return; } gbConverter = ucnv_open("GBK", errorCode); if(U_FAILURE(*errorCode)) { return; } cnv->toUnicodeStatus = 0; cnv->fromUnicodeStatus= 0; cnv->mode=0; cnv->fromUChar32=0x0000; cnv->extraInfo = uprv_malloc(sizeof(UConverterDataHZ)); if(cnv->extraInfo != NULL){ uprv_memset(cnv->extraInfo, 0, sizeof(UConverterDataHZ)); ((UConverterDataHZ*)cnv->extraInfo)->gbConverter = gbConverter; } else { ucnv_close(gbConverter); *errorCode = U_MEMORY_ALLOCATION_ERROR; return; } } static void _HZClose(UConverter *cnv){ if(cnv->extraInfo != NULL) { ucnv_close (((UConverterDataHZ *) (cnv->extraInfo))->gbConverter); if(!cnv->isExtraLocal) { uprv_free(cnv->extraInfo); } cnv->extraInfo = NULL; } } static void _HZReset(UConverter *cnv, UConverterResetChoice choice){ if(choice<=UCNV_RESET_TO_UNICODE) { cnv->toUnicodeStatus = 0; cnv->mode=0; if(cnv->extraInfo != NULL){ ((UConverterDataHZ*)cnv->extraInfo)->isStateDBCS = FALSE; ((UConverterDataHZ*)cnv->extraInfo)->isEmptySegment = FALSE; } } if(choice!=UCNV_RESET_TO_UNICODE) { cnv->fromUnicodeStatus= 0; cnv->fromUChar32=0x0000; if(cnv->extraInfo != NULL){ ((UConverterDataHZ*)cnv->extraInfo)->isEscapeAppended = FALSE; ((UConverterDataHZ*)cnv->extraInfo)->targetIndex = 0; ((UConverterDataHZ*)cnv->extraInfo)->sourceIndex = 0; ((UConverterDataHZ*)cnv->extraInfo)->isTargetUCharDBCS = FALSE; } } } /**************************************HZ Encoding************************************************* * Rules for HZ encoding * * In ASCII mode, a byte is interpreted as an ASCII character, unless a * '~' is encountered. The character '~' is an escape character. By * convention, it must be immediately followed ONLY by '~', '{' or '\n' * (<LF>), with the following special meaning. * 1. The escape sequence '~~' is interpreted as a '~'. * 2. The escape-to-GB sequence '~{' switches the mode from ASCII to GB. * 3. The escape sequence '~\n' is a line-continuation marker to be * consumed with no output produced. * In GB mode, characters are interpreted two bytes at a time as (pure) * GB codes until the escape-from-GB code '~}' is read. This code * switches the mode from GB back to ASCII. (Note that the escape- * from-GB code '~}' ($7E7D) is outside the defined GB range.) * * Source: RFC 1842 * * Note that the formal syntax in RFC 1842 is invalid. I assume that the * intended definition of single-byte-segment is as follows (pedberg): * single-byte-segment = single-byte-seq 1*single-byte-char */ static void UConverter_toUnicode_HZ_OFFSETS_LOGIC(UConverterToUnicodeArgs *args, UErrorCode* err){ char tempBuf[2]; const char *mySource = ( char *) args->source; UChar *myTarget = args->target; const char *mySourceLimit = args->sourceLimit; UChar32 targetUniChar = 0x0000; int32_t mySourceChar = 0x0000; UConverterDataHZ* myData=(UConverterDataHZ*)(args->converter->extraInfo); tempBuf[0]=0; tempBuf[1]=0; /* Calling code already handles this situation. */ /*if ((args->converter == NULL) || (args->targetLimit < args->target) || (mySourceLimit < args->source)){ *err = U_ILLEGAL_ARGUMENT_ERROR; return; }*/ while(mySource< mySourceLimit){ if(myTarget < args->targetLimit){ mySourceChar= (unsigned char) *mySource++; if(args->converter->mode == UCNV_TILDE) { /* second byte after ~ */ args->converter->mode=0; switch(mySourceChar) { case 0x0A: /* no output for ~\n (line-continuation marker) */ continue; case UCNV_TILDE: if(args->offsets) { args->offsets[myTarget - args->target]=(int32_t)(mySource - args->source - 2); } *(myTarget++)=(UChar)mySourceChar; myData->isEmptySegment = FALSE; continue; case UCNV_OPEN_BRACE: case UCNV_CLOSE_BRACE: myData->isStateDBCS = (mySourceChar == UCNV_OPEN_BRACE); if (myData->isEmptySegment) { myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */ *err = U_ILLEGAL_ESCAPE_SEQUENCE; args->converter->toUCallbackReason = UCNV_IRREGULAR; args->converter->toUBytes[0] = UCNV_TILDE; args->converter->toUBytes[1] = mySourceChar; args->converter->toULength = 2; args->target = myTarget; args->source = mySource; return; } myData->isEmptySegment = TRUE; continue; default: /* if the first byte is equal to TILDE and the trail byte * is not a valid byte then it is an error condition */ /* * Ticket 5691: consistent illegal sequences: * - We include at least the first byte in the illegal sequence. * - If any of the non-initial bytes could be the start of a character, * we stop the illegal sequence before the first one of those. */ myData->isEmptySegment = FALSE; /* different error here, reset this to avoid spurious future error */ *err = U_ILLEGAL_ESCAPE_SEQUENCE; args->converter->toUBytes[0] = UCNV_TILDE; if( myData->isStateDBCS ? (0x21 <= mySourceChar && mySourceChar <= 0x7e) : mySourceChar <= 0x7f ) { /* The current byte could be the start of a character: Back it out. */ args->converter->toULength = 1; --mySource; } else { /* Include the current byte in the illegal sequence. */ args->converter->toUBytes[1] = mySourceChar; args->converter->toULength = 2; } args->target = myTarget; args->source = mySource; return; } } else if(myData->isStateDBCS) { if(args->converter->toUnicodeStatus == 0x00){ /* lead byte */ if(mySourceChar == UCNV_TILDE) { args->converter->mode = UCNV_TILDE; } else { /* add another bit to distinguish a 0 byte from not having seen a lead byte */ args->converter->toUnicodeStatus = (uint32_t) (mySourceChar | 0x100); myData->isEmptySegment = FALSE; /* the segment has something, either valid or will produce a different error, so reset this */ } continue; } else{ /* trail byte */ int leadIsOk, trailIsOk; uint32_t leadByte = args->converter->toUnicodeStatus & 0xff; targetUniChar = 0xffff; /* * Ticket 5691: consistent illegal sequences: * - We include at least the first byte in the illegal sequence. * - If any of the non-initial bytes could be the start of a character, * we stop the illegal sequence before the first one of those. * * In HZ DBCS, if the second byte is in the 21..7e range, * we report only the first byte as the illegal sequence. * Otherwise we convert or report the pair of bytes. */ leadIsOk = (uint8_t)(leadByte - 0x21) <= (0x7d - 0x21); trailIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21); if (leadIsOk && trailIsOk) { tempBuf[0] = (char) (leadByte+0x80) ; tempBuf[1] = (char) (mySourceChar+0x80); targetUniChar = ucnv_MBCSSimpleGetNextUChar(myData->gbConverter->sharedData, tempBuf, 2, args->converter->useFallback); mySourceChar= (leadByte << 8) | mySourceChar; } else if (trailIsOk) { /* report a single illegal byte and continue with the following DBCS starter byte */ --mySource; mySourceChar = (int32_t)leadByte; } else { /* report a pair of illegal bytes if the second byte is not a DBCS starter */ /* add another bit so that the code below writes 2 bytes in case of error */ mySourceChar= 0x10000 | (leadByte << 8) | mySourceChar; } args->converter->toUnicodeStatus =0x00; } } else{ if(mySourceChar == UCNV_TILDE) { args->converter->mode = UCNV_TILDE; continue; } else if(mySourceChar <= 0x7f) { targetUniChar = (UChar)mySourceChar; /* ASCII */ myData->isEmptySegment = FALSE; /* the segment has something valid */ } else { targetUniChar = 0xffff; myData->isEmptySegment = FALSE; /* different error here, reset this to avoid spurious future error */ } } if(targetUniChar < 0xfffe){ if(args->offsets) { args->offsets[myTarget - args->target]=(int32_t)(mySource - args->source - 1-(myData->isStateDBCS)); } *(myTarget++)=(UChar)targetUniChar; } else /* targetUniChar>=0xfffe */ { if(targetUniChar == 0xfffe){ *err = U_INVALID_CHAR_FOUND; } else{ *err = U_ILLEGAL_CHAR_FOUND; } if(mySourceChar > 0xff){ args->converter->toUBytes[0] = (uint8_t)(mySourceChar >> 8); args->converter->toUBytes[1] = (uint8_t)mySourceChar; args->converter->toULength=2; } else{ args->converter->toUBytes[0] = (uint8_t)mySourceChar; args->converter->toULength=1; } break; } } else{ *err =U_BUFFER_OVERFLOW_ERROR; break; } } args->target = myTarget; args->source = mySource; } static void UConverter_fromUnicode_HZ_OFFSETS_LOGIC (UConverterFromUnicodeArgs * args, UErrorCode * err){ const UChar *mySource = args->source; char *myTarget = args->target; int32_t* offsets = args->offsets; int32_t mySourceIndex = 0; int32_t myTargetIndex = 0; int32_t targetLength = (int32_t)(args->targetLimit - myTarget); int32_t mySourceLength = (int32_t)(args->sourceLimit - args->source); int32_t length=0; uint32_t targetUniChar = 0x0000; UChar32 mySourceChar = 0x0000; UConverterDataHZ *myConverterData=(UConverterDataHZ*)args->converter->extraInfo; UBool isTargetUCharDBCS = (UBool) myConverterData->isTargetUCharDBCS; UBool oldIsTargetUCharDBCS = isTargetUCharDBCS; int len =0; const char* escSeq=NULL; /* Calling code already handles this situation. */ /*if ((args->converter == NULL) || (args->targetLimit < myTarget) || (args->sourceLimit < args->source)){ *err = U_ILLEGAL_ARGUMENT_ERROR; return; }*/ if(args->converter->fromUChar32!=0 && myTargetIndex < targetLength) { goto getTrail; } /*writing the char to the output stream */ while (mySourceIndex < mySourceLength){ targetUniChar = missingCharMarker; if (myTargetIndex < targetLength){ mySourceChar = (UChar) mySource[mySourceIndex++]; oldIsTargetUCharDBCS = isTargetUCharDBCS; if(mySourceChar ==UCNV_TILDE){ /*concatEscape(args, &myTargetIndex, &targetLength,"\x7E\x7E",err,2,&mySourceIndex);*/ len = ESC_LEN; escSeq = TILDE_ESCAPE; CONCAT_ESCAPE_MACRO(args, myTargetIndex, targetLength, escSeq,err,len,mySourceIndex); continue; } else if(mySourceChar <= 0x7f) { length = 1; targetUniChar = mySourceChar; } else { length= ucnv_MBCSFromUChar32(myConverterData->gbConverter->sharedData, mySourceChar,&targetUniChar,args->converter->useFallback); /* we can only use lead bytes 21..7D and trail bytes 21..7E */ if( length == 2 && (uint16_t)(targetUniChar - 0xa1a1) <= (0xfdfe - 0xa1a1) && (uint8_t)(targetUniChar - 0xa1) <= (0xfe - 0xa1) ) { targetUniChar -= 0x8080; } else { targetUniChar = missingCharMarker; } } if (targetUniChar != missingCharMarker){ myConverterData->isTargetUCharDBCS = isTargetUCharDBCS = (UBool)(targetUniChar>0x00FF); if(oldIsTargetUCharDBCS != isTargetUCharDBCS || !myConverterData->isEscapeAppended ){ /*Shifting from a double byte to single byte mode*/ if(!isTargetUCharDBCS){ len =ESC_LEN; escSeq = SB_ESCAPE; CONCAT_ESCAPE_MACRO(args, myTargetIndex, targetLength, escSeq,err,len,mySourceIndex); myConverterData->isEscapeAppended = TRUE; } else{ /* Shifting from a single byte to double byte mode*/ len =ESC_LEN; escSeq = DB_ESCAPE; CONCAT_ESCAPE_MACRO(args, myTargetIndex, targetLength, escSeq,err,len,mySourceIndex); myConverterData->isEscapeAppended = TRUE; } } if(isTargetUCharDBCS){ if( myTargetIndex <targetLength){ myTarget[myTargetIndex++] =(char) (targetUniChar >> 8); if(offsets){ *(offsets++) = mySourceIndex-1; } if(myTargetIndex < targetLength){ myTarget[myTargetIndex++] =(char) targetUniChar; if(offsets){ *(offsets++) = mySourceIndex-1; } }else{ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (char) targetUniChar; *err = U_BUFFER_OVERFLOW_ERROR; } }else{ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] =(char) (targetUniChar >> 8); args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (char) targetUniChar; *err = U_BUFFER_OVERFLOW_ERROR; } }else{ if( myTargetIndex <targetLength){ myTarget[myTargetIndex++] = (char) (targetUniChar ); if(offsets){ *(offsets++) = mySourceIndex-1; } }else{ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (char) targetUniChar; *err = U_BUFFER_OVERFLOW_ERROR; } } } else{ /* oops.. the code point is unassigned */ /*Handle surrogates */ /*check if the char is a First surrogate*/ if(UTF_IS_SURROGATE(mySourceChar)) { if(UTF_IS_SURROGATE_FIRST(mySourceChar)) { args->converter->fromUChar32=mySourceChar; getTrail: /*look ahead to find the trail surrogate*/ if(mySourceIndex < mySourceLength) { /* test the following code unit */ UChar trail=(UChar) args->source[mySourceIndex]; if(UTF_IS_SECOND_SURROGATE(trail)) { ++mySourceIndex; mySourceChar=UTF16_GET_PAIR_VALUE(args->converter->fromUChar32, trail); args->converter->fromUChar32=0x00; /* there are no surrogates in GB2312*/ *err = U_INVALID_CHAR_FOUND; /* exit this condition tree */ } else { /* this is an unmatched lead code unit (1st surrogate) */ /* callback(illegal) */ *err=U_ILLEGAL_CHAR_FOUND; } } else { /* no more input */ *err = U_ZERO_ERROR; } } else { /* this is an unmatched trail code unit (2nd surrogate) */ /* callback(illegal) */ *err=U_ILLEGAL_CHAR_FOUND; } } else { /* callback(unassigned) for a BMP code point */ *err = U_INVALID_CHAR_FOUND; } args->converter->fromUChar32=mySourceChar; break; } } else{ *err = U_BUFFER_OVERFLOW_ERROR; break; } targetUniChar=missingCharMarker; } args->target += myTargetIndex; args->source += mySourceIndex; myConverterData->isTargetUCharDBCS = isTargetUCharDBCS; } static void _HZ_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err) { UConverter *cnv = args->converter; UConverterDataHZ *convData=(UConverterDataHZ *) cnv->extraInfo; char *p; char buffer[4]; p = buffer; if( convData->isTargetUCharDBCS){ *p++= UCNV_TILDE; *p++= UCNV_CLOSE_BRACE; convData->isTargetUCharDBCS=FALSE; } *p++= (char)cnv->subChars[0]; ucnv_cbFromUWriteBytes(args, buffer, (int32_t)(p - buffer), offsetIndex, err); } /* * Structure for cloning an HZ converter into a single memory block. * ucnv_safeClone() of the HZ converter will align the entire cloneHZStruct, * and then ucnv_safeClone() of the sub-converter may additionally align * subCnv inside the cloneHZStruct, for which we need the deadSpace after * subCnv. This is because UAlignedMemory may be larger than the actually * necessary alignment size for the platform. * The other cloneHZStruct fields will not be moved around, * and are aligned properly with cloneHZStruct's alignment. */ struct cloneHZStruct { UConverter cnv; UConverter subCnv; UAlignedMemory deadSpace; UConverterDataHZ mydata; }; static UConverter * _HZ_SafeClone(const UConverter *cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status) { struct cloneHZStruct * localClone; int32_t size, bufferSizeNeeded = sizeof(struct cloneHZStruct); if (U_FAILURE(*status)){ return 0; } if (*pBufferSize == 0){ /* 'preflighting' request - set needed size into *pBufferSize */ *pBufferSize = bufferSizeNeeded; return 0; } localClone = (struct cloneHZStruct *)stackBuffer; /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ uprv_memcpy(&localClone->mydata, cnv->extraInfo, sizeof(UConverterDataHZ)); localClone->cnv.extraInfo = &localClone->mydata; localClone->cnv.isExtraLocal = TRUE; /* deep-clone the sub-converter */ size = (int32_t)(sizeof(UConverter) + sizeof(UAlignedMemory)); /* include size of padding */ ((UConverterDataHZ*)localClone->cnv.extraInfo)->gbConverter = ucnv_safeClone(((UConverterDataHZ*)cnv->extraInfo)->gbConverter, &localClone->subCnv, &size, status); return &localClone->cnv; } static void _HZ_GetUnicodeSet(const UConverter *cnv, const USetAdder *sa, UConverterUnicodeSet which, UErrorCode *pErrorCode) { /* HZ converts all of ASCII */ sa->addRange(sa->set, 0, 0x7f); /* add all of the code points that the sub-converter handles */ ucnv_MBCSGetFilteredUnicodeSetForUnicode( ((UConverterDataHZ*)cnv->extraInfo)->gbConverter->sharedData, sa, which, UCNV_SET_FILTER_HZ, pErrorCode); } static const UConverterImpl _HZImpl={ UCNV_HZ, NULL, NULL, _HZOpen, _HZClose, _HZReset, UConverter_toUnicode_HZ_OFFSETS_LOGIC, UConverter_toUnicode_HZ_OFFSETS_LOGIC, UConverter_fromUnicode_HZ_OFFSETS_LOGIC, UConverter_fromUnicode_HZ_OFFSETS_LOGIC, NULL, NULL, NULL, _HZ_WriteSub, _HZ_SafeClone, _HZ_GetUnicodeSet }; static const UConverterStaticData _HZStaticData={ sizeof(UConverterStaticData), "HZ", 0, UCNV_IBM, UCNV_HZ, 1, 4, { 0x1a, 0, 0, 0 }, 1, FALSE, FALSE, 0, 0, { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* reserved */ }; const UConverterSharedData _HZData={ sizeof(UConverterSharedData), ~((uint32_t) 0), NULL, NULL, &_HZStaticData, FALSE, &_HZImpl, 0 }; #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */