/* ****************************************************************************** * * Copyright (C) 2008-2009, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: uspoof_conf.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2009Jan05 (refactoring earlier files) * created by: Andy Heninger * * Internal classes for compililing confusable data into its binary (runtime) form. */ #include "unicode/utypes.h" #include "unicode/uspoof.h" #if !UCONFIG_NO_REGULAR_EXPRESSIONS #if !UCONFIG_NO_NORMALIZATION #include "unicode/unorm.h" #include "unicode/uregex.h" #include "unicode/ustring.h" #include "cmemory.h" #include "uspoof_impl.h" #include "uhash.h" #include "uvector.h" #include "uassert.h" #include "uarrsort.h" #include "uspoof_conf.h" U_NAMESPACE_USE //--------------------------------------------------------------------- // // buildConfusableData Compile the source confusable data, as defined by // the Unicode data file confusables.txt, into the binary // structures used by the confusable detector. // // The binary structures are described in uspoof_impl.h // // 1. parse the data, building 4 hash tables, one each for the SL, SA, ML and MA // tables. Each maps from a UChar32 to a String. // // 2. Sort all of the strings encountered by length, since they will need to // be stored in that order in the final string table. // // 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the // list because that will be the ordering of our runtime table. // // 4. Generate the run time string table. This is generated before the key & value // tables because we need the string indexes when building those tables. // // 5. Build the run-time key and value tables. These are parallel tables, and are built // at the same time // SPUString::SPUString(UnicodeString *s) { fStr = s; fStrTableIndex = 0; } SPUString::~SPUString() { delete fStr; } SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { fVec = new UVector(status); fHash = uhash_open(uhash_hashUnicodeString, // key hash function uhash_compareUnicodeString, // Key Comparator NULL, // Value Comparator &status); } SPUStringPool::~SPUStringPool() { int i; for (i=fVec->size()-1; i>=0; i--) { SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); delete s; } delete fVec; uhash_close(fHash); } int32_t SPUStringPool::size() { return fVec->size(); } SPUString *SPUStringPool::getByIndex(int32_t index) { SPUString *retString = (SPUString *)fVec->elementAt(index); return retString; } // Comparison function for ordering strings in the string pool. // Compare by length first, then, within a group of the same length, // by code point order. // Conforms to the type signature for a USortComparator in uvector.h static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { const SPUString *sL = static_cast<const SPUString *>(left.pointer); const SPUString *sR = static_cast<const SPUString *>(right.pointer); int32_t lenL = sL->fStr->length(); int32_t lenR = sR->fStr->length(); if (lenL < lenR) { return -1; } else if (lenL > lenR) { return 1; } else { return sL->fStr->compare(*(sR->fStr)); } } void SPUStringPool::sort(UErrorCode &status) { fVec->sort(SPUStringCompare, status); } SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); if (hashedString != NULL) { delete src; } else { hashedString = new SPUString(src); uhash_put(fHash, src, hashedString, &status); fVec->addElement(hashedString, status); } return hashedString; } ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : fSpoofImpl(spImpl), fInput(NULL), fSLTable(NULL), fSATable(NULL), fMLTable(NULL), fMATable(NULL), fKeySet(NULL), fKeyVec(NULL), fValueVec(NULL), fStringTable(NULL), fStringLengthsTable(NULL), stringPool(NULL), fParseLine(NULL), fParseHexNum(NULL), fLineNum(0) { if (U_FAILURE(status)) { return; } fSLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); fSATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); fMLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); fMATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); fKeySet = new UnicodeSet(); fKeyVec = new UVector(status); fValueVec = new UVector(status); stringPool = new SPUStringPool(status); } ConfusabledataBuilder::~ConfusabledataBuilder() { uprv_free(fInput); uregex_close(fParseLine); uregex_close(fParseHexNum); uhash_close(fSLTable); uhash_close(fSATable); uhash_close(fMLTable); uhash_close(fMATable); delete fKeySet; delete fKeyVec; delete fStringTable; delete fStringLengthsTable; delete fValueVec; delete stringPool; } void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { if (U_FAILURE(status)) { return; } ConfusabledataBuilder builder(spImpl, status); builder.build(confusables, confusablesLen, status); if (U_FAILURE(status) && errorType != NULL) { *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; pe->line = builder.fLineNum; } } void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, UErrorCode &status) { // Convert the user input data from UTF-8 to UChar (UTF-16) int32_t inputLen = 0; if (U_FAILURE(status)) { return; } u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); if (status != U_BUFFER_OVERFLOW_ERROR) { return; } status = U_ZERO_ERROR; fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); if (fInput == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); // Regular Expression to parse a line from Confusables.txt. The expression will match // any line. What was matched is determined by examining which capture groups have a match. // Capture Group 1: the source char // Capture Group 2: the replacement chars // Capture Group 3-6 the table type, SL, SA, ML, or MA // Capture Group 7: A blank or comment only line. // Capture Group 8: A syntactically invalid line. Anything that didn't match before. // Example Line from the confusables.txt source file: // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " fParseLine = uregex_openC( "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type "[ \\t]*(?:#.*?)?$" // Match any trailing #comment "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment "|^(.*?)$", // OR match any line, which catches illegal lines. 0, NULL, &status); // Regular expression for parsing a hex number out of a space-separated list of them. // Capture group 1 gets the number, with spaces removed. fParseHexNum = uregex_openC("\\s*([0-9A-F]+)", 0, NULL, &status); // Zap any Byte Order Mark at the start of input. Changing it to a space is benign // given the syntax of the input. if (*fInput == 0xfeff) { *fInput = 0x20; } // Parse the input, one line per iteration of this loop. uregex_setText(fParseLine, fInput, inputLen, &status); while (uregex_findNext(fParseLine, &status)) { fLineNum++; if (uregex_start(fParseLine, 7, &status) >= 0) { // this was a blank or comment line. continue; } if (uregex_start(fParseLine, 8, &status) >= 0) { // input file syntax error. status = U_PARSE_ERROR; return; } // We have a good input line. Extract the key character and mapping string, and // put them into the appropriate mapping table. UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), uregex_end(fParseLine, 1, &status), status); int32_t mapStringStart = uregex_start(fParseLine, 2, &status); int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); UnicodeString *mapString = new UnicodeString(); if (mapString == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } while (uregex_findNext(fParseHexNum, &status)) { UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), uregex_end(fParseHexNum, 1, &status), status); mapString->append(c); } U_ASSERT(mapString->length() >= 1); // Put the map (value) string into the string pool // This a little like a Java intern() - any duplicates will be eliminated. SPUString *smapString = stringPool->addString(mapString, status); // Add the UChar32 -> string mapping to the appropriate table. UHashtable *table = uregex_start(fParseLine, 3, &status) >= 0 ? fSLTable : uregex_start(fParseLine, 4, &status) >= 0 ? fSATable : uregex_start(fParseLine, 5, &status) >= 0 ? fMLTable : uregex_start(fParseLine, 6, &status) >= 0 ? fMATable : NULL; U_ASSERT(table != NULL); uhash_iput(table, keyChar, smapString, &status); fKeySet->add(keyChar); if (U_FAILURE(status)) { return; } } // Input data is now all parsed and collected. // Now create the run-time binary form of the data. // // This is done in two steps. First the data is assembled into vectors and strings, // for ease of construction, then the contents of these collections are dumped // into the actual raw-bytes data storage. // Build up the string array, and record the index of each string therein // in the (build time only) string pool. // Strings of length one are not entered into the strings array. // At the same time, build up the string lengths table, which records the // position in the string table of the first string of each length >= 4. // (Strings in the table are sorted by length) stringPool->sort(status); fStringTable = new UnicodeString(); fStringLengthsTable = new UVector(status); int32_t previousStringLength = 0; int32_t previousStringIndex = 0; int32_t poolSize = stringPool->size(); int32_t i; for (i=0; i<poolSize; i++) { SPUString *s = stringPool->getByIndex(i); int32_t strLen = s->fStr->length(); int32_t strIndex = fStringTable->length(); U_ASSERT(strLen >= previousStringLength); if (strLen == 1) { // strings of length one do not get an entry in the string table. // Keep the single string character itself here, which is the same // convention that is used in the final run-time string table index. s->fStrTableIndex = s->fStr->charAt(0); } else { if ((strLen > previousStringLength) && (previousStringLength >= 4)) { fStringLengthsTable->addElement(previousStringIndex, status); fStringLengthsTable->addElement(previousStringLength, status); } s->fStrTableIndex = strIndex; fStringTable->append(*(s->fStr)); } previousStringLength = strLen; previousStringIndex = strIndex; } // Make the final entry to the string lengths table. // (it holds an entry for the _last_ string of each length, so adding the // final one doesn't happen in the main loop because no longer string was encountered.) if (previousStringLength >= 4) { fStringLengthsTable->addElement(previousStringIndex, status); fStringLengthsTable->addElement(previousStringLength, status); } // Construct the compile-time Key and Value tables // // For each key code point, check which mapping tables it applies to, // and create the final data for the key & value structures. // // The four logical mapping tables are conflated into one combined table. // If multiple logical tables have the same mapping for some key, they // share a single entry in the combined table. // If more than one mapping exists for the same key code point, multiple // entries will be created in the table for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { // It is an oddity of the UnicodeSet API that simply enumerating the contained // code points requires a nested loop. for (UChar32 keyChar=fKeySet->getRangeStart(range); keyChar <= fKeySet->getRangeEnd(range); keyChar++) { addKeyEntry(keyChar, fSLTable, USPOOF_SL_TABLE_FLAG, status); addKeyEntry(keyChar, fSATable, USPOOF_SA_TABLE_FLAG, status); addKeyEntry(keyChar, fMLTable, USPOOF_ML_TABLE_FLAG, status); addKeyEntry(keyChar, fMATable, USPOOF_MA_TABLE_FLAG, status); } } // Put the assembled data into the flat runtime array outputData(status); // All of the intermediate allocated data belongs to the ConfusabledataBuilder // object (this), and is deleted in the destructor. return; } // // outputData The confusable data has been compiled and stored in intermediate // collections and strings. Copy it from there to the final flat // binary array. // // Note that as each section is added to the output data, the // expand (reserveSpace() function will likely relocate it in memory. // Be careful with pointers. // void ConfusabledataBuilder::outputData(UErrorCode &status) { U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); // The Key Table // While copying the keys to the runtime array, // also sanity check that they are sorted. int32_t numKeys = fKeyVec->size(); int32_t *keys = static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); if (U_FAILURE(status)) { return; } int i; int32_t previousKey = 0; for (i=0; i<numKeys; i++) { int32_t key = fKeyVec->elementAti(i); U_ASSERT((key & 0x00ffffff) >= (previousKey & 0x00ffffff)); U_ASSERT((key & 0xff000000) != 0); keys[i] = key; previousKey = key; } SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); rawData->fCFUKeysSize = numKeys; fSpoofImpl->fSpoofData->fCFUKeys = keys; // The Value Table, parallels the key table int32_t numValues = fValueVec->size(); U_ASSERT(numKeys == numValues); uint16_t *values = static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); if (U_FAILURE(status)) { return; } for (i=0; i<numValues; i++) { uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); U_ASSERT(value < 0xffff); values[i] = static_cast<uint16_t>(value); } rawData = fSpoofImpl->fSpoofData->fRawData; rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); rawData->fCFUStringIndexSize = numValues; fSpoofImpl->fSpoofData->fCFUValues = values; // The Strings Table. uint32_t stringsLength = fStringTable->length(); // Reserve an extra space so the string will be nul-terminated. This is // only a convenience, for when debugging; it is not needed otherwise. UChar *strings = static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); if (U_FAILURE(status)) { return; } fStringTable->extract(strings, stringsLength+1, status); rawData = fSpoofImpl->fSpoofData->fRawData; U_ASSERT(rawData->fCFUStringTable == 0); rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); rawData->fCFUStringTableLen = stringsLength; fSpoofImpl->fSpoofData->fCFUStrings = strings; // The String Lengths Table // While copying into the runtime array do some sanity checks on the values // Each complete entry contains two fields, an index and an offset. // Lengths should increase with each entry. // Offsets should be less than the size of the string table. int32_t lengthTableLength = fStringLengthsTable->size(); uint16_t *stringLengths = static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(lengthTableLength*sizeof(uint16_t), status)); if (U_FAILURE(status)) { return; } int32_t destIndex = 0; uint32_t previousLength = 0; for (i=0; i<lengthTableLength; i+=2) { uint32_t offset = static_cast<uint32_t>(fStringLengthsTable->elementAti(i)); uint32_t length = static_cast<uint32_t>(fStringLengthsTable->elementAti(i+1)); U_ASSERT(offset < stringsLength); U_ASSERT(length < 40); U_ASSERT(length > previousLength); stringLengths[destIndex++] = static_cast<uint16_t>(offset); stringLengths[destIndex++] = static_cast<uint16_t>(length); previousLength = length; } rawData = fSpoofImpl->fSpoofData->fRawData; rawData->fCFUStringLengths = (int32_t)((char *)stringLengths - (char *)rawData); // Note: StringLengthsSize in the raw data is the number of complete entries, // each consisting of a pair of 16 bit values, hence the divide by 2. rawData->fCFUStringLengthsSize = lengthTableLength / 2; fSpoofImpl->fSpoofData->fCFUStringLengths = reinterpret_cast<SpoofStringLengthsElement *>(stringLengths); } // addKeyEntry Construction of the confusable Key and Mapping Values tables. // This is an intermediate point in the building process. // We already have the mappings in the hash tables fSLTable, etc. // This function builds corresponding run-time style table entries into // fKeyVec and fValueVec void ConfusabledataBuilder::addKeyEntry( UChar32 keyChar, // The key character UHashtable *table, // The table, one of SATable, MATable, etc. int32_t tableFlag, // One of USPOOF_SA_TABLE_FLAG, etc. UErrorCode &status) { SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(table, keyChar)); if (targetMapping == NULL) { // No mapping for this key character. // (This function is called for all four tables for each key char that // is seen anywhere, so this no entry cases are very much expected.) return; } // Check whether there is already an entry with the correct mapping. // If so, simply set the flag in the keyTable saying that the existing entry // applies to the table that we're doing now. UBool keyHasMultipleValues = FALSE; int32_t i; for (i=fKeyVec->size()-1; i>=0 ; i--) { int32_t key = fKeyVec->elementAti(i); if ((key & 0x0ffffff) != keyChar) { // We have now checked all existing key entries for this key char (if any) // without finding one with the same mapping. break; } UnicodeString mapping = getMapping(i); if (mapping == *(targetMapping->fStr)) { // The run time entry we are currently testing has the correct mapping. // Set the flag in it indicating that it applies to the new table also. key |= tableFlag; fKeyVec->setElementAt(key, i); return; } keyHasMultipleValues = TRUE; } // Need to add a new entry to the binary data being built for this mapping. // Includes adding entries to both the key table and the parallel values table. int32_t newKey = keyChar | tableFlag; if (keyHasMultipleValues) { newKey |= USPOOF_KEY_MULTIPLE_VALUES; } int32_t adjustedMappingLength = targetMapping->fStr->length() - 1; if (adjustedMappingLength>3) { adjustedMappingLength = 3; } newKey |= adjustedMappingLength << USPOOF_KEY_LENGTH_SHIFT; int32_t newData = targetMapping->fStrTableIndex; fKeyVec->addElement(newKey, status); fValueVec->addElement(newData, status); // If the preceding key entry is for the same key character (but with a different mapping) // set the multiple-values flag on it. if (keyHasMultipleValues) { int32_t previousKeyIndex = fKeyVec->size() - 2; int32_t previousKey = fKeyVec->elementAti(previousKeyIndex); previousKey |= USPOOF_KEY_MULTIPLE_VALUES; fKeyVec->setElementAt(previousKey, previousKeyIndex); } } UnicodeString ConfusabledataBuilder::getMapping(int32_t index) { int32_t key = fKeyVec->elementAti(index); int32_t value = fValueVec->elementAti(index); int32_t length = USPOOF_KEY_LENGTH_FIELD(key); int32_t lastIndexWithLen; switch (length) { case 0: return UnicodeString(static_cast<UChar>(value)); case 1: case 2: return UnicodeString(*fStringTable, value, length+1); case 3: length = 0; int32_t i; for (i=0; i<fStringLengthsTable->size(); i+=2) { lastIndexWithLen = fStringLengthsTable->elementAti(i); if (value <= lastIndexWithLen) { length = fStringLengthsTable->elementAti(i+1); break; } } U_ASSERT(length>=3); return UnicodeString(*fStringTable, value, length); default: U_ASSERT(FALSE); } return UnicodeString(); } #endif #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS