/* * linux/include/asm-arm/cacheflush.h * * Copyright (C) 1999-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _ASMARM_CACHEFLUSH_H #define _ASMARM_CACHEFLUSH_H #include <linux/sched.h> #include <linux/mm.h> #include <asm/glue.h> #include <asm/shmparam.h> #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) /* * Cache Model * =========== */ #undef _CACHE #undef MULTI_CACHE #if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) # ifdef _CACHE # define MULTI_CACHE 1 # else # define _CACHE v3 # endif #endif #if defined(CONFIG_CPU_ARM720T) # ifdef _CACHE # define MULTI_CACHE 1 # else # define _CACHE v4 # endif #endif #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) # define MULTI_CACHE 1 #endif #if defined(CONFIG_CPU_ARM926T) # ifdef _CACHE # define MULTI_CACHE 1 # else # define _CACHE arm926 # endif #endif #if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100) # ifdef _CACHE # define MULTI_CACHE 1 # else # define _CACHE v4wb # endif #endif #if defined(CONFIG_CPU_XSCALE) # ifdef _CACHE # define MULTI_CACHE 1 # else # define _CACHE xscale # endif #endif #if defined(CONFIG_CPU_XSC3) # ifdef _CACHE # define MULTI_CACHE 1 # else # define _CACHE xsc3 # endif #endif #if defined(CONFIG_CPU_V6) //# ifdef _CACHE # define MULTI_CACHE 1 //# else //# define _CACHE v6 //# endif #endif #if !defined(_CACHE) && !defined(MULTI_CACHE) #error Unknown cache maintainence model #endif /* * This flag is used to indicate that the page pointed to by a pte * is dirty and requires cleaning before returning it to the user. */ #define PG_dcache_dirty PG_arch_1 /* * MM Cache Management * =================== * * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files * implement these methods. * * Start addresses are inclusive and end addresses are exclusive; * start addresses should be rounded down, end addresses up. * * See Documentation/cachetlb.txt for more information. * Please note that the implementation of these, and the required * effects are cache-type (VIVT/VIPT/PIPT) specific. * * flush_cache_kern_all() * * Unconditionally clean and invalidate the entire cache. * * flush_cache_user_mm(mm) * * Clean and invalidate all user space cache entries * before a change of page tables. * * flush_cache_user_range(start, end, flags) * * Clean and invalidate a range of cache entries in the * specified address space before a change of page tables. * - start - user start address (inclusive, page aligned) * - end - user end address (exclusive, page aligned) * - flags - vma->vm_flags field * * coherent_kern_range(start, end) * * Ensure coherency between the Icache and the Dcache in the * region described by start, end. If you have non-snooping * Harvard caches, you need to implement this function. * - start - virtual start address * - end - virtual end address * * DMA Cache Coherency * =================== * * dma_inv_range(start, end) * * Invalidate (discard) the specified virtual address range. * May not write back any entries. If 'start' or 'end' * are not cache line aligned, those lines must be written * back. * - start - virtual start address * - end - virtual end address * * dma_clean_range(start, end) * * Clean (write back) the specified virtual address range. * - start - virtual start address * - end - virtual end address * * dma_flush_range(start, end) * * Clean and invalidate the specified virtual address range. * - start - virtual start address * - end - virtual end address */ struct cpu_cache_fns { void (*flush_kern_all)(void); void (*flush_user_all)(void); void (*flush_user_range)(unsigned long, unsigned long, unsigned int); void (*coherent_kern_range)(unsigned long, unsigned long); void (*coherent_user_range)(unsigned long, unsigned long); void (*flush_kern_dcache_page)(void *); void (*dma_inv_range)(unsigned long, unsigned long); void (*dma_clean_range)(unsigned long, unsigned long); void (*dma_flush_range)(unsigned long, unsigned long); }; /* * Select the calling method */ #ifdef MULTI_CACHE extern struct cpu_cache_fns cpu_cache; #define __cpuc_flush_kern_all cpu_cache.flush_kern_all #define __cpuc_flush_user_all cpu_cache.flush_user_all #define __cpuc_flush_user_range cpu_cache.flush_user_range #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range #define __cpuc_coherent_user_range cpu_cache.coherent_user_range #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page /* * These are private to the dma-mapping API. Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */ #define dmac_inv_range cpu_cache.dma_inv_range #define dmac_clean_range cpu_cache.dma_clean_range #define dmac_flush_range cpu_cache.dma_flush_range #else #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) extern void __cpuc_flush_kern_all(void); extern void __cpuc_flush_user_all(void); extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); extern void __cpuc_coherent_user_range(unsigned long, unsigned long); extern void __cpuc_flush_dcache_page(void *); /* * These are private to the dma-mapping API. Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */ #define dmac_inv_range __glue(_CACHE,_dma_inv_range) #define dmac_clean_range __glue(_CACHE,_dma_clean_range) #define dmac_flush_range __glue(_CACHE,_dma_flush_range) extern void dmac_inv_range(unsigned long, unsigned long); extern void dmac_clean_range(unsigned long, unsigned long); extern void dmac_flush_range(unsigned long, unsigned long); #endif /* * flush_cache_vmap() is used when creating mappings (eg, via vmap, * vmalloc, ioremap etc) in kernel space for pages. Since the * direct-mappings of these pages may contain cached data, we need * to do a full cache flush to ensure that writebacks don't corrupt * data placed into these pages via the new mappings. */ #define flush_cache_vmap(start, end) flush_cache_all() #define flush_cache_vunmap(start, end) flush_cache_all() /* * Copy user data from/to a page which is mapped into a different * processes address space. Really, we want to allow our "user * space" model to handle this. */ #define copy_to_user_page(vma, page, vaddr, dst, src, len) \ do { \ memcpy(dst, src, len); \ flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ } while (0) #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ do { \ memcpy(dst, src, len); \ } while (0) /* * Convert calls to our calling convention. */ #define flush_cache_all() __cpuc_flush_kern_all() #ifndef CONFIG_CPU_CACHE_VIPT static inline void flush_cache_mm(struct mm_struct *mm) { if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) __cpuc_flush_user_all(); } static inline void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), vma->vm_flags); } static inline void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) { if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { unsigned long addr = user_addr & PAGE_MASK; __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); } } static inline void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, unsigned long uaddr, void *kaddr, unsigned long len, int write) { if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { unsigned long addr = (unsigned long)kaddr; __cpuc_coherent_kern_range(addr, addr + len); } } #else extern void flush_cache_mm(struct mm_struct *mm); extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, unsigned long uaddr, void *kaddr, unsigned long len, int write); #endif /* * flush_cache_user_range is used when we want to ensure that the * Harvard caches are synchronised for the user space address range. * This is used for the ARM private sys_cacheflush system call. */ #define flush_cache_user_range(vma,start,end) \ __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) /* * Perform necessary cache operations to ensure that data previously * stored within this range of addresses can be executed by the CPU. */ #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) /* * Perform necessary cache operations to ensure that the TLB will * see data written in the specified area. */ #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) /* * flush_dcache_page is used when the kernel has written to the page * cache page at virtual address page->virtual. * * If this page isn't mapped (ie, page_mapping == NULL), or it might * have userspace mappings, then we _must_ always clean + invalidate * the dcache entries associated with the kernel mapping. * * Otherwise we can defer the operation, and clean the cache when we are * about to change to user space. This is the same method as used on SPARC64. * See update_mmu_cache for the user space part. */ extern void flush_dcache_page(struct page *); #define flush_dcache_mmap_lock(mapping) \ write_lock_irq(&(mapping)->tree_lock) #define flush_dcache_mmap_unlock(mapping) \ write_unlock_irq(&(mapping)->tree_lock) #define flush_icache_user_range(vma,page,addr,len) \ flush_dcache_page(page) /* * We don't appear to need to do anything here. In fact, if we did, we'd * duplicate cache flushing elsewhere performed by flush_dcache_page(). */ #define flush_icache_page(vma,page) do { } while (0) #define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) #define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) #define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) #define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) #define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) #define cache_is_vivt() 1 #define cache_is_vipt() 0 #define cache_is_vipt_nonaliasing() 0 #define cache_is_vipt_aliasing() 0 #elif defined(CONFIG_CPU_CACHE_VIPT) #define cache_is_vivt() 0 #define cache_is_vipt() 1 #define cache_is_vipt_nonaliasing() \ ({ \ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ __cacheid_vipt_nonaliasing(__val); \ }) #define cache_is_vipt_aliasing() \ ({ \ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ __cacheid_vipt_aliasing(__val); \ }) #else #define cache_is_vivt() \ ({ \ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ }) #define cache_is_vipt() \ ({ \ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ __cacheid_present(__val) && __cacheid_vipt(__val); \ }) #define cache_is_vipt_nonaliasing() \ ({ \ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ __cacheid_present(__val) && \ __cacheid_vipt_nonaliasing(__val); \ }) #define cache_is_vipt_aliasing() \ ({ \ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ __cacheid_present(__val) && \ __cacheid_vipt_aliasing(__val); \ }) #endif #endif