/* * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code * distributions retain the above copyright notice and this paragraph * in its entirety, and (2) distributions including binary code include * the above copyright notice and this paragraph in its entirety in * the documentation or other materials provided with the distribution. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. * * Original code by Andy Heffernan (ahh@juniper.net) */ #ifndef lint static const char rcsid[] _U_ = "@(#) $Header: /tcpdump/master/tcpdump/print-pgm.c,v 1.1.2.5 2005/06/07 22:06:16 guy Exp $"; #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <tcpdump-stdinc.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "interface.h" #include "extract.h" #include "addrtoname.h" #include "ip.h" #ifdef INET6 #include "ip6.h" #endif #include "ipproto.h" /* * PGM header (RFC 3208) */ struct pgm_header { u_int16_t pgm_sport; u_int16_t pgm_dport; u_int8_t pgm_type; u_int8_t pgm_options; u_int16_t pgm_sum; u_int8_t pgm_gsid[6]; u_int16_t pgm_length; }; struct pgm_spm { u_int32_t pgms_seq; u_int32_t pgms_trailseq; u_int32_t pgms_leadseq; u_int16_t pgms_nla_afi; u_int16_t pgms_reserved; /* ... u_int8_t pgms_nla[0]; */ /* ... options */ }; struct pgm_nak { u_int32_t pgmn_seq; u_int16_t pgmn_source_afi; u_int16_t pgmn_reserved; /* ... u_int8_t pgmn_source[0]; */ /* ... u_int16_t pgmn_group_afi */ /* ... u_int16_t pgmn_reserved2; */ /* ... u_int8_t pgmn_group[0]; */ /* ... options */ }; struct pgm_poll { u_int32_t pgmp_seq; u_int16_t pgmp_round; u_int16_t pgmp_reserved; /* ... options */ }; struct pgm_polr { u_int32_t pgmp_seq; u_int16_t pgmp_round; u_int16_t pgmp_subtype; u_int16_t pgmp_nla_afi; u_int16_t pgmp_reserved; /* ... u_int8_t pgmp_nla[0]; */ /* ... options */ }; struct pgm_data { u_int32_t pgmd_seq; u_int32_t pgmd_trailseq; /* ... options */ }; typedef enum _pgm_type { PGM_SPM = 0, /* source path message */ PGM_POLL = 1, /* POLL Request */ PGM_POLR = 2, /* POLL Response */ PGM_ODATA = 4, /* original data */ PGM_RDATA = 5, /* repair data */ PGM_NAK = 8, /* NAK */ PGM_NULLNAK = 9, /* Null NAK */ PGM_NCF = 10, /* NAK Confirmation */ PGM_ACK = 11, /* ACK for congestion control */ PGM_SPMR = 12, /* SPM request */ PGM_MAX = 255 } pgm_type; #define PGM_OPT_BIT_PRESENT 0x01 #define PGM_OPT_BIT_NETWORK 0x02 #define PGM_OPT_BIT_VAR_PKTLEN 0x40 #define PGM_OPT_BIT_PARITY 0x80 #define PGM_OPT_LENGTH 0x00 #define PGM_OPT_FRAGMENT 0x01 #define PGM_OPT_NAK_LIST 0x02 #define PGM_OPT_JOIN 0x03 #define PGM_OPT_NAK_BO_IVL 0x04 #define PGM_OPT_NAK_BO_RNG 0x05 #define PGM_OPT_REDIRECT 0x07 #define PGM_OPT_PARITY_PRM 0x08 #define PGM_OPT_PARITY_GRP 0x09 #define PGM_OPT_CURR_TGSIZE 0x0A #define PGM_OPT_NBR_UNREACH 0x0B #define PGM_OPT_PATH_NLA 0x0C #define PGM_OPT_SYN 0x0D #define PGM_OPT_FIN 0x0E #define PGM_OPT_RST 0x0F #define PGM_OPT_CR 0x10 #define PGM_OPT_CRQST 0x11 #define PGM_OPT_MASK 0x7f #define PGM_OPT_END 0x80 /* end of options marker */ #define PGM_MIN_OPT_LEN 4 #ifndef AFI_IP #define AFI_IP 1 #define AFI_IP6 2 #endif void pgm_print(register const u_char *bp, register u_int length, register const u_char *bp2) { register const struct pgm_header *pgm; register const struct ip *ip; register char ch; u_int16_t sport, dport; int addr_size; const void *nla; int nla_af; #ifdef INET6 char nla_buf[INET6_ADDRSTRLEN]; register const struct ip6_hdr *ip6; #else char nla_buf[INET_ADDRSTRLEN]; #endif u_int8_t opt_type, opt_len, flags1, flags2; u_int32_t seq, opts_len, len, offset; pgm = (struct pgm_header *)bp; ip = (struct ip *)bp2; #ifdef INET6 if (IP_V(ip) == 6) ip6 = (struct ip6_hdr *)bp2; else ip6 = NULL; #else /* INET6 */ if (IP_V(ip) == 6) { (void)printf("Can't handle IPv6"); return; } #endif /* INET6 */ ch = '\0'; if (!TTEST(pgm->pgm_dport)) { #ifdef INET6 if (ip6) { (void)printf("%s > %s: [|pgm]", ip6addr_string(&ip6->ip6_src), ip6addr_string(&ip6->ip6_dst)); return; } else #endif /* INET6 */ { (void)printf("%s > %s: [|pgm]", ipaddr_string(&ip->ip_src), ipaddr_string(&ip->ip_dst)); return; } } sport = EXTRACT_16BITS(&pgm->pgm_sport); dport = EXTRACT_16BITS(&pgm->pgm_dport); #ifdef INET6 if (ip6) { if (ip6->ip6_nxt == IPPROTO_PGM) { (void)printf("%s.%s > %s.%s: ", ip6addr_string(&ip6->ip6_src), tcpport_string(sport), ip6addr_string(&ip6->ip6_dst), tcpport_string(dport)); } else { (void)printf("%s > %s: ", tcpport_string(sport), tcpport_string(dport)); } } else #endif /*INET6*/ { if (ip->ip_p == IPPROTO_PGM) { (void)printf("%s.%s > %s.%s: ", ipaddr_string(&ip->ip_src), tcpport_string(sport), ipaddr_string(&ip->ip_dst), tcpport_string(dport)); } else { (void)printf("%s > %s: ", tcpport_string(sport), tcpport_string(dport)); } } TCHECK(*pgm); (void)printf("PGM, length %u", pgm->pgm_length); if (!vflag) return; if (length > pgm->pgm_length) length = pgm->pgm_length; (void)printf(" 0x%02x%02x%02x%02x%02x%02x ", pgm->pgm_gsid[0], pgm->pgm_gsid[1], pgm->pgm_gsid[2], pgm->pgm_gsid[3], pgm->pgm_gsid[4], pgm->pgm_gsid[5]); switch (pgm->pgm_type) { case PGM_SPM: { struct pgm_spm *spm; spm = (struct pgm_spm *)(pgm + 1); TCHECK(*spm); switch (EXTRACT_16BITS(&spm->pgms_nla_afi)) { case AFI_IP: addr_size = sizeof(struct in_addr); nla_af = AF_INET; break; #ifdef INET6 case AFI_IP6: addr_size = sizeof(struct in6_addr); nla_af = AF_INET6; break; #endif default: goto trunc; break; } bp = (u_char *) (spm + 1); TCHECK2(*bp, addr_size); nla = bp; bp += addr_size; inet_ntop(nla_af, nla, nla_buf, sizeof(nla_buf)); (void)printf("SPM seq %u trail %u lead %u nla %s", EXTRACT_32BITS(&spm->pgms_seq), EXTRACT_32BITS(&spm->pgms_trailseq), EXTRACT_32BITS(&spm->pgms_leadseq), nla_buf); break; } case PGM_POLL: { struct pgm_poll *poll; poll = (struct pgm_poll *)(pgm + 1); TCHECK(*poll); (void)printf("POLL seq %u round %u", EXTRACT_32BITS(&poll->pgmp_seq), EXTRACT_16BITS(&poll->pgmp_round)); bp = (u_char *) (poll + 1); break; } case PGM_POLR: { struct pgm_polr *polr; u_int32_t ivl, rnd, mask; polr = (struct pgm_polr *)(pgm + 1); TCHECK(*polr); switch (EXTRACT_16BITS(&polr->pgmp_nla_afi)) { case AFI_IP: addr_size = sizeof(struct in_addr); nla_af = AF_INET; break; #ifdef INET6 case AFI_IP6: addr_size = sizeof(struct in6_addr); nla_af = AF_INET6; break; #endif default: goto trunc; break; } bp = (u_char *) (polr + 1); TCHECK2(*bp, addr_size); nla = bp; bp += addr_size; inet_ntop(nla_af, nla, nla_buf, sizeof(nla_buf)); TCHECK2(*bp, sizeof(u_int32_t)); ivl = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); TCHECK2(*bp, sizeof(u_int32_t)); rnd = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); TCHECK2(*bp, sizeof(u_int32_t)); mask = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf("POLR seq %u round %u nla %s ivl %u rnd 0x%08x " "mask 0x%08x", EXTRACT_32BITS(&polr->pgmp_seq), EXTRACT_16BITS(&polr->pgmp_round), nla_buf, ivl, rnd, mask); break; } case PGM_ODATA: { struct pgm_data *odata; odata = (struct pgm_data *)(pgm + 1); TCHECK(*odata); (void)printf("ODATA trail %u seq %u", EXTRACT_32BITS(&odata->pgmd_trailseq), EXTRACT_32BITS(&odata->pgmd_seq)); bp = (u_char *) (odata + 1); break; } case PGM_RDATA: { struct pgm_data *rdata; rdata = (struct pgm_data *)(pgm + 1); TCHECK(*rdata); (void)printf("RDATA trail %u seq %u", EXTRACT_32BITS(&rdata->pgmd_trailseq), EXTRACT_32BITS(&rdata->pgmd_seq)); bp = (u_char *) (rdata + 1); break; } case PGM_NAK: case PGM_NULLNAK: case PGM_NCF: { struct pgm_nak *nak; const void *source, *group; int source_af, group_af; #ifdef INET6 char source_buf[INET6_ADDRSTRLEN], group_buf[INET6_ADDRSTRLEN]; #else char source_buf[INET_ADDRSTRLEN], group_buf[INET_ADDRSTRLEN]; #endif nak = (struct pgm_nak *)(pgm + 1); TCHECK(*nak); /* * Skip past the source, saving info along the way * and stopping if we don't have enough. */ switch (EXTRACT_16BITS(&nak->pgmn_source_afi)) { case AFI_IP: addr_size = sizeof(struct in_addr); source_af = AF_INET; break; #ifdef INET6 case AFI_IP6: addr_size = sizeof(struct in6_addr); source_af = AF_INET6; break; #endif default: goto trunc; break; } bp = (u_char *) (nak + 1); TCHECK2(*bp, addr_size); source = bp; bp += addr_size; /* * Skip past the group, saving info along the way * and stopping if we don't have enough. */ switch (EXTRACT_16BITS(bp)) { case AFI_IP: addr_size = sizeof(struct in_addr); group_af = AF_INET; break; #ifdef INET6 case AFI_IP6: addr_size = sizeof(struct in6_addr); group_af = AF_INET6; break; #endif default: goto trunc; break; } bp += (2 * sizeof(u_int16_t)); TCHECK2(*bp, addr_size); group = bp; bp += addr_size; /* * Options decoding can go here. */ inet_ntop(source_af, source, source_buf, sizeof(source_buf)); inet_ntop(group_af, group, group_buf, sizeof(group_buf)); switch (pgm->pgm_type) { case PGM_NAK: (void)printf("NAK "); break; case PGM_NULLNAK: (void)printf("NNAK "); break; case PGM_NCF: (void)printf("NCF "); break; default: break; } (void)printf("(%s -> %s), seq %u", source_buf, group_buf, EXTRACT_32BITS(&nak->pgmn_seq)); break; } case PGM_SPMR: (void)printf("SPMR"); break; default: (void)printf("UNKNOWN type %0x02x", pgm->pgm_type); break; } if (pgm->pgm_options & PGM_OPT_BIT_PRESENT) { /* * make sure there's enough for the first option header */ if (!TTEST2(*bp, PGM_MIN_OPT_LEN)) { (void)printf("[|OPT]"); return; } /* * That option header MUST be an OPT_LENGTH option * (see the first paragraph of section 9.1 in RFC 3208). */ opt_type = *bp++; if ((opt_type & PGM_OPT_MASK) != PGM_OPT_LENGTH) { (void)printf("[First option bad, should be PGM_OPT_LENGTH, is %u]", opt_type & PGM_OPT_MASK); return; } opt_len = *bp++; if (opt_len != 4) { (void)printf("[Bad OPT_LENGTH option, length %u != 4]", opt_len); return; } opts_len = EXTRACT_16BITS(bp); if (opts_len < 4) { (void)printf("[Bad total option length %u < 4]", opts_len); return; } bp += sizeof(u_int16_t); (void)printf(" OPTS LEN %d", opts_len); opts_len -= 4; while (opts_len) { if (opts_len < PGM_MIN_OPT_LEN) { (void)printf("[Total option length leaves no room for final option]"); return; } opt_type = *bp++; opt_len = *bp++; if (opt_len < PGM_MIN_OPT_LEN) { (void)printf("[Bad option, length %u < %u]", opt_len, PGM_MIN_OPT_LEN); break; } if (opts_len < opt_len) { (void)printf("[Total option length leaves no room for final option]"); return; } if (!TTEST2(*bp, opt_len - 2)) { (void)printf(" [|OPT]"); return; } switch (opt_type & PGM_OPT_MASK) { case PGM_OPT_LENGTH: if (opt_len != 4) { (void)printf("[Bad OPT_LENGTH option, length %u != 4]", opt_len); return; } (void)printf(" OPTS LEN (extra?) %d", EXTRACT_16BITS(bp)); bp += sizeof(u_int16_t); opts_len -= 4; break; case PGM_OPT_FRAGMENT: if (opt_len != 16) { (void)printf("[Bad OPT_FRAGMENT option, length %u != 16]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; seq = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); offset = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); len = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" FRAG seq %u off %u len %u", seq, offset, len); opts_len -= 16; break; case PGM_OPT_NAK_LIST: flags1 = *bp++; flags2 = *bp++; opt_len -= sizeof(u_int32_t); /* option header */ (void)printf(" NAK LIST"); while (opt_len) { if (opt_len < sizeof(u_int32_t)) { (void)printf("[Option length not a multiple of 4]"); return; } TCHECK2(*bp, sizeof(u_int32_t)); (void)printf(" %u", EXTRACT_32BITS(bp)); bp += sizeof(u_int32_t); opt_len -= sizeof(u_int32_t); opts_len -= sizeof(u_int32_t); } break; case PGM_OPT_JOIN: if (opt_len != 8) { (void)printf("[Bad OPT_JOIN option, length %u != 8]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; seq = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" JOIN %u", seq); opts_len -= 8; break; case PGM_OPT_NAK_BO_IVL: if (opt_len != 12) { (void)printf("[Bad OPT_NAK_BO_IVL option, length %u != 12]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; offset = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); seq = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" BACKOFF ivl %u ivlseq %u", offset, seq); opts_len -= 12; break; case PGM_OPT_NAK_BO_RNG: if (opt_len != 12) { (void)printf("[Bad OPT_NAK_BO_RNG option, length %u != 12]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; offset = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); seq = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" BACKOFF max %u min %u", offset, seq); opts_len -= 12; break; case PGM_OPT_REDIRECT: flags1 = *bp++; flags2 = *bp++; switch (EXTRACT_16BITS(bp)) { case AFI_IP: addr_size = sizeof(struct in_addr); nla_af = AF_INET; break; #ifdef INET6 case AFI_IP6: addr_size = sizeof(struct in6_addr); nla_af = AF_INET6; break; #endif default: goto trunc; break; } bp += (2 * sizeof(u_int16_t)); if (opt_len != 4 + addr_size) { (void)printf("[Bad OPT_REDIRECT option, length %u != 4 + address size]", opt_len); return; } TCHECK2(*bp, addr_size); nla = bp; bp += addr_size; inet_ntop(nla_af, nla, nla_buf, sizeof(nla_buf)); (void)printf(" REDIRECT %s", (char *)nla); opts_len -= 4 + addr_size; break; case PGM_OPT_PARITY_PRM: if (opt_len != 8) { (void)printf("[Bad OPT_PARITY_PRM option, length %u != 8]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; len = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" PARITY MAXTGS %u", len); opts_len -= 8; break; case PGM_OPT_PARITY_GRP: if (opt_len != 8) { (void)printf("[Bad OPT_PARITY_GRP option, length %u != 8]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; seq = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" PARITY GROUP %u", seq); opts_len -= 8; break; case PGM_OPT_CURR_TGSIZE: if (opt_len != 8) { (void)printf("[Bad OPT_CURR_TGSIZE option, length %u != 8]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; len = EXTRACT_32BITS(bp); bp += sizeof(u_int32_t); (void)printf(" PARITY ATGS %u", len); opts_len -= 8; break; case PGM_OPT_NBR_UNREACH: if (opt_len != 4) { (void)printf("[Bad OPT_NBR_UNREACH option, length %u != 4]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; (void)printf(" NBR_UNREACH"); opts_len -= 4; break; case PGM_OPT_PATH_NLA: (void)printf(" PATH_NLA [%d]", opt_len); bp += opt_len; opts_len -= opt_len; break; case PGM_OPT_SYN: if (opt_len != 4) { (void)printf("[Bad OPT_SYN option, length %u != 4]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; (void)printf(" SYN"); opts_len -= 4; break; case PGM_OPT_FIN: if (opt_len != 4) { (void)printf("[Bad OPT_FIN option, length %u != 4]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; (void)printf(" FIN"); opts_len -= 4; break; case PGM_OPT_RST: if (opt_len != 4) { (void)printf("[Bad OPT_RST option, length %u != 4]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; (void)printf(" RST"); opts_len -= 4; break; case PGM_OPT_CR: (void)printf(" CR"); bp += opt_len; opts_len -= opt_len; break; case PGM_OPT_CRQST: if (opt_len != 4) { (void)printf("[Bad OPT_CRQST option, length %u != 4]", opt_len); return; } flags1 = *bp++; flags2 = *bp++; (void)printf(" CRQST"); opts_len -= 4; break; default: (void)printf(" OPT_%02X [%d] ", opt_type, opt_len); bp += opt_len; opts_len -= opt_len; break; } if (opt_type & PGM_OPT_END) break; } } (void)printf(" [%u]", EXTRACT_16BITS(&pgm->pgm_length)); return; trunc: fputs("[|pgm]", stdout); if (ch != '\0') putchar('>'); }