// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_ARM_CODEGEN_ARM_H_ #define V8_ARM_CODEGEN_ARM_H_ namespace v8 { namespace internal { // Forward declarations class CompilationInfo; class DeferredCode; class RegisterAllocator; class RegisterFile; enum InitState { CONST_INIT, NOT_CONST_INIT }; enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // ------------------------------------------------------------------------- // Reference support // A reference is a C++ stack-allocated object that puts a // reference on the virtual frame. The reference may be consumed // by GetValue, TakeValue, SetValue, and Codegen::UnloadReference. // When the lifetime (scope) of a valid reference ends, it must have // been consumed, and be in state UNLOADED. class Reference BASE_EMBEDDED { public: // The values of the types is important, see size(). enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; Reference(CodeGenerator* cgen, Expression* expression, bool persist_after_get = false); ~Reference(); Expression* expression() const { return expression_; } Type type() const { return type_; } void set_type(Type value) { ASSERT_EQ(ILLEGAL, type_); type_ = value; } void set_unloaded() { ASSERT_NE(ILLEGAL, type_); ASSERT_NE(UNLOADED, type_); type_ = UNLOADED; } // The size the reference takes up on the stack. int size() const { return (type_ < SLOT) ? 0 : type_; } bool is_illegal() const { return type_ == ILLEGAL; } bool is_slot() const { return type_ == SLOT; } bool is_property() const { return type_ == NAMED || type_ == KEYED; } bool is_unloaded() const { return type_ == UNLOADED; } // Return the name. Only valid for named property references. Handle<String> GetName(); // Generate code to push the value of the reference on top of the // expression stack. The reference is expected to be already on top of // the expression stack, and it is consumed by the call unless the // reference is for a compound assignment. // If the reference is not consumed, it is left in place under its value. void GetValue(); // Generate code to pop a reference, push the value of the reference, // and then spill the stack frame. inline void GetValueAndSpill(); // Generate code to store the value on top of the expression stack in the // reference. The reference is expected to be immediately below the value // on the expression stack. The value is stored in the location specified // by the reference, and is left on top of the stack, after the reference // is popped from beneath it (unloaded). void SetValue(InitState init_state); private: CodeGenerator* cgen_; Expression* expression_; Type type_; // Keep the reference on the stack after get, so it can be used by set later. bool persist_after_get_; }; // ------------------------------------------------------------------------- // Code generation state // The state is passed down the AST by the code generator (and back up, in // the form of the state of the label pair). It is threaded through the // call stack. Constructing a state implicitly pushes it on the owning code // generator's stack of states, and destroying one implicitly pops it. class CodeGenState BASE_EMBEDDED { public: // Create an initial code generator state. Destroying the initial state // leaves the code generator with a NULL state. explicit CodeGenState(CodeGenerator* owner); // Create a code generator state based on a code generator's current // state. The new state has its own pair of branch labels. CodeGenState(CodeGenerator* owner, JumpTarget* true_target, JumpTarget* false_target); // Destroy a code generator state and restore the owning code generator's // previous state. ~CodeGenState(); JumpTarget* true_target() const { return true_target_; } JumpTarget* false_target() const { return false_target_; } private: CodeGenerator* owner_; JumpTarget* true_target_; JumpTarget* false_target_; CodeGenState* previous_; }; // ------------------------------------------------------------------------- // CodeGenerator class CodeGenerator: public AstVisitor { public: // Takes a function literal, generates code for it. This function should only // be called by compiler.cc. static Handle<Code> MakeCode(CompilationInfo* info); // Printing of AST, etc. as requested by flags. static void MakeCodePrologue(CompilationInfo* info); // Allocate and install the code. static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm, Code::Flags flags, CompilationInfo* info); #ifdef ENABLE_LOGGING_AND_PROFILING static bool ShouldGenerateLog(Expression* type); #endif static void SetFunctionInfo(Handle<JSFunction> fun, FunctionLiteral* lit, bool is_toplevel, Handle<Script> script); static void RecordPositions(MacroAssembler* masm, int pos); // Accessors MacroAssembler* masm() { return masm_; } VirtualFrame* frame() const { return frame_; } inline Handle<Script> script(); bool has_valid_frame() const { return frame_ != NULL; } // Set the virtual frame to be new_frame, with non-frame register // reference counts given by non_frame_registers. The non-frame // register reference counts of the old frame are returned in // non_frame_registers. void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); void DeleteFrame(); RegisterAllocator* allocator() const { return allocator_; } CodeGenState* state() { return state_; } void set_state(CodeGenState* state) { state_ = state; } void AddDeferred(DeferredCode* code) { deferred_.Add(code); } static const int kUnknownIntValue = -1; private: // Construction/Destruction explicit CodeGenerator(MacroAssembler* masm); // Accessors inline bool is_eval(); Scope* scope(); // Generating deferred code. void ProcessDeferred(); // State bool has_cc() const { return cc_reg_ != al; } JumpTarget* true_target() const { return state_->true_target(); } JumpTarget* false_target() const { return state_->false_target(); } // We don't track loop nesting level on ARM yet. int loop_nesting() const { return 0; } // Node visitors. void VisitStatements(ZoneList<Statement*>* statements); #define DEF_VISIT(type) \ void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Visit a statement and then spill the virtual frame if control flow can // reach the end of the statement (ie, it does not exit via break, // continue, return, or throw). This function is used temporarily while // the code generator is being transformed. inline void VisitAndSpill(Statement* statement); // Visit a list of statements and then spill the virtual frame if control // flow can reach the end of the list. inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements); // Main code generation function void Generate(CompilationInfo* info); // The following are used by class Reference. void LoadReference(Reference* ref); void UnloadReference(Reference* ref); static MemOperand ContextOperand(Register context, int index) { return MemOperand(context, Context::SlotOffset(index)); } MemOperand SlotOperand(Slot* slot, Register tmp); MemOperand ContextSlotOperandCheckExtensions(Slot* slot, Register tmp, Register tmp2, JumpTarget* slow); // Expressions static MemOperand GlobalObject() { return ContextOperand(cp, Context::GLOBAL_INDEX); } void LoadCondition(Expression* x, JumpTarget* true_target, JumpTarget* false_target, bool force_cc); void Load(Expression* expr); void LoadGlobal(); void LoadGlobalReceiver(Register scratch); // Generate code to push the value of an expression on top of the frame // and then spill the frame fully to memory. This function is used // temporarily while the code generator is being transformed. inline void LoadAndSpill(Expression* expression); // Call LoadCondition and then spill the virtual frame unless control flow // cannot reach the end of the expression (ie, by emitting only // unconditional jumps to the control targets). inline void LoadConditionAndSpill(Expression* expression, JumpTarget* true_target, JumpTarget* false_target, bool force_control); // Read a value from a slot and leave it on top of the expression stack. void LoadFromSlot(Slot* slot, TypeofState typeof_state); // Store the value on top of the stack to a slot. void StoreToSlot(Slot* slot, InitState init_state); // Load a keyed property, leaving it in r0. The receiver and key are // passed on the stack, and remain there. void EmitKeyedLoad(bool is_global); void LoadFromGlobalSlotCheckExtensions(Slot* slot, TypeofState typeof_state, Register tmp, Register tmp2, JumpTarget* slow); // Special code for typeof expressions: Unfortunately, we must // be careful when loading the expression in 'typeof' // expressions. We are not allowed to throw reference errors for // non-existing properties of the global object, so we must make it // look like an explicit property access, instead of an access // through the context chain. void LoadTypeofExpression(Expression* x); void ToBoolean(JumpTarget* true_target, JumpTarget* false_target); void GenericBinaryOperation(Token::Value op, OverwriteMode overwrite_mode, int known_rhs = kUnknownIntValue); void Comparison(Condition cc, Expression* left, Expression* right, bool strict = false); void SmiOperation(Token::Value op, Handle<Object> value, bool reversed, OverwriteMode mode); void CallWithArguments(ZoneList<Expression*>* arguments, CallFunctionFlags flags, int position); // Control flow void Branch(bool if_true, JumpTarget* target); void CheckStack(); struct InlineRuntimeLUT { void (CodeGenerator::*method)(ZoneList<Expression*>*); const char* name; }; static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name); bool CheckForInlineRuntimeCall(CallRuntime* node); static bool PatchInlineRuntimeEntry(Handle<String> name, const InlineRuntimeLUT& new_entry, InlineRuntimeLUT* old_entry); static Handle<Code> ComputeLazyCompile(int argc); void ProcessDeclarations(ZoneList<Declaration*>* declarations); static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop); // Declare global variables and functions in the given array of // name/value pairs. void DeclareGlobals(Handle<FixedArray> pairs); // Instantiate the function boilerplate. void InstantiateBoilerplate(Handle<JSFunction> boilerplate); // Support for type checks. void GenerateIsSmi(ZoneList<Expression*>* args); void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); void GenerateIsArray(ZoneList<Expression*>* args); void GenerateIsRegExp(ZoneList<Expression*>* args); void GenerateIsObject(ZoneList<Expression*>* args); void GenerateIsFunction(ZoneList<Expression*>* args); void GenerateIsUndetectableObject(ZoneList<Expression*>* args); // Support for construct call checks. void GenerateIsConstructCall(ZoneList<Expression*>* args); // Support for arguments.length and arguments[?]. void GenerateArgumentsLength(ZoneList<Expression*>* args); void GenerateArgumentsAccess(ZoneList<Expression*>* args); // Support for accessing the class and value fields of an object. void GenerateClassOf(ZoneList<Expression*>* args); void GenerateValueOf(ZoneList<Expression*>* args); void GenerateSetValueOf(ZoneList<Expression*>* args); // Fast support for charCodeAt(n). void GenerateFastCharCodeAt(ZoneList<Expression*>* args); // Fast support for object equality testing. void GenerateObjectEquals(ZoneList<Expression*>* args); void GenerateLog(ZoneList<Expression*>* args); // Fast support for Math.random(). void GenerateRandomPositiveSmi(ZoneList<Expression*>* args); // Fast support for StringAdd. void GenerateStringAdd(ZoneList<Expression*>* args); // Fast support for SubString. void GenerateSubString(ZoneList<Expression*>* args); // Fast support for StringCompare. void GenerateStringCompare(ZoneList<Expression*>* args); // Support for direct calls from JavaScript to native RegExp code. void GenerateRegExpExec(ZoneList<Expression*>* args); // Fast support for number to string. void GenerateNumberToString(ZoneList<Expression*>* args); // Fast call to sine function. void GenerateMathSin(ZoneList<Expression*>* args); void GenerateMathCos(ZoneList<Expression*>* args); // Simple condition analysis. enum ConditionAnalysis { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW }; ConditionAnalysis AnalyzeCondition(Expression* cond); // Methods used to indicate which source code is generated for. Source // positions are collected by the assembler and emitted with the relocation // information. void CodeForFunctionPosition(FunctionLiteral* fun); void CodeForReturnPosition(FunctionLiteral* fun); void CodeForStatementPosition(Statement* node); void CodeForDoWhileConditionPosition(DoWhileStatement* stmt); void CodeForSourcePosition(int pos); #ifdef DEBUG // True if the registers are valid for entry to a block. bool HasValidEntryRegisters(); #endif List<DeferredCode*> deferred_; // Assembler MacroAssembler* masm_; // to generate code CompilationInfo* info_; // Code generation state VirtualFrame* frame_; RegisterAllocator* allocator_; Condition cc_reg_; CodeGenState* state_; // Jump targets BreakTarget function_return_; // True if the function return is shadowed (ie, jumping to the target // function_return_ does not jump to the true function return, but rather // to some unlinking code). bool function_return_is_shadowed_; static InlineRuntimeLUT kInlineRuntimeLUT[]; friend class VirtualFrame; friend class JumpTarget; friend class Reference; friend class FastCodeGenerator; friend class FullCodeGenerator; friend class FullCodeGenSyntaxChecker; DISALLOW_COPY_AND_ASSIGN(CodeGenerator); }; class GenericBinaryOpStub : public CodeStub { public: GenericBinaryOpStub(Token::Value op, OverwriteMode mode, int constant_rhs = CodeGenerator::kUnknownIntValue) : op_(op), mode_(mode), constant_rhs_(constant_rhs), specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)), name_(NULL) { } private: Token::Value op_; OverwriteMode mode_; int constant_rhs_; bool specialized_on_rhs_; char* name_; static const int kMaxKnownRhs = 0x40000000; // Minor key encoding in 16 bits. class ModeBits: public BitField<OverwriteMode, 0, 2> {}; class OpBits: public BitField<Token::Value, 2, 6> {}; class KnownIntBits: public BitField<int, 8, 8> {}; Major MajorKey() { return GenericBinaryOp; } int MinorKey() { // Encode the parameters in a unique 16 bit value. return OpBits::encode(op_) | ModeBits::encode(mode_) | KnownIntBits::encode(MinorKeyForKnownInt()); } void Generate(MacroAssembler* masm); void HandleNonSmiBitwiseOp(MacroAssembler* masm); static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) { if (constant_rhs == CodeGenerator::kUnknownIntValue) return false; if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3; if (op == Token::MOD) { if (constant_rhs <= 1) return false; if (constant_rhs <= 10) return true; if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true; return false; } return false; } int MinorKeyForKnownInt() { if (!specialized_on_rhs_) return 0; if (constant_rhs_ <= 10) return constant_rhs_ + 1; ASSERT(IsPowerOf2(constant_rhs_)); int key = 12; int d = constant_rhs_; while ((d & 1) == 0) { key++; d >>= 1; } return key; } const char* GetName(); #ifdef DEBUG void Print() { if (!specialized_on_rhs_) { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); } else { PrintF("GenericBinaryOpStub (%s by %d)\n", Token::String(op_), constant_rhs_); } } #endif }; class StringStubBase: public CodeStub { public: // Generate code for copying characters using a simple loop. This should only // be used in places where the number of characters is small and the // additional setup and checking in GenerateCopyCharactersLong adds too much // overhead. Copying of overlapping regions is not supported. // Dest register ends at the position after the last character written. void GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii); // Generate code for copying a large number of characters. This function // is allowed to spend extra time setting up conditions to make copying // faster. Copying of overlapping regions is not supported. // Dest register ends at the position after the last character written. void GenerateCopyCharactersLong(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, int flags); }; // Flag that indicates how to generate code for the stub StringAddStub. enum StringAddFlags { NO_STRING_ADD_FLAGS = 0, NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub. }; class StringAddStub: public StringStubBase { public: explicit StringAddStub(StringAddFlags flags) { string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0); } private: Major MajorKey() { return StringAdd; } int MinorKey() { return string_check_ ? 0 : 1; } void Generate(MacroAssembler* masm); // Should the stub check whether arguments are strings? bool string_check_; }; class SubStringStub: public StringStubBase { public: SubStringStub() {} private: Major MajorKey() { return SubString; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); }; class StringCompareStub: public CodeStub { public: StringCompareStub() { } // Compare two flat ASCII strings and returns result in r0. // Does not use the stack. static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4); private: Major MajorKey() { return StringCompare; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); }; } } // namespace v8::internal #endif // V8_ARM_CODEGEN_ARM_H_