// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "parser.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // o r1: the JS function object being called (ie, ourselves) // o cp: our context // o fp: our caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-arm.h for its layout. void FullCodeGenerator::Generate(CompilationInfo* info, Mode mode) { ASSERT(info_ == NULL); info_ = info; SetFunctionPosition(function()); if (mode == PRIMARY) { int locals_count = scope()->num_stack_slots(); __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit()); if (locals_count > 0) { // Load undefined value here, so the value is ready for the loop // below. __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); } // Adjust fp to point to caller's fp. __ add(fp, sp, Operand(2 * kPointerSize)); { Comment cmnt(masm_, "[ Allocate locals"); for (int i = 0; i < locals_count; i++) { __ push(ip); } } bool function_in_register = true; // Possibly allocate a local context. if (scope()->num_heap_slots() > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is in r1. __ push(r1); __ CallRuntime(Runtime::kNewContext, 1); function_in_register = false; // Context is returned in both r0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = scope()->parameter(i)->slot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ ldr(r0, MemOperand(fp, parameter_offset)); // Store it in the context. __ mov(r1, Operand(Context::SlotOffset(slot->index()))); __ str(r0, MemOperand(cp, r1)); // Update the write barrier. This clobbers all involved // registers, so we have use a third register to avoid // clobbering cp. __ mov(r2, Operand(cp)); __ RecordWrite(r2, r1, r0); } } } Variable* arguments = scope()->arguments()->AsVariable(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register) { // Load this again, if it's used by the local context below. __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } else { __ mov(r3, r1); } // Receiver is just before the parameters on the caller's stack. int offset = scope()->num_parameters() * kPointerSize; __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset + offset)); __ mov(r1, Operand(Smi::FromInt(scope()->num_parameters()))); __ stm(db_w, sp, r3.bit() | r2.bit() | r1.bit()); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiever and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); __ CallStub(&stub); // Duplicate the value; move-to-slot operation might clobber registers. __ mov(r3, r0); Move(arguments->slot(), r0, r1, r2); Slot* dot_arguments_slot = scope()->arguments_shadow()->AsVariable()->slot(); Move(dot_arguments_slot, r3, r1, r2); } } // Check the stack for overflow or break request. // Put the lr setup instruction in the delay slot. The kInstrSize is // added to the implicit 8 byte offset that always applies to operations // with pc and gives a return address 12 bytes down. { Comment cmnt(masm_, "[ Stack check"); __ LoadRoot(r2, Heap::kStackLimitRootIndex); __ add(lr, pc, Operand(Assembler::kInstrSize)); __ cmp(sp, Operand(r2)); StackCheckStub stub; __ mov(pc, Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), RelocInfo::CODE_TARGET), LeaveCC, lo); } { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope()->declarations()); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(function()->body()); ASSERT(loop_depth() == 0); } { Comment cmnt(masm_, "[ return <undefined>;"); // Emit a 'return undefined' in case control fell off the end of the // body. __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(function()->end_position()); } void FullCodeGenerator::EmitReturnSequence(int position) { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ b(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in r0. __ push(r0); __ CallRuntime(Runtime::kTraceExit, 1); } // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); // Calculate the exact length of the return sequence and make sure that // the constant pool is not emitted inside of the return sequence. int num_parameters = scope()->num_parameters(); int32_t sp_delta = (num_parameters + 1) * kPointerSize; int return_sequence_length = Assembler::kJSReturnSequenceLength; if (!masm_->ImmediateFitsAddrMode1Instruction(sp_delta)) { // Additional mov instruction generated. return_sequence_length++; } masm_->BlockConstPoolFor(return_sequence_length); CodeGenerator::RecordPositions(masm_, position); __ RecordJSReturn(); __ mov(sp, fp); __ ldm(ia_w, sp, fp.bit() | lr.bit()); __ add(sp, sp, Operand(sp_delta)); __ Jump(lr); // Check that the size of the code used for returning matches what is // expected by the debugger. The add instruction above is an addressing // mode 1 instruction where there are restrictions on which immediate values // can be encoded in the instruction and which immediate values requires // use of an additional instruction for moving the immediate to a temporary // register. ASSERT_EQ(return_sequence_length, masm_->InstructionsGeneratedSince(&check_exit_codesize)); } } void FullCodeGenerator::Apply(Expression::Context context, Register reg) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: // Move value into place. switch (location_) { case kAccumulator: if (!reg.is(result_register())) __ mov(result_register(), reg); break; case kStack: __ push(reg); break; } break; case Expression::kValueTest: case Expression::kTestValue: // Push an extra copy of the value in case it's needed. __ push(reg); // Fall through. case Expression::kTest: // We always call the runtime on ARM, so push the value as argument. __ push(reg); DoTest(context); break; } } void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // On ARM we have to move the value into a register to do anything // with it. Move(result_register(), slot); Apply(context, result_register()); break; } } void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: break; // Nothing to do. case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // On ARM we have to move the value into a register to do anything // with it. __ mov(result_register(), Operand(lit->handle())); Apply(context, result_register()); break; } } void FullCodeGenerator::ApplyTOS(Expression::Context context) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ Drop(1); break; case Expression::kValue: switch (location_) { case kAccumulator: __ pop(result_register()); break; case kStack: break; } break; case Expression::kValueTest: case Expression::kTestValue: // Duplicate the value on the stack in case it's needed. __ ldr(ip, MemOperand(sp)); __ push(ip); // Fall through. case Expression::kTest: DoTest(context); break; } } void FullCodeGenerator::DropAndApply(int count, Expression::Context context, Register reg) { ASSERT(count > 0); ASSERT(!reg.is(sp)); switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ Drop(count); break; case Expression::kValue: switch (location_) { case kAccumulator: __ Drop(count); if (!reg.is(result_register())) __ mov(result_register(), reg); break; case kStack: if (count > 1) __ Drop(count - 1); __ str(reg, MemOperand(sp)); break; } break; case Expression::kTest: if (count > 1) __ Drop(count - 1); __ str(reg, MemOperand(sp)); DoTest(context); break; case Expression::kValueTest: case Expression::kTestValue: if (count == 1) { __ str(reg, MemOperand(sp)); __ push(reg); } else { // count > 1 __ Drop(count - 2); __ str(reg, MemOperand(sp, kPointerSize)); __ str(reg, MemOperand(sp)); } DoTest(context); break; } } void FullCodeGenerator::Apply(Expression::Context context, Label* materialize_true, Label* materialize_false) { switch (context) { case Expression::kUninitialized: case Expression::kEffect: ASSERT_EQ(materialize_true, materialize_false); __ bind(materialize_true); break; case Expression::kValue: { Label done; __ bind(materialize_true); __ mov(result_register(), Operand(Factory::true_value())); __ jmp(&done); __ bind(materialize_false); __ mov(result_register(), Operand(Factory::false_value())); __ bind(&done); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } break; } case Expression::kTest: break; case Expression::kValueTest: __ bind(materialize_true); __ mov(result_register(), Operand(Factory::true_value())); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } __ jmp(true_label_); break; case Expression::kTestValue: __ bind(materialize_false); __ mov(result_register(), Operand(Factory::false_value())); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } __ jmp(false_label_); break; } } void FullCodeGenerator::DoTest(Expression::Context context) { // The value to test is pushed on the stack, and duplicated on the stack // if necessary (for value/test and test/value contexts). ASSERT_NE(NULL, true_label_); ASSERT_NE(NULL, false_label_); // Call the runtime to find the boolean value of the source and then // translate it into control flow to the pair of labels. __ CallRuntime(Runtime::kToBool, 1); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r0, ip); // Complete based on the context. switch (context) { case Expression::kUninitialized: case Expression::kEffect: case Expression::kValue: UNREACHABLE(); case Expression::kTest: __ b(eq, true_label_); __ jmp(false_label_); break; case Expression::kValueTest: { Label discard; switch (location_) { case kAccumulator: __ b(ne, &discard); __ pop(result_register()); __ jmp(true_label_); break; case kStack: __ b(eq, true_label_); break; } __ bind(&discard); __ Drop(1); __ jmp(false_label_); break; } case Expression::kTestValue: { Label discard; switch (location_) { case kAccumulator: __ b(eq, &discard); __ pop(result_register()); __ jmp(false_label_); break; case kStack: __ b(ne, false_label_); break; } __ bind(&discard); __ Drop(1); __ jmp(true_label_); break; } } } MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: return MemOperand(fp, SlotOffset(slot)); case Slot::CONTEXT: { int context_chain_length = scope()->ContextChainLength(slot->var()->scope()); __ LoadContext(scratch, context_chain_length); return CodeGenerator::ContextOperand(scratch, slot->index()); } case Slot::LOOKUP: UNREACHABLE(); } UNREACHABLE(); return MemOperand(r0, 0); } void FullCodeGenerator::Move(Register destination, Slot* source) { // Use destination as scratch. MemOperand slot_operand = EmitSlotSearch(source, destination); __ ldr(destination, slot_operand); } void FullCodeGenerator::Move(Slot* dst, Register src, Register scratch1, Register scratch2) { ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented. ASSERT(!scratch1.is(src) && !scratch2.is(src)); MemOperand location = EmitSlotSearch(dst, scratch1); __ str(src, location); // Emit the write barrier code if the location is in the heap. if (dst->type() == Slot::CONTEXT) { __ mov(scratch2, Operand(Context::SlotOffset(dst->index()))); __ RecordWrite(scratch1, scratch2, src); } } void FullCodeGenerator::VisitDeclaration(Declaration* decl) { Comment cmnt(masm_, "[ Declaration"); Variable* var = decl->proxy()->var(); ASSERT(var != NULL); // Must have been resolved. Slot* slot = var->slot(); Property* prop = var->AsProperty(); if (slot != NULL) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (decl->mode() == Variable::CONST) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ str(ip, MemOperand(fp, SlotOffset(slot))); } else if (decl->fun() != NULL) { VisitForValue(decl->fun(), kAccumulator); __ str(result_register(), MemOperand(fp, SlotOffset(slot))); } break; case Slot::CONTEXT: // We bypass the general EmitSlotSearch because we know more about // this specific context. // The variable in the decl always resides in the current context. ASSERT_EQ(0, scope()->ContextChainLength(var->scope())); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ ldr(r1, CodeGenerator::ContextOperand(cp, Context::FCONTEXT_INDEX)); __ cmp(r1, cp); __ Check(eq, "Unexpected declaration in current context."); } if (decl->mode() == Variable::CONST) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ str(ip, CodeGenerator::ContextOperand(cp, slot->index())); // No write barrier since the_hole_value is in old space. } else if (decl->fun() != NULL) { VisitForValue(decl->fun(), kAccumulator); __ str(result_register(), CodeGenerator::ContextOperand(cp, slot->index())); int offset = Context::SlotOffset(slot->index()); __ mov(r2, Operand(offset)); // We know that we have written a function, which is not a smi. __ mov(r1, Operand(cp)); __ RecordWrite(r1, r2, result_register()); } break; case Slot::LOOKUP: { __ mov(r2, Operand(var->name())); // Declaration nodes are always introduced in one of two modes. ASSERT(decl->mode() == Variable::VAR || decl->mode() == Variable::CONST); PropertyAttributes attr = (decl->mode() == Variable::VAR) ? NONE : READ_ONLY; __ mov(r1, Operand(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (decl->mode() == Variable::CONST) { __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); __ stm(db_w, sp, cp.bit() | r2.bit() | r1.bit() | r0.bit()); } else if (decl->fun() != NULL) { __ stm(db_w, sp, cp.bit() | r2.bit() | r1.bit()); // Push initial value for function declaration. VisitForValue(decl->fun(), kStack); } else { __ mov(r0, Operand(Smi::FromInt(0))); // No initial value! __ stm(db_w, sp, cp.bit() | r2.bit() | r1.bit() | r0.bit()); } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } else if (prop != NULL) { if (decl->fun() != NULL || decl->mode() == Variable::CONST) { // We are declaring a function or constant that rewrites to a // property. Use (keyed) IC to set the initial value. VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); if (decl->fun() != NULL) { VisitForValue(decl->fun(), kAccumulator); } else { __ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex); } Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Value in r0 is ignored (declarations are statements). Receiver // and key on stack are discarded. __ Drop(2); } } } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. // The context is the first argument. __ mov(r1, Operand(pairs)); __ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0))); __ stm(db_w, sp, cp.bit() | r1.bit() | r0.bit()); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle<JSFunction> boilerplate = Compiler::BuildBoilerplate(expr, script(), this); if (HasStackOverflow()) return; ASSERT(boilerplate->IsBoilerplate()); // Create a new closure. __ mov(r0, Operand(boilerplate)); __ stm(db_w, sp, cp.bit() | r0.bit()); __ CallRuntime(Runtime::kNewClosure, 2); Apply(context_, r0); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr->var(), context_); } void FullCodeGenerator::EmitVariableLoad(Variable* var, Expression::Context context) { // Four cases: non-this global variables, lookup slots, all other // types of slots, and parameters that rewrite to explicit property // accesses on the arguments object. Slot* slot = var->slot(); Property* property = var->AsProperty(); if (var->is_global() && !var->is_this()) { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in r2 and the global // object on the stack. __ ldr(ip, CodeGenerator::GlobalObject()); __ push(ip); __ mov(r2, Operand(var->name())); Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); DropAndApply(1, context, r0); } else if (slot != NULL && slot->type() == Slot::LOOKUP) { Comment cmnt(masm_, "Lookup slot"); __ mov(r1, Operand(var->name())); __ stm(db_w, sp, cp.bit() | r1.bit()); // Context and name. __ CallRuntime(Runtime::kLoadContextSlot, 2); Apply(context, r0); } else if (slot != NULL) { Comment cmnt(masm_, (slot->type() == Slot::CONTEXT) ? "Context slot" : "Stack slot"); Apply(context, slot); } else { Comment cmnt(masm_, "Rewritten parameter"); ASSERT_NOT_NULL(property); // Rewritten parameter accesses are of the form "slot[literal]". // Assert that the object is in a slot. Variable* object_var = property->obj()->AsVariableProxy()->AsVariable(); ASSERT_NOT_NULL(object_var); Slot* object_slot = object_var->slot(); ASSERT_NOT_NULL(object_slot); // Load the object. Move(r2, object_slot); // Assert that the key is a smi. Literal* key_literal = property->key()->AsLiteral(); ASSERT_NOT_NULL(key_literal); ASSERT(key_literal->handle()->IsSmi()); // Load the key. __ mov(r1, Operand(key_literal->handle())); // Push both as arguments to ic. __ stm(db_w, sp, r2.bit() | r1.bit()); // Do a keyed property load. Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Drop key and object left on the stack by IC, and push the result. DropAndApply(2, context, r0); } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label done; // Registers will be used as follows: // r4 = JS function, literals array // r3 = literal index // r2 = RegExp pattern // r1 = RegExp flags // r0 = temp + return value (RegExp literal) __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ ldr(r0, FieldMemOperand(r4, literal_offset)); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ cmp(r0, ip); __ b(ne, &done); __ mov(r3, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r2, Operand(expr->pattern())); __ mov(r1, Operand(expr->flags())); __ stm(db_w, sp, r4.bit() | r3.bit() | r2.bit() | r1.bit()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ bind(&done); Apply(context_, r0); } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); __ ldr(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r2, FieldMemOperand(r2, JSFunction::kLiteralsOffset)); __ mov(r1, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r0, Operand(expr->constant_properties())); __ stm(db_w, sp, r2.bit() | r1.bit() | r0.bit()); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 3); } else { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 3); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in r0. bool result_saved = false; for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(r0); // Save result on stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { VisitForValue(value, kAccumulator); __ mov(r2, Operand(key->handle())); __ ldr(r1, MemOperand(sp)); Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: // Duplicate receiver on stack. __ ldr(r0, MemOperand(sp)); __ push(r0); VisitForValue(key, kStack); VisitForValue(value, kStack); __ CallRuntime(Runtime::kSetProperty, 3); break; case ObjectLiteral::Property::GETTER: case ObjectLiteral::Property::SETTER: // Duplicate receiver on stack. __ ldr(r0, MemOperand(sp)); __ push(r0); VisitForValue(key, kStack); __ mov(r1, Operand(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0))); __ push(r1); VisitForValue(value, kStack); __ CallRuntime(Runtime::kDefineAccessor, 4); break; } } if (result_saved) { ApplyTOS(context_); } else { Apply(context_, r0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); __ mov(r1, Operand(expr->constant_elements())); __ stm(db_w, sp, r3.bit() | r2.bit() | r1.bit()); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. ZoneList<Expression*>* subexprs = expr->values(); for (int i = 0, len = subexprs->length(); i < len; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(r0); result_saved = true; } VisitForValue(subexpr, kAccumulator); // Store the subexpression value in the array's elements. __ ldr(r1, MemOperand(sp)); // Copy of array literal. __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ str(result_register(), FieldMemOperand(r1, offset)); // Update the write barrier for the array store with r0 as the scratch // register. __ mov(r2, Operand(offset)); __ RecordWrite(r1, r2, result_register()); } if (result_saved) { ApplyTOS(context_); } else { Apply(context_, r0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); ASSERT(expr->op() != Token::INIT_CONST); // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->target()->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the accumulator. VisitForValue(prop->obj(), kAccumulator); __ push(result_register()); } else { VisitForValue(prop->obj(), kStack); } break; case KEYED_PROPERTY: VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); break; } // If we have a compound assignment: Get value of LHS expression and // store in on top of the stack. if (expr->is_compound()) { Location saved_location = location_; location_ = kStack; switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()->var(), Expression::kValue); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(prop); __ push(result_register()); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(prop); __ push(result_register()); break; } location_ = saved_location; } // Evaluate RHS expression. Expression* rhs = expr->value(); VisitForValue(rhs, kAccumulator); // If we have a compound assignment: Apply operator. if (expr->is_compound()) { Location saved_location = location_; location_ = kAccumulator; EmitBinaryOp(expr->binary_op(), Expression::kValue); location_ = saved_location; } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), context_); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ mov(r2, Operand(key->handle())); Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitBinaryOp(Token::Value op, Expression::Context context) { __ pop(r1); GenericBinaryOpStub stub(op, NO_OVERWRITE); __ CallStub(&stub); Apply(context, r0); } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Expression::Context context) { // Three main cases: global variables, lookup slots, and all other // types of slots. Left-hand-side parameters that rewrite to // explicit property accesses do not reach here. ASSERT(var != NULL); ASSERT(var->is_global() || var->slot() != NULL); Slot* slot = var->slot(); if (var->is_global()) { ASSERT(!var->is_this()); // Assignment to a global variable. Use inline caching for the // assignment. Right-hand-side value is passed in r0, variable name in // r2, and the global object in r1. __ mov(r2, Operand(var->name())); __ ldr(r1, CodeGenerator::GlobalObject()); Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); } else if (slot != NULL && slot->type() == Slot::LOOKUP) { __ push(result_register()); // Value. __ mov(r1, Operand(var->name())); __ stm(db_w, sp, cp.bit() | r1.bit()); // Context and name. __ CallRuntime(Runtime::kStoreContextSlot, 3); } else if (var->slot() != NULL) { Slot* slot = var->slot(); switch (slot->type()) { case Slot::LOCAL: case Slot::PARAMETER: __ str(result_register(), MemOperand(fp, SlotOffset(slot))); break; case Slot::CONTEXT: { MemOperand target = EmitSlotSearch(slot, r1); __ str(result_register(), target); // RecordWrite may destroy all its register arguments. __ mov(r3, result_register()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; __ mov(r2, Operand(offset)); __ RecordWrite(r1, r2, r3); break; } case Slot::LOOKUP: UNREACHABLE(); break; } } else { // Variables rewritten as properties are not treated as variables in // assignments. UNREACHABLE(); } Apply(context, result_register()); } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is now under value. __ push(ip); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ mov(r2, Operand(prop->key()->AsLiteral()->handle())); if (expr->ends_initialization_block()) { __ ldr(r1, MemOperand(sp)); } else { __ pop(r1); } Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(r0); // Result of assignment, saved even if not needed. __ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is under value. __ push(ip); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(r0); DropAndApply(1, context_, r0); } else { Apply(context_, r0); } } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ ldr(ip, MemOperand(sp, 2 * kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(r0); // Result of assignment, saved even if not needed. // Receiver is under the key and value. __ ldr(ip, MemOperand(sp, 2 * kPointerSize)); __ push(ip); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(r0); } // Receiver and key are still on stack. DropAndApply(2, context_, r0); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); // Evaluate receiver. VisitForValue(expr->obj(), kStack); if (key->IsPropertyName()) { EmitNamedPropertyLoad(expr); // Drop receiver left on the stack by IC. DropAndApply(1, context_, r0); } else { VisitForValue(expr->key(), kStack); EmitKeyedPropertyLoad(expr); // Drop key and receiver left on the stack by IC. DropAndApply(2, context_, r0); } } void FullCodeGenerator::EmitCallWithIC(Call* expr, Handle<Object> name, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } __ mov(r2, Operand(name)); // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); __ Call(ic, mode); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); Apply(context_, r0); } void FullCodeGenerator::EmitCallWithStub(Call* expr) { // Code common for calls using the call stub. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); DropAndApply(1, context_, r0); } void FullCodeGenerator::VisitCall(Call* expr) { Comment cmnt(masm_, "[ Call"); Expression* fun = expr->expression(); Variable* var = fun->AsVariableProxy()->AsVariable(); if (var != NULL && var->is_possibly_eval()) { // Call to the identifier 'eval'. UNREACHABLE(); } else if (var != NULL && !var->is_this() && var->is_global()) { // Push global object as receiver for the call IC. __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // Call to a lookup slot. UNREACHABLE(); } else if (fun->AsProperty() != NULL) { // Call to an object property. Property* prop = fun->AsProperty(); Literal* key = prop->key()->AsLiteral(); if (key != NULL && key->handle()->IsSymbol()) { // Call to a named property, use call IC. VisitForValue(prop->obj(), kStack); EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET); } else { // Call to a keyed property, use keyed load IC followed by function // call. VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); // Record source code position for IC call. SetSourcePosition(prop->position()); Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Load receiver object into r1. if (prop->is_synthetic()) { __ ldr(r1, CodeGenerator::GlobalObject()); __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); } else { __ ldr(r1, MemOperand(sp, kPointerSize)); } // Overwrite (object, key) with (function, receiver). __ str(r0, MemOperand(sp, kPointerSize)); __ str(r1, MemOperand(sp)); EmitCallWithStub(expr); } } else { // Call to some other expression. If the expression is an anonymous // function literal not called in a loop, mark it as one that should // also use the fast code generator. FunctionLiteral* lit = fun->AsFunctionLiteral(); if (lit != NULL && lit->name()->Equals(Heap::empty_string()) && loop_depth() == 0) { lit->set_try_full_codegen(true); } VisitForValue(fun, kStack); // Load global receiver object. __ ldr(r1, CodeGenerator::GlobalObject()); __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset)); __ push(r1); // Emit function call. EmitCallWithStub(expr); } } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push function on the stack. VisitForValue(expr->expression(), kStack); // Push global object (receiver). __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function, arg_count into r1 and r0. __ mov(r0, Operand(arg_count)); // Function is in sp[arg_count + 1]. __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall)); __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); // Replace function on TOS with result in r0, or pop it. DropAndApply(1, context_, r0); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Comment cmnt(masm_, "[ CallRuntime"); ZoneList<Expression*>* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ ldr(r0, CodeGenerator::GlobalObject()); __ ldr(r0, FieldMemOperand(r0, GlobalObject::kBuiltinsOffset)); __ push(r0); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } if (expr->is_jsruntime()) { // Call the JS runtime function. __ mov(r2, Operand(expr->name())); Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, NOT_IN_LOOP); __ Call(ic, RelocInfo::CODE_TARGET); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // Call the C runtime function. __ CallRuntime(expr->function(), arg_count); } Apply(context_, r0); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); switch (context_) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: break; case Expression::kValue: __ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } break; case Expression::kTestValue: // Value is false so it's needed. __ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex); switch (location_) { case kAccumulator: break; case kStack: __ push(result_register()); break; } // Fall through. case Expression::kTest: case Expression::kValueTest: __ jmp(false_label_); break; } break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); Label materialize_true, materialize_false, done; // Initially assume a pure test context. Notice that the labels are // swapped. Label* if_true = false_label_; Label* if_false = true_label_; switch (context_) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: if_true = &done; if_false = &done; break; case Expression::kValue: if_true = &materialize_false; if_false = &materialize_true; break; case Expression::kTest: break; case Expression::kValueTest: if_false = &materialize_true; break; case Expression::kTestValue: if_true = &materialize_false; break; } VisitForControl(expr->expression(), if_true, if_false); Apply(context_, if_false, if_true); // Labels swapped. break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) { Comment cmnt(masm_, "Global variable"); __ ldr(r0, CodeGenerator::GlobalObject()); __ push(r0); __ mov(r2, Operand(proxy->name())); Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); // Use a regular load, not a contextual load, to avoid a reference // error. __ Call(ic, RelocInfo::CODE_TARGET); __ str(r0, MemOperand(sp)); } else if (proxy != NULL && proxy->var()->slot() != NULL && proxy->var()->slot()->type() == Slot::LOOKUP) { __ mov(r0, Operand(proxy->name())); __ stm(db_w, sp, cp.bit() | r0.bit()); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); __ push(r0); } else { // This expression cannot throw a reference error at the top level. VisitForValue(expr->expression(), kStack); } __ CallRuntime(Runtime::kTypeof, 1); Apply(context_, r0); break; } case Token::ADD: { Comment cmt(masm_, "[ UnaryOperation (ADD)"); VisitForValue(expr->expression(), kAccumulator); Label no_conversion; __ tst(result_register(), Operand(kSmiTagMask)); __ b(eq, &no_conversion); __ push(r0); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS); __ bind(&no_conversion); Apply(context_, result_register()); break; } case Token::SUB: { Comment cmt(masm_, "[ UnaryOperation (SUB)"); bool overwrite = (expr->expression()->AsBinaryOperation() != NULL && expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); GenericUnaryOpStub stub(Token::SUB, overwrite); // GenericUnaryOpStub expects the argument to be in the // accumulator register r0. VisitForValue(expr->expression(), kAccumulator); __ CallStub(&stub); Apply(context_, r0); break; } case Token::BIT_NOT: { Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)"); bool overwrite = (expr->expression()->AsBinaryOperation() != NULL && expr->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); // GenericUnaryOpStub expects the argument to be in the // accumulator register r0. VisitForValue(expr->expression(), kAccumulator); // Avoid calling the stub for Smis. Label smi, done; __ tst(result_register(), Operand(kSmiTagMask)); __ b(eq, &smi); // Non-smi: call stub leaving result in accumulator register. __ CallStub(&stub); __ b(&done); // Perform operation directly on Smis. __ bind(&smi); __ mvn(result_register(), Operand(result_register())); // Bit-clear inverted smi-tag. __ bic(result_register(), result_register(), Operand(kSmiTagMask)); __ bind(&done); Apply(context_, result_register()); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); // Expression can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); Location saved_location = location_; location_ = kAccumulator; EmitVariableLoad(expr->expression()->AsVariableProxy()->var(), Expression::kValue); location_ = saved_location; } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && context_ != Expression::kEffect) { __ mov(ip, Operand(Smi::FromInt(0))); __ push(ip); } VisitForValue(prop->obj(), kStack); if (assign_type == NAMED_PROPERTY) { EmitNamedPropertyLoad(prop); } else { VisitForValue(prop->key(), kStack); EmitKeyedPropertyLoad(prop); } } // Call ToNumber only if operand is not a smi. Label no_conversion; __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &no_conversion); __ push(r0); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS); __ bind(&no_conversion); // Save result for postfix expressions. if (expr->is_postfix()) { switch (context_) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Do not save result. break; case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(r0); break; case NAMED_PROPERTY: __ str(r0, MemOperand(sp, kPointerSize)); break; case KEYED_PROPERTY: __ str(r0, MemOperand(sp, 2 * kPointerSize)); break; } break; } } // Inline smi case if we are in a loop. Label stub_call, done; int count_value = expr->op() == Token::INC ? 1 : -1; if (loop_depth() > 0) { __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC); __ b(vs, &stub_call); // We could eliminate this smi check if we split the code at // the first smi check before calling ToNumber. __ tst(r0, Operand(kSmiTagMask)); __ b(eq, &done); __ bind(&stub_call); // Call stub. Undo operation first. __ sub(r0, r0, Operand(Smi::FromInt(count_value))); } __ mov(r1, Operand(Smi::FromInt(count_value))); GenericBinaryOpStub stub(Token::ADD, NO_OVERWRITE); __ CallStub(&stub); __ bind(&done); // Store the value returned in r0. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Expression::kEffect); // For all contexts except kEffect: We have the result on // top of the stack. if (context_ != Expression::kEffect) { ApplyTOS(context_); } } else { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), context_); } break; case NAMED_PROPERTY: { __ mov(r2, Operand(prop->key()->AsLiteral()->handle())); __ pop(r1); Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { if (context_ != Expression::kEffect) { ApplyTOS(context_); } } else { Apply(context_, r0); } break; } case KEYED_PROPERTY: { Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { __ Drop(2); // Result is on the stack under the key and the receiver. if (context_ != Expression::kEffect) { ApplyTOS(context_); } } else { DropAndApply(2, context_, r0); } break; } } } void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { Comment cmnt(masm_, "[ BinaryOperation"); switch (expr->op()) { case Token::COMMA: VisitForEffect(expr->left()); Visit(expr->right()); break; case Token::OR: case Token::AND: EmitLogicalOperation(expr); break; case Token::ADD: case Token::SUB: case Token::DIV: case Token::MOD: case Token::MUL: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: VisitForValue(expr->left(), kStack); VisitForValue(expr->right(), kAccumulator); EmitBinaryOp(expr->op(), context_); break; default: UNREACHABLE(); } } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false, done; // Initially assume we are in a test context. Label* if_true = true_label_; Label* if_false = false_label_; switch (context_) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: if_true = &done; if_false = &done; break; case Expression::kValue: if_true = &materialize_true; if_false = &materialize_false; break; case Expression::kTest: break; case Expression::kValueTest: if_true = &materialize_true; break; case Expression::kTestValue: if_false = &materialize_false; break; } VisitForValue(expr->left(), kStack); switch (expr->op()) { case Token::IN: VisitForValue(expr->right(), kStack); __ InvokeBuiltin(Builtins::IN, CALL_JS); __ LoadRoot(ip, Heap::kTrueValueRootIndex); __ cmp(r0, ip); __ b(eq, if_true); __ jmp(if_false); break; case Token::INSTANCEOF: { VisitForValue(expr->right(), kStack); InstanceofStub stub; __ CallStub(&stub); __ tst(r0, r0); __ b(eq, if_true); // The stub returns 0 for true. __ jmp(if_false); break; } default: { VisitForValue(expr->right(), kAccumulator); Condition cc = eq; bool strict = false; switch (expr->op()) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = eq; __ pop(r1); break; case Token::LT: cc = lt; __ pop(r1); break; case Token::GT: // Reverse left and right sides to obtain ECMA-262 conversion order. cc = lt; __ mov(r1, result_register()); __ pop(r0); break; case Token::LTE: // Reverse left and right sides to obtain ECMA-262 conversion order. cc = ge; __ mov(r1, result_register()); __ pop(r0); break; case Token::GTE: cc = ge; __ pop(r1); break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } // The comparison stub expects the smi vs. smi case to be handled // before it is called. Label slow_case; __ orr(r2, r0, Operand(r1)); __ tst(r2, Operand(kSmiTagMask)); __ b(ne, &slow_case); __ cmp(r1, r0); __ b(cc, if_true); __ jmp(if_false); __ bind(&slow_case); CompareStub stub(cc, strict); __ CallStub(&stub); __ cmp(r0, Operand(0)); __ b(cc, if_true); __ jmp(if_false); } } // Convert the result of the comparison into one expected for this // expression's context. Apply(context_, if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); Apply(context_, r0); } Register FullCodeGenerator::result_register() { return r0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ str(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ ldr(dst, CodeGenerator::ContextOperand(cp, context_index)); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { ASSERT(!result_register().is(r1)); // Store result register while executing finally block. __ push(result_register()); // Cook return address in link register to stack (smi encoded Code* delta) __ sub(r1, lr, Operand(masm_->CodeObject())); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); ASSERT_EQ(0, kSmiTag); __ add(r1, r1, Operand(r1)); // Convert to smi. __ push(r1); } void FullCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(r1)); // Restore result register from stack. __ pop(r1); // Uncook return address and return. __ pop(result_register()); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); __ mov(r1, Operand(r1, ASR, 1)); // Un-smi-tag value. __ add(pc, r1, Operand(masm_->CodeObject())); } #undef __ } } // namespace v8::internal