// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Declares a Simulator for ARM instructions if we are not generating a native // ARM binary. This Simulator allows us to run and debug ARM code generation on // regular desktop machines. // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, // which will start execution in the Simulator or forwards to the real entry // on a ARM HW platform. #ifndef V8_ARM_SIMULATOR_ARM_H_ #define V8_ARM_SIMULATOR_ARM_H_ #include "allocation.h" #if defined(__arm__) // When running without a simulator we call the entry directly. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ (entry(p0, p1, p2, p3, p4)) // The stack limit beyond which we will throw stack overflow errors in // generated code. Because generated code on arm uses the C stack, we // just use the C stack limit. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { return c_limit; } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { return try_catch_address; } static inline void UnregisterCTryCatch() { } }; // Call the generated regexp code directly. The entry function pointer should // expect eight int/pointer sized arguments and return an int. #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \ entry(p0, p1, p2, p3, p4, p5, p6) #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ reinterpret_cast<TryCatch*>(try_catch_address) #else // defined(__arm__) // When running with the simulator transition into simulated execution at this // point. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ reinterpret_cast<Object*>( \ assembler::arm::Simulator::current()->Call(FUNCTION_ADDR(entry), 5, \ p0, p1, p2, p3, p4)) #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \ assembler::arm::Simulator::current()->Call( \ FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6) #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ try_catch_address == NULL ? \ NULL : *(reinterpret_cast<TryCatch**>(try_catch_address)) #include "constants-arm.h" namespace assembler { namespace arm { class Simulator { public: friend class Debugger; enum Register { no_reg = -1, r0 = 0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, num_registers, sp = 13, lr = 14, pc = 15, s0 = 0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, num_s_registers = 32, d0 = 0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, num_d_registers = 16 }; Simulator(); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. static Simulator* current(); // Accessors for register state. Reading the pc value adheres to the ARM // architecture specification and is off by a 8 from the currently executing // instruction. void set_register(int reg, int32_t value); int32_t get_register(int reg) const; // Support for VFP. void set_s_register(int reg, unsigned int value); unsigned int get_s_register(int reg) const; void set_d_register_from_double(int dreg, const double& dbl); double get_double_from_d_register(int dreg); void set_s_register_from_float(int sreg, const float dbl); float get_float_from_s_register(int sreg); void set_s_register_from_sinteger(int reg, const int value); int get_sinteger_from_s_register(int reg); // Special case of set_register and get_register to access the raw PC value. void set_pc(int32_t value); int32_t get_pc() const; // Accessor to the internal simulator stack area. uintptr_t StackLimit() const; // Executes ARM instructions until the PC reaches end_sim_pc. void Execute(); // Call on program start. static void Initialize(); // V8 generally calls into generated JS code with 5 parameters and into // generated RegExp code with 7 parameters. This is a convenience function, // which sets up the simulator state and grabs the result on return. int32_t Call(byte* entry, int argument_count, ...); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_lr = -1, // A pc value used to signal the simulator to stop execution. Generally // the lr is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2 }; // Unsupported instructions use Format to print an error and stop execution. void Format(Instr* instr, const char* format); // Checks if the current instruction should be executed based on its // condition bits. bool ConditionallyExecute(Instr* instr); // Helper functions to set the conditional flags in the architecture state. void SetNZFlags(int32_t val); void SetCFlag(bool val); void SetVFlag(bool val); bool CarryFrom(int32_t left, int32_t right); bool BorrowFrom(int32_t left, int32_t right); bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition); // Support for VFP. void Compute_FPSCR_Flags(double val1, double val2); void Copy_FPSCR_to_APSR(); // Helper functions to decode common "addressing" modes int32_t GetShiftRm(Instr* instr, bool* carry_out); int32_t GetImm(Instr* instr, bool* carry_out); void HandleRList(Instr* instr, bool load); void SoftwareInterrupt(Instr* instr); // Read and write memory. inline uint8_t ReadBU(int32_t addr); inline int8_t ReadB(int32_t addr); inline void WriteB(int32_t addr, uint8_t value); inline void WriteB(int32_t addr, int8_t value); inline uint16_t ReadHU(int32_t addr, Instr* instr); inline int16_t ReadH(int32_t addr, Instr* instr); // Note: Overloaded on the sign of the value. inline void WriteH(int32_t addr, uint16_t value, Instr* instr); inline void WriteH(int32_t addr, int16_t value, Instr* instr); inline int ReadW(int32_t addr, Instr* instr); inline void WriteW(int32_t addr, int value, Instr* instr); // Executing is handled based on the instruction type. void DecodeType01(Instr* instr); // both type 0 and type 1 rolled into one void DecodeType2(Instr* instr); void DecodeType3(Instr* instr); void DecodeType4(Instr* instr); void DecodeType5(Instr* instr); void DecodeType6(Instr* instr); void DecodeType7(Instr* instr); void DecodeUnconditional(Instr* instr); // Support for VFP. void DecodeTypeVFP(Instr* instr); void DecodeType6CoprocessorIns(Instr* instr); // Executes one instruction. void InstructionDecode(Instr* instr); // Runtime call support. static void* RedirectExternalReference(void* external_function, bool fp_return); // For use in calls that take two double values, constructed from r0, r1, r2 // and r3. void GetFpArgs(double* x, double* y); void SetFpResult(const double& result); void TrashCallerSaveRegisters(); // Architecture state. int32_t registers_[16]; bool n_flag_; bool z_flag_; bool c_flag_; bool v_flag_; // VFP architecture state. unsigned int vfp_register[num_s_registers]; bool n_flag_FPSCR_; bool z_flag_FPSCR_; bool c_flag_FPSCR_; bool v_flag_FPSCR_; // VFP FP exception flags architecture state. bool inv_op_vfp_flag_; bool div_zero_vfp_flag_; bool overflow_vfp_flag_; bool underflow_vfp_flag_; bool inexact_vfp_flag_; // Simulator support. char* stack_; bool pc_modified_; int icount_; static bool initialized_; // Registered breakpoints. Instr* break_pc_; instr_t break_instr_; }; } } // namespace assembler::arm // The simulator has its own stack. Thus it has a different stack limit from // the C-based native code. Setting the c_limit to indicate a very small // stack cause stack overflow errors, since the simulator ignores the input. // This is unlikely to be an issue in practice, though it might cause testing // trouble down the line. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) { return assembler::arm::Simulator::current()->StackLimit(); } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { assembler::arm::Simulator* sim = assembler::arm::Simulator::current(); return sim->PushAddress(try_catch_address); } static inline void UnregisterCTryCatch() { assembler::arm::Simulator::current()->PopAddress(); } }; #endif // defined(__arm__) #endif // V8_ARM_SIMULATOR_ARM_H_