// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_CODEGEN_H_ #define V8_CODEGEN_H_ #include "ast.h" #include "code-stubs.h" #include "runtime.h" #include "number-info.h" // Include the declaration of the architecture defined class CodeGenerator. // The contract to the shared code is that the the CodeGenerator is a subclass // of Visitor and that the following methods are available publicly: // MakeCode // MakeCodePrologue // MakeCodeEpilogue // masm // frame // script // has_valid_frame // SetFrame // DeleteFrame // allocator // AddDeferred // in_spilled_code // set_in_spilled_code // RecordPositions // // These methods are either used privately by the shared code or implemented as // shared code: // CodeGenerator // ~CodeGenerator // ProcessDeferred // Generate // ComputeLazyCompile // BuildBoilerplate // ComputeCallInitialize // ComputeCallInitializeInLoop // ProcessDeclarations // DeclareGlobals // FindInlineRuntimeLUT // CheckForInlineRuntimeCall // PatchInlineRuntimeEntry // AnalyzeCondition // CodeForFunctionPosition // CodeForReturnPosition // CodeForStatementPosition // CodeForDoWhileConditionPosition // CodeForSourcePosition // Mode to overwrite BinaryExpression values. enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT }; // Types of uncatchable exceptions. enum UncatchableExceptionType { OUT_OF_MEMORY, TERMINATION }; #if V8_TARGET_ARCH_IA32 #include "ia32/codegen-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/codegen-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/codegen-arm.h" #elif V8_TARGET_ARCH_MIPS #include "mips/codegen-mips.h" #else #error Unsupported target architecture. #endif #include "register-allocator.h" namespace v8 { namespace internal { // Support for "structured" code comments. #ifdef DEBUG class Comment BASE_EMBEDDED { public: Comment(MacroAssembler* masm, const char* msg); ~Comment(); private: MacroAssembler* masm_; const char* msg_; }; #else class Comment BASE_EMBEDDED { public: Comment(MacroAssembler*, const char*) {} }; #endif // DEBUG // Code generation can be nested. Code generation scopes form a stack // of active code generators. class CodeGeneratorScope BASE_EMBEDDED { public: explicit CodeGeneratorScope(CodeGenerator* cgen) { previous_ = top_; top_ = cgen; } ~CodeGeneratorScope() { top_ = previous_; } static CodeGenerator* Current() { ASSERT(top_ != NULL); return top_; } private: static CodeGenerator* top_; CodeGenerator* previous_; }; // Deferred code objects are small pieces of code that are compiled // out of line. They are used to defer the compilation of uncommon // paths thereby avoiding expensive jumps around uncommon code parts. class DeferredCode: public ZoneObject { public: DeferredCode(); virtual ~DeferredCode() { } virtual void Generate() = 0; MacroAssembler* masm() { return masm_; } int statement_position() const { return statement_position_; } int position() const { return position_; } Label* entry_label() { return &entry_label_; } Label* exit_label() { return &exit_label_; } #ifdef DEBUG void set_comment(const char* comment) { comment_ = comment; } const char* comment() const { return comment_; } #else void set_comment(const char* comment) { } const char* comment() const { return ""; } #endif inline void Jump(); inline void Branch(Condition cc); void BindExit() { masm_->bind(&exit_label_); } void SaveRegisters(); void RestoreRegisters(); protected: MacroAssembler* masm_; private: // Constants indicating special actions. They should not be multiples // of kPointerSize so they will not collide with valid offsets from // the frame pointer. static const int kIgnore = -1; static const int kPush = 1; // This flag is ored with a valid offset from the frame pointer, so // it should fit in the low zero bits of a valid offset. static const int kSyncedFlag = 2; int statement_position_; int position_; Label entry_label_; Label exit_label_; int registers_[RegisterAllocator::kNumRegisters]; #ifdef DEBUG const char* comment_; #endif DISALLOW_COPY_AND_ASSIGN(DeferredCode); }; class StackCheckStub : public CodeStub { public: StackCheckStub() { } void Generate(MacroAssembler* masm); private: const char* GetName() { return "StackCheckStub"; } Major MajorKey() { return StackCheck; } int MinorKey() { return 0; } }; class FastNewClosureStub : public CodeStub { public: void Generate(MacroAssembler* masm); private: const char* GetName() { return "FastNewClosureStub"; } Major MajorKey() { return FastNewClosure; } int MinorKey() { return 0; } }; class FastNewContextStub : public CodeStub { public: static const int kMaximumSlots = 64; explicit FastNewContextStub(int slots) : slots_(slots) { ASSERT(slots_ > 0 && slots <= kMaximumSlots); } void Generate(MacroAssembler* masm); private: int slots_; const char* GetName() { return "FastNewContextStub"; } Major MajorKey() { return FastNewContext; } int MinorKey() { return slots_; } }; class FastCloneShallowArrayStub : public CodeStub { public: static const int kMaximumLength = 8; explicit FastCloneShallowArrayStub(int length) : length_(length) { ASSERT(length >= 0 && length <= kMaximumLength); } void Generate(MacroAssembler* masm); private: int length_; const char* GetName() { return "FastCloneShallowArrayStub"; } Major MajorKey() { return FastCloneShallowArray; } int MinorKey() { return length_; } }; class InstanceofStub: public CodeStub { public: InstanceofStub() { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return Instanceof; } int MinorKey() { return 0; } }; class GenericUnaryOpStub : public CodeStub { public: GenericUnaryOpStub(Token::Value op, bool overwrite) : op_(op), overwrite_(overwrite) { } private: Token::Value op_; bool overwrite_; class OverwriteField: public BitField<int, 0, 1> {}; class OpField: public BitField<Token::Value, 1, kMinorBits - 1> {}; Major MajorKey() { return GenericUnaryOp; } int MinorKey() { return OpField::encode(op_) | OverwriteField::encode(overwrite_); } void Generate(MacroAssembler* masm); const char* GetName(); }; enum NaNInformation { kBothCouldBeNaN, kCantBothBeNaN }; class CompareStub: public CodeStub { public: CompareStub(Condition cc, bool strict, NaNInformation nan_info = kBothCouldBeNaN) : cc_(cc), strict_(strict), never_nan_nan_(nan_info == kCantBothBeNaN) { } void Generate(MacroAssembler* masm); private: Condition cc_; bool strict_; // Only used for 'equal' comparisons. Tells the stub that we already know // that at least one side of the comparison is not NaN. This allows the // stub to use object identity in the positive case. We ignore it when // generating the minor key for other comparisons to avoid creating more // stubs. bool never_nan_nan_; Major MajorKey() { return Compare; } int MinorKey(); // Branch to the label if the given object isn't a symbol. void BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch); // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. const char* GetName(); #ifdef DEBUG void Print() { PrintF("CompareStub (cc %d), (strict %s)\n", static_cast<int>(cc_), strict_ ? "true" : "false"); } #endif }; class CEntryStub : public CodeStub { public: explicit CEntryStub(int result_size, ExitFrame::Mode mode = ExitFrame::MODE_NORMAL) : result_size_(result_size), mode_(mode) { } void Generate(MacroAssembler* masm); private: void GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope); void GenerateThrowTOS(MacroAssembler* masm); void GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type); // Number of pointers/values returned. const int result_size_; const ExitFrame::Mode mode_; // Minor key encoding class ExitFrameModeBits: public BitField<ExitFrame::Mode, 0, 1> {}; class IndirectResultBits: public BitField<bool, 1, 1> {}; Major MajorKey() { return CEntry; } // Minor key must differ if different result_size_ values means different // code is generated. int MinorKey(); const char* GetName() { return "CEntryStub"; } }; class ApiGetterEntryStub : public CodeStub { public: ApiGetterEntryStub(Handle<AccessorInfo> info, ApiFunction* fun) : info_(info), fun_(fun) { } void Generate(MacroAssembler* masm); virtual bool has_custom_cache() { return true; } virtual bool GetCustomCache(Code** code_out); virtual void SetCustomCache(Code* value); static const int kStackSpace = 6; static const int kArgc = 4; private: Handle<AccessorInfo> info() { return info_; } ApiFunction* fun() { return fun_; } Major MajorKey() { return NoCache; } int MinorKey() { return 0; } const char* GetName() { return "ApiEntryStub"; } // The accessor info associated with the function. Handle<AccessorInfo> info_; // The function to be called. ApiFunction* fun_; }; class JSEntryStub : public CodeStub { public: JSEntryStub() { } void Generate(MacroAssembler* masm) { GenerateBody(masm, false); } protected: void GenerateBody(MacroAssembler* masm, bool is_construct); private: Major MajorKey() { return JSEntry; } int MinorKey() { return 0; } const char* GetName() { return "JSEntryStub"; } }; class JSConstructEntryStub : public JSEntryStub { public: JSConstructEntryStub() { } void Generate(MacroAssembler* masm) { GenerateBody(masm, true); } private: int MinorKey() { return 1; } const char* GetName() { return "JSConstructEntryStub"; } }; class ArgumentsAccessStub: public CodeStub { public: enum Type { READ_LENGTH, READ_ELEMENT, NEW_OBJECT }; explicit ArgumentsAccessStub(Type type) : type_(type) { } private: Type type_; Major MajorKey() { return ArgumentsAccess; } int MinorKey() { return type_; } void Generate(MacroAssembler* masm); void GenerateReadLength(MacroAssembler* masm); void GenerateReadElement(MacroAssembler* masm); void GenerateNewObject(MacroAssembler* masm); const char* GetName() { return "ArgumentsAccessStub"; } #ifdef DEBUG void Print() { PrintF("ArgumentsAccessStub (type %d)\n", type_); } #endif }; class RegExpExecStub: public CodeStub { public: RegExpExecStub() { } private: Major MajorKey() { return RegExpExec; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); const char* GetName() { return "RegExpExecStub"; } #ifdef DEBUG void Print() { PrintF("RegExpExecStub\n"); } #endif }; class CallFunctionStub: public CodeStub { public: CallFunctionStub(int argc, InLoopFlag in_loop, CallFunctionFlags flags) : argc_(argc), in_loop_(in_loop), flags_(flags) { } void Generate(MacroAssembler* masm); private: int argc_; InLoopFlag in_loop_; CallFunctionFlags flags_; #ifdef DEBUG void Print() { PrintF("CallFunctionStub (args %d, in_loop %d, flags %d)\n", argc_, static_cast<int>(in_loop_), static_cast<int>(flags_)); } #endif // Minor key encoding in 32 bits with Bitfield <Type, shift, size>. class InLoopBits: public BitField<InLoopFlag, 0, 1> {}; class FlagBits: public BitField<CallFunctionFlags, 1, 1> {}; class ArgcBits: public BitField<int, 2, 32 - 2> {}; Major MajorKey() { return CallFunction; } int MinorKey() { // Encode the parameters in a unique 32 bit value. return InLoopBits::encode(in_loop_) | FlagBits::encode(flags_) | ArgcBits::encode(argc_); } InLoopFlag InLoop() { return in_loop_; } bool ReceiverMightBeValue() { return (flags_ & RECEIVER_MIGHT_BE_VALUE) != 0; } public: static int ExtractArgcFromMinorKey(int minor_key) { return ArgcBits::decode(minor_key); } }; class ToBooleanStub: public CodeStub { public: ToBooleanStub() { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return ToBoolean; } int MinorKey() { return 0; } }; } // namespace internal } // namespace v8 #endif // V8_CODEGEN_H_