// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "register-allocator-inl.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // VirtualFrame implementation. // When cloned, a frame is a deep copy of the original. VirtualFrame::VirtualFrame(VirtualFrame* original) : elements_(original->element_count()), stack_pointer_(original->stack_pointer_) { elements_.AddAll(original->elements_); // Copy register locations from original. memcpy(®ister_locations_, original->register_locations_, sizeof(register_locations_)); } // Create a duplicate of an existing valid frame element. // We can pass an optional number type information that will override the // existing information about the backing element. The new information must // not conflict with the existing type information and must be equally or // more precise. The default parameter value kUninitialized means that there // is no additional information. FrameElement VirtualFrame::CopyElementAt(int index, NumberInfo::Type info) { ASSERT(index >= 0); ASSERT(index < element_count()); FrameElement target = elements_[index]; FrameElement result; switch (target.type()) { case FrameElement::CONSTANT: // We do not copy constants and instead return a fresh unsynced // constant. result = FrameElement::ConstantElement(target.handle(), FrameElement::NOT_SYNCED); break; case FrameElement::COPY: // We do not allow copies of copies, so we follow one link to // the actual backing store of a copy before making a copy. index = target.index(); ASSERT(elements_[index].is_memory() || elements_[index].is_register()); // Fall through. case FrameElement::MEMORY: // Fall through. case FrameElement::REGISTER: { // All copies are backed by memory or register locations. result.set_type(FrameElement::COPY); result.clear_copied(); result.clear_sync(); result.set_index(index); elements_[index].set_copied(); // Update backing element's number information. NumberInfo::Type existing = elements_[index].number_info(); ASSERT(existing != NumberInfo::kUninitialized); // Assert that the new type information (a) does not conflict with the // existing one and (b) is equally or more precise. ASSERT((info == NumberInfo::kUninitialized) || (existing | info) != NumberInfo::kUninitialized); ASSERT(existing <= info); elements_[index].set_number_info(info != NumberInfo::kUninitialized ? info : existing); break; } case FrameElement::INVALID: // We should not try to copy invalid elements. UNREACHABLE(); break; } return result; } // Modify the state of the virtual frame to match the actual frame by adding // extra in-memory elements to the top of the virtual frame. The extra // elements will be externally materialized on the actual frame (eg, by // pushing an exception handler). No code is emitted. void VirtualFrame::Adjust(int count) { ASSERT(count >= 0); ASSERT(stack_pointer_ == element_count() - 1); for (int i = 0; i < count; i++) { elements_.Add(FrameElement::MemoryElement(NumberInfo::kUnknown)); } stack_pointer_ += count; } void VirtualFrame::ForgetElements(int count) { ASSERT(count >= 0); ASSERT(element_count() >= count); for (int i = 0; i < count; i++) { FrameElement last = elements_.RemoveLast(); if (last.is_register()) { // A hack to properly count register references for the code // generator's current frame and also for other frames. The // same code appears in PrepareMergeTo. if (cgen()->frame() == this) { Unuse(last.reg()); } else { set_register_location(last.reg(), kIllegalIndex); } } } } // If there are any registers referenced only by the frame, spill one. Register VirtualFrame::SpillAnyRegister() { // Find the leftmost (ordered by register number) register whose only // reference is in the frame. for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { if (is_used(i) && cgen()->allocator()->count(i) == 1) { SpillElementAt(register_location(i)); ASSERT(!cgen()->allocator()->is_used(i)); return RegisterAllocator::ToRegister(i); } } return no_reg; } // Make the type of the element at a given index be MEMORY. void VirtualFrame::SpillElementAt(int index) { if (!elements_[index].is_valid()) return; SyncElementAt(index); // Number type information is preserved. // Copies get their number information from their backing element. NumberInfo::Type info; if (!elements_[index].is_copy()) { info = elements_[index].number_info(); } else { info = elements_[elements_[index].index()].number_info(); } // The element is now in memory. Its copied flag is preserved. FrameElement new_element = FrameElement::MemoryElement(info); if (elements_[index].is_copied()) { new_element.set_copied(); } if (elements_[index].is_register()) { Unuse(elements_[index].reg()); } elements_[index] = new_element; } // Clear the dirty bit for the element at a given index. void VirtualFrame::SyncElementAt(int index) { if (index <= stack_pointer_) { if (!elements_[index].is_synced()) SyncElementBelowStackPointer(index); } else if (index == stack_pointer_ + 1) { SyncElementByPushing(index); } else { SyncRange(stack_pointer_ + 1, index); } } // Make the type of all elements be MEMORY. void VirtualFrame::SpillAll() { for (int i = 0; i < element_count(); i++) { SpillElementAt(i); } } void VirtualFrame::PrepareMergeTo(VirtualFrame* expected) { // Perform state changes on this frame that will make merge to the // expected frame simpler or else increase the likelihood that his // frame will match another. for (int i = 0; i < element_count(); i++) { FrameElement source = elements_[i]; FrameElement target = expected->elements_[i]; if (!target.is_valid() || (target.is_memory() && !source.is_memory() && source.is_synced())) { // No code needs to be generated to invalidate valid elements. // No code needs to be generated to move values to memory if // they are already synced. We perform those moves here, before // merging. if (source.is_register()) { // If the frame is the code generator's current frame, we have // to decrement both the frame-internal and global register // counts. if (cgen()->frame() == this) { Unuse(source.reg()); } else { set_register_location(source.reg(), kIllegalIndex); } } elements_[i] = target; } else if (target.is_register() && !target.is_synced() && !source.is_memory()) { // If an element's target is a register that doesn't need to be // synced, and the element is not in memory, then the sync state // of the element is irrelevant. We clear the sync bit. ASSERT(source.is_valid()); elements_[i].clear_sync(); } } } void VirtualFrame::PrepareForCall(int spilled_args, int dropped_args) { ASSERT(height() >= dropped_args); ASSERT(height() >= spilled_args); ASSERT(dropped_args <= spilled_args); SyncRange(0, element_count() - 1); // Spill registers. for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { if (is_used(i)) { SpillElementAt(register_location(i)); } } // Spill the arguments. for (int i = element_count() - spilled_args; i < element_count(); i++) { if (!elements_[i].is_memory()) { SpillElementAt(i); } } // Forget the frame elements that will be popped by the call. Forget(dropped_args); } void VirtualFrame::PrepareForReturn() { // Spill all locals. This is necessary to make sure all locals have // the right value when breaking at the return site in the debugger. for (int i = 0; i < expression_base_index(); i++) { SpillElementAt(i); } } void VirtualFrame::SetElementAt(int index, Result* value) { int frame_index = element_count() - index - 1; ASSERT(frame_index >= 0); ASSERT(frame_index < element_count()); ASSERT(value->is_valid()); FrameElement original = elements_[frame_index]; // Early exit if the element is the same as the one being set. bool same_register = original.is_register() && value->is_register() && original.reg().is(value->reg()); bool same_constant = original.is_constant() && value->is_constant() && original.handle().is_identical_to(value->handle()); if (same_register || same_constant) { value->Unuse(); return; } InvalidateFrameSlotAt(frame_index); if (value->is_register()) { if (is_used(value->reg())) { // The register already appears on the frame. Either the existing // register element, or the new element at frame_index, must be made // a copy. int i = register_location(value->reg()); if (i < frame_index) { // The register FrameElement is lower in the frame than the new copy. elements_[frame_index] = CopyElementAt(i); } else { // There was an early bailout for the case of setting a // register element to itself. ASSERT(i != frame_index); elements_[frame_index] = elements_[i]; elements_[i] = CopyElementAt(frame_index); if (elements_[frame_index].is_synced()) { elements_[i].set_sync(); } elements_[frame_index].clear_sync(); set_register_location(value->reg(), frame_index); for (int j = i + 1; j < element_count(); j++) { if (elements_[j].is_copy() && elements_[j].index() == i) { elements_[j].set_index(frame_index); } } } } else { // The register value->reg() was not already used on the frame. Use(value->reg(), frame_index); elements_[frame_index] = FrameElement::RegisterElement(value->reg(), FrameElement::NOT_SYNCED, value->number_info()); } } else { ASSERT(value->is_constant()); elements_[frame_index] = FrameElement::ConstantElement(value->handle(), FrameElement::NOT_SYNCED); } value->Unuse(); } void VirtualFrame::PushFrameSlotAt(int index) { elements_.Add(CopyElementAt(index)); } void VirtualFrame::Push(Register reg, NumberInfo::Type info) { if (is_used(reg)) { int index = register_location(reg); FrameElement element = CopyElementAt(index, info); elements_.Add(element); } else { Use(reg, element_count()); FrameElement element = FrameElement::RegisterElement(reg, FrameElement::NOT_SYNCED, info); elements_.Add(element); } } void VirtualFrame::Push(Handle<Object> value) { FrameElement element = FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED); elements_.Add(element); } void VirtualFrame::Nip(int num_dropped) { ASSERT(num_dropped >= 0); if (num_dropped == 0) return; Result tos = Pop(); if (num_dropped > 1) { Drop(num_dropped - 1); } SetElementAt(0, &tos); } bool VirtualFrame::Equals(VirtualFrame* other) { #ifdef DEBUG for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { if (register_location(i) != other->register_location(i)) { return false; } } if (element_count() != other->element_count()) return false; #endif if (stack_pointer_ != other->stack_pointer_) return false; for (int i = 0; i < element_count(); i++) { if (!elements_[i].Equals(other->elements_[i])) return false; } return true; } // Specialization of List::ResizeAdd to non-inlined version for FrameElements. // The function ResizeAdd becomes a real function, whose implementation is the // inlined ResizeAddInternal. template <> void List<FrameElement, FreeStoreAllocationPolicy>::ResizeAdd(const FrameElement& element) { ResizeAddInternal(element); } } } // namespace v8::internal