// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "macro-assembler.h" #include "serialize.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Implementation of CpuFeatures // The required user mode extensions in X64 are (from AMD64 ABI Table A.1): // fpu, tsc, cx8, cmov, mmx, sse, sse2, fxsr, syscall uint64_t CpuFeatures::supported_ = kDefaultCpuFeatures; uint64_t CpuFeatures::enabled_ = 0; uint64_t CpuFeatures::found_by_runtime_probing_ = 0; void CpuFeatures::Probe() { ASSERT(Heap::HasBeenSetup()); ASSERT(supported_ == kDefaultCpuFeatures); if (Serializer::enabled()) { supported_ |= OS::CpuFeaturesImpliedByPlatform(); return; // No features if we might serialize. } Assembler assm(NULL, 0); Label cpuid, done; #define __ assm. // Save old rsp, since we are going to modify the stack. __ push(rbp); __ pushfq(); __ push(rcx); __ push(rbx); __ movq(rbp, rsp); // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. __ pushfq(); __ pop(rax); __ movq(rdx, rax); __ xor_(rax, Immediate(0x200000)); // Flip bit 21. __ push(rax); __ popfq(); __ pushfq(); __ pop(rax); __ xor_(rax, rdx); // Different if CPUID is supported. __ j(not_zero, &cpuid); // CPUID not supported. Clear the supported features in edx:eax. __ xor_(rax, rax); __ jmp(&done); // Invoke CPUID with 1 in eax to get feature information in // ecx:edx. Temporarily enable CPUID support because we know it's // safe here. __ bind(&cpuid); __ movq(rax, Immediate(1)); supported_ = kDefaultCpuFeatures | (1 << CPUID); { Scope fscope(CPUID); __ cpuid(); // Move the result from ecx:edx to rdi. __ movl(rdi, rdx); // Zero-extended to 64 bits. __ shl(rcx, Immediate(32)); __ or_(rdi, rcx); // Get the sahf supported flag, from CPUID(0x80000001) __ movq(rax, 0x80000001, RelocInfo::NONE); __ cpuid(); } supported_ = kDefaultCpuFeatures; // Put the CPU flags in rax. // rax = (rcx & 1) | (rdi & ~1) | (1 << CPUID). __ movl(rax, Immediate(1)); __ and_(rcx, rax); // Bit 0 is set if SAHF instruction supported. __ not_(rax); __ and_(rax, rdi); __ or_(rax, rcx); __ or_(rax, Immediate(1 << CPUID)); // Done. __ bind(&done); __ movq(rsp, rbp); __ pop(rbx); __ pop(rcx); __ popfq(); __ pop(rbp); __ ret(0); #undef __ CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB), NULL); if (!code->IsCode()) return; LOG(CodeCreateEvent(Logger::BUILTIN_TAG, Code::cast(code), "CpuFeatures::Probe")); typedef uint64_t (*F0)(); F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry()); supported_ = probe(); found_by_runtime_probing_ = supported_; found_by_runtime_probing_ &= ~kDefaultCpuFeatures; uint64_t os_guarantees = OS::CpuFeaturesImpliedByPlatform(); supported_ |= os_guarantees; found_by_runtime_probing_ &= ~os_guarantees; // SSE2 and CMOV must be available on an X64 CPU. ASSERT(IsSupported(CPUID)); ASSERT(IsSupported(SSE2)); ASSERT(IsSupported(CMOV)); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo // Patch the code at the current PC with a call to the target address. // Additional guard int3 instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Load register with immediate 64 and call through a register instructions // takes up 13 bytes and int3 takes up one byte. static const int kCallCodeSize = 13; int code_size = kCallCodeSize + guard_bytes; // Create a code patcher. CodePatcher patcher(pc_, code_size); // Add a label for checking the size of the code used for returning. #ifdef DEBUG Label check_codesize; patcher.masm()->bind(&check_codesize); #endif // Patch the code. patcher.masm()->movq(r10, target, RelocInfo::NONE); patcher.masm()->call(r10); // Check that the size of the code generated is as expected. ASSERT_EQ(kCallCodeSize, patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize)); // Add the requested number of int3 instructions after the call. for (int i = 0; i < guard_bytes; i++) { patcher.masm()->int3(); } } void RelocInfo::PatchCode(byte* instructions, int instruction_count) { // Patch the code at the current address with the supplied instructions. for (int i = 0; i < instruction_count; i++) { *(pc_ + i) = *(instructions + i); } // Indicate that code has changed. CPU::FlushICache(pc_, instruction_count); } // ----------------------------------------------------------------------------- // Implementation of Operand Operand::Operand(Register base, int32_t disp) : rex_(0) { len_ = 1; if (base.is(rsp) || base.is(r12)) { // SIB byte is needed to encode (rsp + offset) or (r12 + offset). set_sib(times_1, rsp, base); } if (disp == 0 && !base.is(rbp) && !base.is(r13)) { set_modrm(0, base); } else if (is_int8(disp)) { set_modrm(1, base); set_disp8(disp); } else { set_modrm(2, base); set_disp32(disp); } } Operand::Operand(Register base, Register index, ScaleFactor scale, int32_t disp) : rex_(0) { ASSERT(!index.is(rsp)); len_ = 1; set_sib(scale, index, base); if (disp == 0 && !base.is(rbp) && !base.is(r13)) { // This call to set_modrm doesn't overwrite the REX.B (or REX.X) bits // possibly set by set_sib. set_modrm(0, rsp); } else if (is_int8(disp)) { set_modrm(1, rsp); set_disp8(disp); } else { set_modrm(2, rsp); set_disp32(disp); } } Operand::Operand(Register index, ScaleFactor scale, int32_t disp) : rex_(0) { ASSERT(!index.is(rsp)); len_ = 1; set_modrm(0, rsp); set_sib(scale, index, rbp); set_disp32(disp); } // ----------------------------------------------------------------------------- // Implementation of Assembler. #ifdef GENERATED_CODE_COVERAGE static void InitCoverageLog(); #endif byte* Assembler::spare_buffer_ = NULL; Assembler::Assembler(void* buffer, int buffer_size) : code_targets_(100) { if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (spare_buffer_ != NULL) { buffer = spare_buffer_; spare_buffer_ = NULL; } } if (buffer == NULL) { buffer_ = NewArray<byte>(buffer_size); } else { buffer_ = static_cast<byte*>(buffer); } buffer_size_ = buffer_size; own_buffer_ = true; } else { // Use externally provided buffer instead. ASSERT(buffer_size > 0); buffer_ = static_cast<byte*>(buffer); buffer_size_ = buffer_size; own_buffer_ = false; } // Clear the buffer in debug mode unless it was provided by the // caller in which case we can't be sure it's okay to overwrite // existing code in it. #ifdef DEBUG if (own_buffer_) { memset(buffer_, 0xCC, buffer_size); // int3 } #endif // Setup buffer pointers. ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); last_pc_ = NULL; current_statement_position_ = RelocInfo::kNoPosition; current_position_ = RelocInfo::kNoPosition; written_statement_position_ = current_statement_position_; written_position_ = current_position_; #ifdef GENERATED_CODE_COVERAGE InitCoverageLog(); #endif } Assembler::~Assembler() { if (own_buffer_) { if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { spare_buffer_ = buffer_; } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { // Finalize code (at this point overflow() may be true, but the gap ensures // that we are still not overlapping instructions and relocation info). ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. // Setup code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); ASSERT(desc->instr_size > 0); // Zero-size code objects upset the system. desc->reloc_size = static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer.pos()); desc->origin = this; Counters::reloc_info_size.Increment(desc->reloc_size); } void Assembler::Align(int m) { ASSERT(IsPowerOf2(m)); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::bind_to(Label* L, int pos) { ASSERT(!L->is_bound()); // Label may only be bound once. last_pc_ = NULL; ASSERT(0 <= pos && pos <= pc_offset()); // Position must be valid. if (L->is_linked()) { int current = L->pos(); int next = long_at(current); while (next != current) { // Relative address, relative to point after address. int imm32 = pos - (current + sizeof(int32_t)); long_at_put(current, imm32); current = next; next = long_at(next); } // Fix up last fixup on linked list. int last_imm32 = pos - (current + sizeof(int32_t)); long_at_put(current, last_imm32); } L->bind_to(pos); } void Assembler::bind(Label* L) { bind_to(L, pc_offset()); } void Assembler::GrowBuffer() { ASSERT(buffer_overflow()); if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else { desc.buffer_size = 2*buffer_size_; } // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if ((desc.buffer_size > kMaximalBufferSize) || (desc.buffer_size > Heap::MaxOldGenerationSize())) { V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); } // Setup new buffer. desc.buffer = NewArray<byte>(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = static_cast<int>((buffer_ + buffer_size_) - (reloc_info_writer.pos())); // Clear the buffer in debug mode. Use 'int3' instructions to make // sure to get into problems if we ever run uninitialized code. #ifdef DEBUG memset(desc.buffer, 0xCC, desc.buffer_size); #endif // Copy the data. intptr_t pc_delta = desc.buffer - buffer_; intptr_t rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { spare_buffer_ = buffer_; } else { DeleteArray(buffer_); } buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; if (last_pc_ != NULL) { last_pc_ += pc_delta; } reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // Relocate runtime entries. for (RelocIterator it(desc); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::INTERNAL_REFERENCE) { intptr_t* p = reinterpret_cast<intptr_t*>(it.rinfo()->pc()); if (*p != 0) { // 0 means uninitialized. *p += pc_delta; } } } ASSERT(!buffer_overflow()); } void Assembler::emit_operand(int code, const Operand& adr) { ASSERT(is_uint3(code)); const unsigned length = adr.len_; ASSERT(length > 0); // Emit updated ModR/M byte containing the given register. ASSERT((adr.buf_[0] & 0x38) == 0); pc_[0] = adr.buf_[0] | code << 3; // Emit the rest of the encoded operand. for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; pc_ += length; } // Assembler Instruction implementations. void Assembler::arithmetic_op(byte opcode, Register reg, const Operand& op) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(reg, op); emit(opcode); emit_operand(reg, op); } void Assembler::arithmetic_op(byte opcode, Register reg, Register rm_reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(reg, rm_reg); emit(opcode); emit_modrm(reg, rm_reg); } void Assembler::arithmetic_op_16(byte opcode, Register reg, Register rm_reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); emit_optional_rex_32(reg, rm_reg); emit(opcode); emit_modrm(reg, rm_reg); } void Assembler::arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); emit_optional_rex_32(reg, rm_reg); emit(opcode); emit_operand(reg, rm_reg); } void Assembler::arithmetic_op_32(byte opcode, Register reg, Register rm_reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(reg, rm_reg); emit(opcode); emit_modrm(reg, rm_reg); } void Assembler::arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(reg, rm_reg); emit(opcode); emit_operand(reg, rm_reg); } void Assembler::immediate_arithmetic_op(byte subcode, Register dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); if (is_int8(src.value_)) { emit(0x83); emit_modrm(subcode, dst); emit(src.value_); } else if (dst.is(rax)) { emit(0x05 | (subcode << 3)); emitl(src.value_); } else { emit(0x81); emit_modrm(subcode, dst); emitl(src.value_); } } void Assembler::immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); if (is_int8(src.value_)) { emit(0x83); emit_operand(subcode, dst); emit(src.value_); } else { emit(0x81); emit_operand(subcode, dst); emitl(src.value_); } } void Assembler::immediate_arithmetic_op_16(byte subcode, Register dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); // Operand size override prefix. emit_optional_rex_32(dst); if (is_int8(src.value_)) { emit(0x83); emit_modrm(subcode, dst); emit(src.value_); } else if (dst.is(rax)) { emit(0x05 | (subcode << 3)); emitw(src.value_); } else { emit(0x81); emit_modrm(subcode, dst); emitw(src.value_); } } void Assembler::immediate_arithmetic_op_16(byte subcode, const Operand& dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); // Operand size override prefix. emit_optional_rex_32(dst); if (is_int8(src.value_)) { emit(0x83); emit_operand(subcode, dst); emit(src.value_); } else { emit(0x81); emit_operand(subcode, dst); emitw(src.value_); } } void Assembler::immediate_arithmetic_op_32(byte subcode, Register dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); if (is_int8(src.value_)) { emit(0x83); emit_modrm(subcode, dst); emit(src.value_); } else if (dst.is(rax)) { emit(0x05 | (subcode << 3)); emitl(src.value_); } else { emit(0x81); emit_modrm(subcode, dst); emitl(src.value_); } } void Assembler::immediate_arithmetic_op_32(byte subcode, const Operand& dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); if (is_int8(src.value_)) { emit(0x83); emit_operand(subcode, dst); emit(src.value_); } else { emit(0x81); emit_operand(subcode, dst); emitl(src.value_); } } void Assembler::immediate_arithmetic_op_8(byte subcode, const Operand& dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); ASSERT(is_int8(src.value_) || is_uint8(src.value_)); emit(0x80); emit_operand(subcode, dst); emit(src.value_); } void Assembler::immediate_arithmetic_op_8(byte subcode, Register dst, Immediate src) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (dst.code() > 3) { // Use 64-bit mode byte registers. emit_rex_64(dst); } ASSERT(is_int8(src.value_) || is_uint8(src.value_)); emit(0x80); emit_modrm(subcode, dst); emit(src.value_); } void Assembler::shift(Register dst, Immediate shift_amount, int subcode) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint6(shift_amount.value_)); // illegal shift count if (shift_amount.value_ == 1) { emit_rex_64(dst); emit(0xD1); emit_modrm(subcode, dst); } else { emit_rex_64(dst); emit(0xC1); emit_modrm(subcode, dst); emit(shift_amount.value_); } } void Assembler::shift(Register dst, int subcode) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xD3); emit_modrm(subcode, dst); } void Assembler::shift_32(Register dst, int subcode) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xD3); emit_modrm(subcode, dst); } void Assembler::shift_32(Register dst, Immediate shift_amount, int subcode) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint5(shift_amount.value_)); // illegal shift count if (shift_amount.value_ == 1) { emit_optional_rex_32(dst); emit(0xD1); emit_modrm(subcode, dst); } else { emit_optional_rex_32(dst); emit(0xC1); emit_modrm(subcode, dst); emit(shift_amount.value_); } } void Assembler::bt(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src, dst); emit(0x0F); emit(0xA3); emit_operand(src, dst); } void Assembler::bts(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src, dst); emit(0x0F); emit(0xAB); emit_operand(src, dst); } void Assembler::call(Label* L) { EnsureSpace ensure_space(this); last_pc_ = pc_; // 1110 1000 #32-bit disp. emit(0xE8); if (L->is_bound()) { int offset = L->pos() - pc_offset() - sizeof(int32_t); ASSERT(offset <= 0); emitl(offset); } else if (L->is_linked()) { emitl(L->pos()); L->link_to(pc_offset() - sizeof(int32_t)); } else { ASSERT(L->is_unused()); int32_t current = pc_offset(); emitl(current); L->link_to(current); } } void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); last_pc_ = pc_; // 1110 1000 #32-bit disp. emit(0xE8); emit_code_target(target, rmode); } void Assembler::call(Register adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: FF /2 r64. if (adr.high_bit()) { emit_rex_64(adr); } emit(0xFF); emit_modrm(0x2, adr); } void Assembler::call(const Operand& op) { EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: FF /2 m64. emit_rex_64(op); emit(0xFF); emit_operand(2, op); } void Assembler::clc() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF8); } void Assembler::cdq() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x99); } void Assembler::cmovq(Condition cc, Register dst, Register src) { if (cc == always) { movq(dst, src); } else if (cc == never) { return; } // No need to check CpuInfo for CMOV support, it's a required part of the // 64-bit architecture. ASSERT(cc >= 0); // Use mov for unconditional moves. EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: REX.W 0f 40 + cc /r. emit_rex_64(dst, src); emit(0x0f); emit(0x40 + cc); emit_modrm(dst, src); } void Assembler::cmovq(Condition cc, Register dst, const Operand& src) { if (cc == always) { movq(dst, src); } else if (cc == never) { return; } ASSERT(cc >= 0); EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: REX.W 0f 40 + cc /r. emit_rex_64(dst, src); emit(0x0f); emit(0x40 + cc); emit_operand(dst, src); } void Assembler::cmovl(Condition cc, Register dst, Register src) { if (cc == always) { movl(dst, src); } else if (cc == never) { return; } ASSERT(cc >= 0); EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: 0f 40 + cc /r. emit_optional_rex_32(dst, src); emit(0x0f); emit(0x40 + cc); emit_modrm(dst, src); } void Assembler::cmovl(Condition cc, Register dst, const Operand& src) { if (cc == always) { movl(dst, src); } else if (cc == never) { return; } ASSERT(cc >= 0); EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: 0f 40 + cc /r. emit_optional_rex_32(dst, src); emit(0x0f); emit(0x40 + cc); emit_operand(dst, src); } void Assembler::cmpb_al(Immediate imm8) { ASSERT(is_int8(imm8.value_) || is_uint8(imm8.value_)); EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x3c); emit(imm8.value_); } void Assembler::cpuid() { ASSERT(CpuFeatures::IsEnabled(CPUID)); EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x0F); emit(0xA2); } void Assembler::cqo() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(); emit(0x99); } void Assembler::decq(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xFF); emit_modrm(0x1, dst); } void Assembler::decq(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xFF); emit_operand(1, dst); } void Assembler::decl(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xFF); emit_modrm(0x1, dst); } void Assembler::decl(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xFF); emit_operand(1, dst); } void Assembler::decb(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (dst.code() > 3) { // Register is not one of al, bl, cl, dl. Its encoding needs REX. emit_rex_32(dst); } emit(0xFE); emit_modrm(0x1, dst); } void Assembler::decb(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xFE); emit_operand(1, dst); } void Assembler::enter(Immediate size) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xC8); emitw(size.value_); // 16 bit operand, always. emit(0); } void Assembler::hlt() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF4); } void Assembler::idivq(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src); emit(0xF7); emit_modrm(0x7, src); } void Assembler::idivl(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(src); emit(0xF7); emit_modrm(0x7, src); } void Assembler::imul(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src); emit(0xF7); emit_modrm(0x5, src); } void Assembler::imul(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x0F); emit(0xAF); emit_modrm(dst, src); } void Assembler::imul(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x0F); emit(0xAF); emit_operand(dst, src); } void Assembler::imul(Register dst, Register src, Immediate imm) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); if (is_int8(imm.value_)) { emit(0x6B); emit_modrm(dst, src); emit(imm.value_); } else { emit(0x69); emit_modrm(dst, src); emitl(imm.value_); } } void Assembler::imull(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst, src); emit(0x0F); emit(0xAF); emit_modrm(dst, src); } void Assembler::incq(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xFF); emit_modrm(0x0, dst); } void Assembler::incq(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xFF); emit_operand(0, dst); } void Assembler::incl(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xFF); emit_operand(0, dst); } void Assembler::int3() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xCC); } void Assembler::j(Condition cc, Label* L) { if (cc == always) { jmp(L); return; } else if (cc == never) { return; } EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint4(cc)); if (L->is_bound()) { const int short_size = 2; const int long_size = 6; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); if (is_int8(offs - short_size)) { // 0111 tttn #8-bit disp. emit(0x70 | cc); emit((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp. emit(0x0F); emit(0x80 | cc); emitl(offs - long_size); } } else if (L->is_linked()) { // 0000 1111 1000 tttn #32-bit disp. emit(0x0F); emit(0x80 | cc); emitl(L->pos()); L->link_to(pc_offset() - sizeof(int32_t)); } else { ASSERT(L->is_unused()); emit(0x0F); emit(0x80 | cc); int32_t current = pc_offset(); emitl(current); L->link_to(current); } } void Assembler::j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint4(cc)); // 0000 1111 1000 tttn #32-bit disp. emit(0x0F); emit(0x80 | cc); emit_code_target(target, rmode); } void Assembler::jmp(Label* L) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (L->is_bound()) { int offs = L->pos() - pc_offset() - 1; ASSERT(offs <= 0); if (is_int8(offs - sizeof(int8_t))) { // 1110 1011 #8-bit disp. emit(0xEB); emit((offs - sizeof(int8_t)) & 0xFF); } else { // 1110 1001 #32-bit disp. emit(0xE9); emitl(offs - sizeof(int32_t)); } } else if (L->is_linked()) { // 1110 1001 #32-bit disp. emit(0xE9); emitl(L->pos()); L->link_to(pc_offset() - sizeof(int32_t)); } else { // 1110 1001 #32-bit disp. ASSERT(L->is_unused()); emit(0xE9); int32_t current = pc_offset(); emitl(current); L->link_to(current); } } void Assembler::jmp(Handle<Code> target, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); last_pc_ = pc_; // 1110 1001 #32-bit disp. emit(0xE9); emit_code_target(target, rmode); } void Assembler::jmp(Register target) { EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode FF/4 r64. if (target.high_bit()) { emit_rex_64(target); } emit(0xFF); emit_modrm(0x4, target); } void Assembler::jmp(const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode FF/4 m64. emit_optional_rex_32(src); emit(0xFF); emit_operand(0x4, src); } void Assembler::lea(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x8D); emit_operand(dst, src); } void Assembler::load_rax(void* value, RelocInfo::Mode mode) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x48); // REX.W emit(0xA1); emitq(reinterpret_cast<uintptr_t>(value), mode); } void Assembler::load_rax(ExternalReference ref) { load_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE); } void Assembler::leave() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xC9); } void Assembler::movb(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_32(dst, src); emit(0x8A); emit_operand(dst, src); } void Assembler::movb(Register dst, Immediate imm) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_32(dst); emit(0xC6); emit_modrm(0x0, dst); emit(imm.value_); } void Assembler::movb(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_32(src, dst); emit(0x88); emit_operand(src, dst); } void Assembler::movw(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); emit_optional_rex_32(src, dst); emit(0x89); emit_operand(src, dst); } void Assembler::movl(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst, src); emit(0x8B); emit_operand(dst, src); } void Assembler::movl(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst, src); emit(0x8B); emit_modrm(dst, src); } void Assembler::movl(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(src, dst); emit(0x89); emit_operand(src, dst); } void Assembler::movl(const Operand& dst, Immediate value) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xC7); emit_operand(0x0, dst); emit(value); // Only 32-bit immediates are possible, not 8-bit immediates. } void Assembler::movl(Register dst, Immediate value) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xC7); emit_modrm(0x0, dst); emit(value); // Only 32-bit immediates are possible, not 8-bit immediates. } void Assembler::movq(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x8B); emit_operand(dst, src); } void Assembler::movq(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x8B); emit_modrm(dst, src); } void Assembler::movq(Register dst, Immediate value) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xC7); emit_modrm(0x0, dst); emit(value); // Only 32-bit immediates are possible, not 8-bit immediates. } void Assembler::movq(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src, dst); emit(0x89); emit_operand(src, dst); } void Assembler::movq(Register dst, void* value, RelocInfo::Mode rmode) { // This method must not be used with heap object references. The stored // address is not GC safe. Use the handle version instead. ASSERT(rmode > RelocInfo::LAST_GCED_ENUM); EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xB8 | dst.low_bits()); emitq(reinterpret_cast<uintptr_t>(value), rmode); } void Assembler::movq(Register dst, int64_t value, RelocInfo::Mode rmode) { // Non-relocatable values might not need a 64-bit representation. if (rmode == RelocInfo::NONE) { // Sadly, there is no zero or sign extending move for 8-bit immediates. if (is_int32(value)) { movq(dst, Immediate(static_cast<int32_t>(value))); return; } else if (is_uint32(value)) { movl(dst, Immediate(static_cast<int32_t>(value))); return; } // Value cannot be represented by 32 bits, so do a full 64 bit immediate // value. } EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xB8 | dst.low_bits()); emitq(value, rmode); } void Assembler::movq(Register dst, ExternalReference ref) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xB8 | dst.low_bits()); emitq(reinterpret_cast<uintptr_t>(ref.address()), RelocInfo::EXTERNAL_REFERENCE); } void Assembler::movq(const Operand& dst, Immediate value) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xC7); emit_operand(0, dst); emit(value); } // Loads the ip-relative location of the src label into the target location // (as a 32-bit offset sign extended to 64-bit). void Assembler::movl(const Operand& dst, Label* src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xC7); emit_operand(0, dst); if (src->is_bound()) { int offset = src->pos() - pc_offset() - sizeof(int32_t); ASSERT(offset <= 0); emitl(offset); } else if (src->is_linked()) { emitl(src->pos()); src->link_to(pc_offset() - sizeof(int32_t)); } else { ASSERT(src->is_unused()); int32_t current = pc_offset(); emitl(current); src->link_to(current); } } void Assembler::movq(Register dst, Handle<Object> value, RelocInfo::Mode mode) { // If there is no relocation info, emit the value of the handle efficiently // (possibly using less that 8 bytes for the value). if (mode == RelocInfo::NONE) { // There is no possible reason to store a heap pointer without relocation // info, so it must be a smi. ASSERT(value->IsSmi()); movq(dst, reinterpret_cast<int64_t>(*value), RelocInfo::NONE); } else { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(value->IsHeapObject()); ASSERT(!Heap::InNewSpace(*value)); emit_rex_64(dst); emit(0xB8 | dst.low_bits()); emitq(reinterpret_cast<uintptr_t>(value.location()), mode); } } void Assembler::movsxbq(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_32(dst, src); emit(0x0F); emit(0xBE); emit_operand(dst, src); } void Assembler::movsxwq(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x0F); emit(0xBF); emit_operand(dst, src); } void Assembler::movsxlq(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x63); emit_modrm(dst, src); } void Assembler::movsxlq(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x63); emit_operand(dst, src); } void Assembler::movzxbq(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x0F); emit(0xB6); emit_operand(dst, src); } void Assembler::movzxbl(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst, src); emit(0x0F); emit(0xB6); emit_operand(dst, src); } void Assembler::movzxwq(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x0F); emit(0xB7); emit_operand(dst, src); } void Assembler::movzxwl(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst, src); emit(0x0F); emit(0xB7); emit_operand(dst, src); } void Assembler::repmovsb() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF3); emit(0xA4); } void Assembler::repmovsw() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); // Operand size override. emit(0xF3); emit(0xA4); } void Assembler::repmovsl() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF3); emit(0xA5); } void Assembler::repmovsq() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF3); emit_rex_64(); emit(0xA5); } void Assembler::mul(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src); emit(0xF7); emit_modrm(0x4, src); } void Assembler::neg(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xF7); emit_modrm(0x3, dst); } void Assembler::negl(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst); emit(0xF7); emit_modrm(0x3, dst); } void Assembler::neg(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xF7); emit_operand(3, dst); } void Assembler::nop() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x90); } void Assembler::not_(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xF7); emit_modrm(0x2, dst); } void Assembler::not_(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); emit(0xF7); emit_operand(2, dst); } void Assembler::nop(int n) { // The recommended muti-byte sequences of NOP instructions from the Intel 64 // and IA-32 Architectures Software Developer's Manual. // // Length Assembly Byte Sequence // 2 bytes 66 NOP 66 90H // 3 bytes NOP DWORD ptr [EAX] 0F 1F 00H // 4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H // 5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H // 6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H // 7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H // 8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H // 9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 66 0F 1F 84 00 00 00 00 // 00000000H] 00H ASSERT(1 <= n); ASSERT(n <= 9); EnsureSpace ensure_space(this); last_pc_ = pc_; switch (n) { case 1: emit(0x90); return; case 2: emit(0x66); emit(0x90); return; case 3: emit(0x0f); emit(0x1f); emit(0x00); return; case 4: emit(0x0f); emit(0x1f); emit(0x40); emit(0x00); return; case 5: emit(0x0f); emit(0x1f); emit(0x44); emit(0x00); emit(0x00); return; case 6: emit(0x66); emit(0x0f); emit(0x1f); emit(0x44); emit(0x00); emit(0x00); return; case 7: emit(0x0f); emit(0x1f); emit(0x80); emit(0x00); emit(0x00); emit(0x00); emit(0x00); return; case 8: emit(0x0f); emit(0x1f); emit(0x84); emit(0x00); emit(0x00); emit(0x00); emit(0x00); emit(0x00); return; case 9: emit(0x66); emit(0x0f); emit(0x1f); emit(0x84); emit(0x00); emit(0x00); emit(0x00); emit(0x00); emit(0x00); return; } } void Assembler::pop(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (dst.high_bit()) { emit_rex_64(dst); } emit(0x58 | dst.low_bits()); } void Assembler::pop(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst); // Could be omitted in some cases. emit(0x8F); emit_operand(0, dst); } void Assembler::popfq() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x9D); } void Assembler::push(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (src.high_bit()) { emit_rex_64(src); } emit(0x50 | src.low_bits()); } void Assembler::push(const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src); // Could be omitted in some cases. emit(0xFF); emit_operand(6, src); } void Assembler::push(Immediate value) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (is_int8(value.value_)) { emit(0x6A); emit(value.value_); // Emit low byte of value. } else { emit(0x68); emitl(value.value_); } } void Assembler::pushfq() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x9C); } void Assembler::rdtsc() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x0F); emit(0x31); } void Assembler::ret(int imm16) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint16(imm16)); if (imm16 == 0) { emit(0xC3); } else { emit(0xC2); emit(imm16 & 0xFF); emit((imm16 >> 8) & 0xFF); } } void Assembler::setcc(Condition cc, Register reg) { if (cc > last_condition) { movb(reg, Immediate(cc == always ? 1 : 0)); return; } EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint4(cc)); if (reg.code() > 3) { // Use x64 byte registers, where different. emit_rex_32(reg); } emit(0x0F); emit(0x90 | cc); emit_modrm(0x0, reg); } void Assembler::shld(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src, dst); emit(0x0F); emit(0xA5); emit_modrm(src, dst); } void Assembler::shrd(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(src, dst); emit(0x0F); emit(0xAD); emit_modrm(src, dst); } void Assembler::xchg(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (src.is(rax) || dst.is(rax)) { // Single-byte encoding Register other = src.is(rax) ? dst : src; emit_rex_64(other); emit(0x90 | other.low_bits()); } else { emit_rex_64(src, dst); emit(0x87); emit_modrm(src, dst); } } void Assembler::store_rax(void* dst, RelocInfo::Mode mode) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x48); // REX.W emit(0xA3); emitq(reinterpret_cast<uintptr_t>(dst), mode); } void Assembler::store_rax(ExternalReference ref) { store_rax(ref.address(), RelocInfo::EXTERNAL_REFERENCE); } void Assembler::testb(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (dst.code() > 3 || src.code() > 3) { // Register is not one of al, bl, cl, dl. Its encoding needs REX. emit_rex_32(dst, src); } emit(0x84); emit_modrm(dst, src); } void Assembler::testb(Register reg, Immediate mask) { ASSERT(is_int8(mask.value_) || is_uint8(mask.value_)); EnsureSpace ensure_space(this); last_pc_ = pc_; if (reg.is(rax)) { emit(0xA8); emit(mask.value_); // Low byte emitted. } else { if (reg.code() > 3) { // Register is not one of al, bl, cl, dl. Its encoding needs REX. emit_rex_32(reg); } emit(0xF6); emit_modrm(0x0, reg); emit(mask.value_); // Low byte emitted. } } void Assembler::testb(const Operand& op, Immediate mask) { ASSERT(is_int8(mask.value_) || is_uint8(mask.value_)); EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(rax, op); emit(0xF6); emit_operand(rax, op); // Operation code 0 emit(mask.value_); // Low byte emitted. } void Assembler::testb(const Operand& op, Register reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (reg.code() > 3) { // Register is not one of al, bl, cl, dl. Its encoding needs REX. emit_rex_32(reg, op); } else { emit_optional_rex_32(reg, op); } emit(0x84); emit_operand(reg, op); } void Assembler::testl(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(dst, src); emit(0x85); emit_modrm(dst, src); } void Assembler::testl(Register reg, Immediate mask) { // testl with a mask that fits in the low byte is exactly testb. if (is_uint8(mask.value_)) { testb(reg, mask); return; } EnsureSpace ensure_space(this); last_pc_ = pc_; if (reg.is(rax)) { emit(0xA9); emit(mask); } else { emit_optional_rex_32(rax, reg); emit(0xF7); emit_modrm(0x0, reg); emit(mask); } } void Assembler::testl(const Operand& op, Immediate mask) { // testl with a mask that fits in the low byte is exactly testb. if (is_uint8(mask.value_)) { testb(op, mask); return; } EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(rax, op); emit(0xF7); emit_operand(rax, op); // Operation code 0 emit(mask); } void Assembler::testq(const Operand& op, Register reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(reg, op); emit(0x85); emit_operand(reg, op); } void Assembler::testq(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_rex_64(dst, src); emit(0x85); emit_modrm(dst, src); } void Assembler::testq(Register dst, Immediate mask) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (dst.is(rax)) { emit_rex_64(); emit(0xA9); emit(mask); } else { emit_rex_64(dst); emit(0xF7); emit_modrm(0, dst); emit(mask); } } // FPU instructions. void Assembler::fld(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xD9, 0xC0, i); } void Assembler::fld1() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xE8); } void Assembler::fldz() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xEE); } void Assembler::fld_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xD9); emit_operand(0, adr); } void Assembler::fld_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDD); emit_operand(0, adr); } void Assembler::fstp_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xD9); emit_operand(3, adr); } void Assembler::fstp_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDD); emit_operand(3, adr); } void Assembler::fstp(int index) { ASSERT(is_uint3(index)); EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDD, 0xD8, index); } void Assembler::fild_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDB); emit_operand(0, adr); } void Assembler::fild_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDF); emit_operand(5, adr); } void Assembler::fistp_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDB); emit_operand(3, adr); } void Assembler::fisttp_s(const Operand& adr) { ASSERT(CpuFeatures::IsEnabled(SSE3)); EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDB); emit_operand(1, adr); } void Assembler::fisttp_d(const Operand& adr) { ASSERT(CpuFeatures::IsEnabled(SSE3)); EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDD); emit_operand(1, adr); } void Assembler::fist_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDB); emit_operand(2, adr); } void Assembler::fistp_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDF); emit_operand(7, adr); } void Assembler::fabs() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xE1); } void Assembler::fchs() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xE0); } void Assembler::fcos() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xFF); } void Assembler::fsin() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xFE); } void Assembler::fadd(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xC0, i); } void Assembler::fsub(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xE8, i); } void Assembler::fisub_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_optional_rex_32(adr); emit(0xDA); emit_operand(4, adr); } void Assembler::fmul(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xC8, i); } void Assembler::fdiv(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xF8, i); } void Assembler::faddp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xC0, i); } void Assembler::fsubp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xE8, i); } void Assembler::fsubrp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xE0, i); } void Assembler::fmulp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xC8, i); } void Assembler::fdivp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xF8, i); } void Assembler::fprem() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xF8); } void Assembler::fprem1() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xF5); } void Assembler::fxch(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xD9, 0xC8, i); } void Assembler::fincstp() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xF7); } void Assembler::ffree(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDD, 0xC0, i); } void Assembler::ftst() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xE4); } void Assembler::fucomp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDD, 0xE8, i); } void Assembler::fucompp() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xDA); emit(0xE9); } void Assembler::fucomi(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xDB); emit(0xE8 + i); } void Assembler::fucomip() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xDF); emit(0xE9); } void Assembler::fcompp() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xDE); emit(0xD9); } void Assembler::fnstsw_ax() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xDF); emit(0xE0); } void Assembler::fwait() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x9B); } void Assembler::frndint() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xD9); emit(0xFC); } void Assembler::fnclex() { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xDB); emit(0xE2); } void Assembler::sahf() { // TODO(X64): Test for presence. Not all 64-bit intel CPU's have sahf // in 64-bit mode. Test CpuID. EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x9E); } void Assembler::emit_farith(int b1, int b2, int i) { ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode ASSERT(is_uint3(i)); // illegal stack offset emit(b1); emit(b2 + i); } // SSE 2 operations. void Assembler::movsd(const Operand& dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); // double emit_optional_rex_32(src, dst); emit(0x0F); emit(0x11); // store emit_sse_operand(src, dst); } void Assembler::movsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); // double emit_optional_rex_32(dst, src); emit(0x0F); emit(0x10); // load emit_sse_operand(dst, src); } void Assembler::movsd(XMMRegister dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); // double emit_optional_rex_32(dst, src); emit(0x0F); emit(0x10); // load emit_sse_operand(dst, src); } void Assembler::cvttss2si(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF3); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x2C); emit_operand(dst, src); } void Assembler::cvttsd2si(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x2C); emit_operand(dst, src); } void Assembler::cvtlsi2sd(XMMRegister dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x2A); emit_sse_operand(dst, src); } void Assembler::cvtlsi2sd(XMMRegister dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x2A); emit_sse_operand(dst, src); } void Assembler::cvtqsi2sd(XMMRegister dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_rex_64(dst, src); emit(0x0F); emit(0x2A); emit_sse_operand(dst, src); } void Assembler::addsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x58); emit_sse_operand(dst, src); } void Assembler::mulsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x59); emit_sse_operand(dst, src); } void Assembler::subsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x5C); emit_sse_operand(dst, src); } void Assembler::divsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0xF2); emit_optional_rex_32(dst, src); emit(0x0F); emit(0x5E); emit_sse_operand(dst, src); } void Assembler::xorpd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); emit_optional_rex_32(dst, src); emit(0x0f); emit(0x57); emit_sse_operand(dst, src); } void Assembler::comisd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); emit_optional_rex_32(dst, src); emit(0x0f); emit(0x2f); emit_sse_operand(dst, src); } void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit(0x66); emit_optional_rex_32(dst, src); emit(0x0f); emit(0x2e); emit_sse_operand(dst, src); } void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { Register ireg = { reg.code() }; emit_operand(ireg, adr); } void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { emit(0xC0 | (dst.low_bits() << 3) | src.low_bits()); } void Assembler::emit_sse_operand(XMMRegister dst, Register src) { emit(0xC0 | (dst.low_bits() << 3) | src.low_bits()); } // Relocation information implementations. void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { ASSERT(rmode != RelocInfo::NONE); // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE && !Serializer::enabled() && !FLAG_debug_code) { return; } RelocInfo rinfo(pc_, rmode, data); reloc_info_writer.Write(&rinfo); } void Assembler::RecordJSReturn() { WriteRecordedPositions(); EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordComment(const char* msg) { if (FLAG_debug_code) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); } } void Assembler::RecordPosition(int pos) { ASSERT(pos != RelocInfo::kNoPosition); ASSERT(pos >= 0); current_position_ = pos; } void Assembler::RecordStatementPosition(int pos) { ASSERT(pos != RelocInfo::kNoPosition); ASSERT(pos >= 0); current_statement_position_ = pos; } void Assembler::WriteRecordedPositions() { // Write the statement position if it is different from what was written last // time. if (current_statement_position_ != written_statement_position_) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); written_statement_position_ = current_statement_position_; } // Write the position if it is different from what was written last time and // also different from the written statement position. if (current_position_ != written_position_ && current_position_ != written_statement_position_) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::POSITION, current_position_); written_position_ = current_position_; } } const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::JS_RETURN; } } // namespace v8::internal