// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2006-2009 the V8 project authors. All rights reserved. // A lightweight X64 Assembler. #ifndef V8_X64_ASSEMBLER_X64_H_ #define V8_X64_ASSEMBLER_X64_H_ #include "serialize.h" namespace v8 { namespace internal { // Utility functions // Test whether a 64-bit value is in a specific range. static inline bool is_uint32(int64_t x) { static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff); return x == (x & kUInt32Mask); } static inline bool is_int32(int64_t x) { static const int64_t kMinIntValue = V8_INT64_C(-0x80000000); return is_uint32(x - kMinIntValue); } static inline bool uint_is_int32(uint64_t x) { static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000); return x < kMaxIntValue; } static inline bool is_uint32(uint64_t x) { static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000); return x < kMaxUIntValue; } // CPU Registers. // // 1) We would prefer to use an enum, but enum values are assignment- // compatible with int, which has caused code-generation bugs. // // 2) We would prefer to use a class instead of a struct but we don't like // the register initialization to depend on the particular initialization // order (which appears to be different on OS X, Linux, and Windows for the // installed versions of C++ we tried). Using a struct permits C-style // "initialization". Also, the Register objects cannot be const as this // forces initialization stubs in MSVC, making us dependent on initialization // order. // // 3) By not using an enum, we are possibly preventing the compiler from // doing certain constant folds, which may significantly reduce the // code generated for some assembly instructions (because they boil down // to a few constants). If this is a problem, we could change the code // such that we use an enum in optimized mode, and the struct in debug // mode. This way we get the compile-time error checking in debug mode // and best performance in optimized code. // struct Register { static Register toRegister(int code) { Register r = { code }; return r; } bool is_valid() const { return 0 <= code_ && code_ < 16; } bool is(Register reg) const { return code_ == reg.code_; } int code() const { ASSERT(is_valid()); return code_; } int bit() const { return 1 << code_; } // Return the high bit of the register code as a 0 or 1. Used often // when constructing the REX prefix byte. int high_bit() const { return code_ >> 3; } // Return the 3 low bits of the register code. Used when encoding registers // in modR/M, SIB, and opcode bytes. int low_bits() const { return code_ & 0x7; } // Unfortunately we can't make this private in a struct when initializing // by assignment. int code_; }; const Register rax = { 0 }; const Register rcx = { 1 }; const Register rdx = { 2 }; const Register rbx = { 3 }; const Register rsp = { 4 }; const Register rbp = { 5 }; const Register rsi = { 6 }; const Register rdi = { 7 }; const Register r8 = { 8 }; const Register r9 = { 9 }; const Register r10 = { 10 }; const Register r11 = { 11 }; const Register r12 = { 12 }; const Register r13 = { 13 }; const Register r14 = { 14 }; const Register r15 = { 15 }; const Register no_reg = { -1 }; struct XMMRegister { bool is_valid() const { return 0 <= code_ && code_ < 16; } int code() const { ASSERT(is_valid()); return code_; } // Return the high bit of the register code as a 0 or 1. Used often // when constructing the REX prefix byte. int high_bit() const { return code_ >> 3; } // Return the 3 low bits of the register code. Used when encoding registers // in modR/M, SIB, and opcode bytes. int low_bits() const { return code_ & 0x7; } int code_; }; const XMMRegister xmm0 = { 0 }; const XMMRegister xmm1 = { 1 }; const XMMRegister xmm2 = { 2 }; const XMMRegister xmm3 = { 3 }; const XMMRegister xmm4 = { 4 }; const XMMRegister xmm5 = { 5 }; const XMMRegister xmm6 = { 6 }; const XMMRegister xmm7 = { 7 }; const XMMRegister xmm8 = { 8 }; const XMMRegister xmm9 = { 9 }; const XMMRegister xmm10 = { 10 }; const XMMRegister xmm11 = { 11 }; const XMMRegister xmm12 = { 12 }; const XMMRegister xmm13 = { 13 }; const XMMRegister xmm14 = { 14 }; const XMMRegister xmm15 = { 15 }; enum Condition { // any value < 0 is considered no_condition no_condition = -1, overflow = 0, no_overflow = 1, below = 2, above_equal = 3, equal = 4, not_equal = 5, below_equal = 6, above = 7, negative = 8, positive = 9, parity_even = 10, parity_odd = 11, less = 12, greater_equal = 13, less_equal = 14, greater = 15, // Fake conditions that are handled by the // opcodes using them. always = 16, never = 17, // aliases carry = below, not_carry = above_equal, zero = equal, not_zero = not_equal, sign = negative, not_sign = positive, last_condition = greater }; // Returns the equivalent of !cc. // Negation of the default no_condition (-1) results in a non-default // no_condition value (-2). As long as tests for no_condition check // for condition < 0, this will work as expected. inline Condition NegateCondition(Condition cc); // Corresponds to transposing the operands of a comparison. inline Condition ReverseCondition(Condition cc) { switch (cc) { case below: return above; case above: return below; case above_equal: return below_equal; case below_equal: return above_equal; case less: return greater; case greater: return less; case greater_equal: return less_equal; case less_equal: return greater_equal; default: return cc; }; } enum Hint { no_hint = 0, not_taken = 0x2e, taken = 0x3e }; // The result of negating a hint is as if the corresponding condition // were negated by NegateCondition. That is, no_hint is mapped to // itself and not_taken and taken are mapped to each other. inline Hint NegateHint(Hint hint) { return (hint == no_hint) ? no_hint : ((hint == not_taken) ? taken : not_taken); } // ----------------------------------------------------------------------------- // Machine instruction Immediates class Immediate BASE_EMBEDDED { public: explicit Immediate(int32_t value) : value_(value) {} private: int32_t value_; friend class Assembler; }; // ----------------------------------------------------------------------------- // Machine instruction Operands enum ScaleFactor { times_1 = 0, times_2 = 1, times_4 = 2, times_8 = 3, times_int_size = times_4, times_pointer_size = times_8 }; class Operand BASE_EMBEDDED { public: // [base + disp/r] Operand(Register base, int32_t disp); // [base + index*scale + disp/r] Operand(Register base, Register index, ScaleFactor scale, int32_t disp); // [index*scale + disp/r] Operand(Register index, ScaleFactor scale, int32_t disp); private: byte rex_; byte buf_[10]; // The number of bytes in buf_. unsigned int len_; RelocInfo::Mode rmode_; // Set the ModR/M byte without an encoded 'reg' register. The // register is encoded later as part of the emit_operand operation. // set_modrm can be called before or after set_sib and set_disp*. inline void set_modrm(int mod, Register rm); // Set the SIB byte if one is needed. Sets the length to 2 rather than 1. inline void set_sib(ScaleFactor scale, Register index, Register base); // Adds operand displacement fields (offsets added to the memory address). // Needs to be called after set_sib, not before it. inline void set_disp8(int disp); inline void set_disp32(int disp); friend class Assembler; }; // CpuFeatures keeps track of which features are supported by the target CPU. // Supported features must be enabled by a Scope before use. // Example: // if (CpuFeatures::IsSupported(SSE3)) { // CpuFeatures::Scope fscope(SSE3); // // Generate SSE3 floating point code. // } else { // // Generate standard x87 or SSE2 floating point code. // } class CpuFeatures : public AllStatic { public: // Detect features of the target CPU. Set safe defaults if the serializer // is enabled (snapshots must be portable). static void Probe(); // Check whether a feature is supported by the target CPU. static bool IsSupported(CpuFeature f) { if (f == SSE2 && !FLAG_enable_sse2) return false; if (f == SSE3 && !FLAG_enable_sse3) return false; if (f == CMOV && !FLAG_enable_cmov) return false; if (f == RDTSC && !FLAG_enable_rdtsc) return false; if (f == SAHF && !FLAG_enable_sahf) return false; return (supported_ & (V8_UINT64_C(1) << f)) != 0; } // Check whether a feature is currently enabled. static bool IsEnabled(CpuFeature f) { return (enabled_ & (V8_UINT64_C(1) << f)) != 0; } // Enable a specified feature within a scope. class Scope BASE_EMBEDDED { #ifdef DEBUG public: explicit Scope(CpuFeature f) { uint64_t mask = (V8_UINT64_C(1) << f); ASSERT(CpuFeatures::IsSupported(f)); ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0); old_enabled_ = CpuFeatures::enabled_; CpuFeatures::enabled_ |= mask; } ~Scope() { CpuFeatures::enabled_ = old_enabled_; } private: uint64_t old_enabled_; #else public: explicit Scope(CpuFeature f) {} #endif }; private: // Safe defaults include SSE2 and CMOV for X64. It is always available, if // anyone checks, but they shouldn't need to check. static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV); static uint64_t supported_; static uint64_t enabled_; static uint64_t found_by_runtime_probing_; }; class Assembler : public Malloced { private: // We check before assembling an instruction that there is sufficient // space to write an instruction and its relocation information. // The relocation writer's position must be kGap bytes above the end of // the generated instructions. This leaves enough space for the // longest possible x64 instruction, 15 bytes, and the longest possible // relocation information encoding, RelocInfoWriter::kMaxLength == 16. // (There is a 15 byte limit on x64 instruction length that rules out some // otherwise valid instructions.) // This allows for a single, fast space check per instruction. static const int kGap = 32; public: // Create an assembler. Instructions and relocation information are emitted // into a buffer, with the instructions starting from the beginning and the // relocation information starting from the end of the buffer. See CodeDesc // for a detailed comment on the layout (globals.h). // // If the provided buffer is NULL, the assembler allocates and grows its own // buffer, and buffer_size determines the initial buffer size. The buffer is // owned by the assembler and deallocated upon destruction of the assembler. // // If the provided buffer is not NULL, the assembler uses the provided buffer // for code generation and assumes its size to be buffer_size. If the buffer // is too small, a fatal error occurs. No deallocation of the buffer is done // upon destruction of the assembler. Assembler(void* buffer, int buffer_size); ~Assembler(); // GetCode emits any pending (non-emitted) code and fills the descriptor // desc. GetCode() is idempotent; it returns the same result if no other // Assembler functions are invoked in between GetCode() calls. void GetCode(CodeDesc* desc); // Read/Modify the code target in the relative branch/call instruction at pc. // On the x64 architecture, we use relative jumps with a 32-bit displacement // to jump to other Code objects in the Code space in the heap. // Jumps to C functions are done indirectly through a 64-bit register holding // the absolute address of the target. // These functions convert between absolute Addresses of Code objects and // the relative displacements stored in the code. static inline Address target_address_at(Address pc); static inline void set_target_address_at(Address pc, Address target); // This sets the branch destination (which is in the instruction on x64). // This is for calls and branches within generated code. inline static void set_target_at(Address instruction_payload, Address target) { set_target_address_at(instruction_payload, target); } // This sets the branch destination (which is a load instruction on x64). // This is for calls and branches to runtime code. inline static void set_external_target_at(Address instruction_payload, Address target) { *reinterpret_cast<Address*>(instruction_payload) = target; } inline Handle<Object> code_target_object_handle_at(Address pc); // Number of bytes taken up by the branch target in the code. static const int kCallTargetSize = 4; // Use 32-bit displacement. static const int kExternalTargetSize = 8; // Use 64-bit absolute. // Distance between the address of the code target in the call instruction // and the return address pushed on the stack. static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement. // Distance between the start of the JS return sequence and where the // 32-bit displacement of a near call would be, relative to the pushed // return address. TODO: Use return sequence length instead. // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset; static const int kPatchReturnSequenceAddressOffset = 13 - 4; // TODO(X64): Rename this, removing the "Real", after changing the above. static const int kRealPatchReturnSequenceAddressOffset = 2; // The x64 JS return sequence is padded with int3 to make it large // enough to hold a call instruction when the debugger patches it. static const int kCallInstructionLength = 13; static const int kJSReturnSequenceLength = 13; // --------------------------------------------------------------------------- // Code generation // // Function names correspond one-to-one to x64 instruction mnemonics. // Unless specified otherwise, instructions operate on 64-bit operands. // // If we need versions of an assembly instruction that operate on different // width arguments, we add a single-letter suffix specifying the width. // This is done for the following instructions: mov, cmp, inc, dec, // add, sub, and test. // There are no versions of these instructions without the suffix. // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'. // - Instructions on 16-bit (word) operands/registers have a trailing 'w'. // - Instructions on 32-bit (doubleword) operands/registers use 'l'. // - Instructions on 64-bit (quadword) operands/registers use 'q'. // // Some mnemonics, such as "and", are the same as C++ keywords. // Naming conflicts with C++ keywords are resolved by adding a trailing '_'. // Insert the smallest number of nop instructions // possible to align the pc offset to a multiple // of m. m must be a power of 2. void Align(int m); // Stack void pushfq(); void popfq(); void push(Immediate value); void push(Register src); void push(const Operand& src); void push(Label* label, RelocInfo::Mode relocation_mode); void pop(Register dst); void pop(const Operand& dst); void enter(Immediate size); void leave(); // Moves void movb(Register dst, const Operand& src); void movb(Register dst, Immediate imm); void movb(const Operand& dst, Register src); // Move the low 16 bits of a 64-bit register value to a 16-bit // memory location. void movw(const Operand& dst, Register src); void movl(Register dst, Register src); void movl(Register dst, const Operand& src); void movl(const Operand& dst, Register src); void movl(const Operand& dst, Immediate imm); // Load a 32-bit immediate value, zero-extended to 64 bits. void movl(Register dst, Immediate imm32); // Move 64 bit register value to 64-bit memory location. void movq(const Operand& dst, Register src); // Move 64 bit memory location to 64-bit register value. void movq(Register dst, const Operand& src); void movq(Register dst, Register src); // Sign extends immediate 32-bit value to 64 bits. void movq(Register dst, Immediate x); // Move the offset of the label location relative to the current // position (after the move) to the destination. void movl(const Operand& dst, Label* src); // Move sign extended immediate to memory location. void movq(const Operand& dst, Immediate value); // New x64 instructions to load a 64-bit immediate into a register. // All 64-bit immediates must have a relocation mode. void movq(Register dst, void* ptr, RelocInfo::Mode rmode); void movq(Register dst, int64_t value, RelocInfo::Mode rmode); void movq(Register dst, const char* s, RelocInfo::Mode rmode); // Moves the address of the external reference into the register. void movq(Register dst, ExternalReference ext); void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode); void movsxbq(Register dst, const Operand& src); void movsxwq(Register dst, const Operand& src); void movsxlq(Register dst, Register src); void movsxlq(Register dst, const Operand& src); void movzxbq(Register dst, const Operand& src); void movzxbl(Register dst, const Operand& src); void movzxwq(Register dst, const Operand& src); void movzxwl(Register dst, const Operand& src); // Repeated moves. void repmovsb(); void repmovsw(); void repmovsl(); void repmovsq(); // New x64 instruction to load from an immediate 64-bit pointer into RAX. void load_rax(void* ptr, RelocInfo::Mode rmode); void load_rax(ExternalReference ext); // Conditional moves. void cmovq(Condition cc, Register dst, Register src); void cmovq(Condition cc, Register dst, const Operand& src); void cmovl(Condition cc, Register dst, Register src); void cmovl(Condition cc, Register dst, const Operand& src); // Exchange two registers void xchg(Register dst, Register src); // Arithmetics void addl(Register dst, Register src) { if (dst.low_bits() == 4) { // Forces SIB byte. arithmetic_op_32(0x01, src, dst); } else { arithmetic_op_32(0x03, dst, src); } } void addl(Register dst, Immediate src) { immediate_arithmetic_op_32(0x0, dst, src); } void addl(Register dst, const Operand& src) { arithmetic_op_32(0x03, dst, src); } void addl(const Operand& dst, Immediate src) { immediate_arithmetic_op_32(0x0, dst, src); } void addq(Register dst, Register src) { arithmetic_op(0x03, dst, src); } void addq(Register dst, const Operand& src) { arithmetic_op(0x03, dst, src); } void addq(const Operand& dst, Register src) { arithmetic_op(0x01, src, dst); } void addq(Register dst, Immediate src) { immediate_arithmetic_op(0x0, dst, src); } void addq(const Operand& dst, Immediate src) { immediate_arithmetic_op(0x0, dst, src); } void cmpb(Register dst, Immediate src) { immediate_arithmetic_op_8(0x7, dst, src); } void cmpb_al(Immediate src); void cmpb(Register dst, Register src) { arithmetic_op(0x3A, dst, src); } void cmpb(Register dst, const Operand& src) { arithmetic_op(0x3A, dst, src); } void cmpb(const Operand& dst, Register src) { arithmetic_op(0x38, src, dst); } void cmpb(const Operand& dst, Immediate src) { immediate_arithmetic_op_8(0x7, dst, src); } void cmpw(const Operand& dst, Immediate src) { immediate_arithmetic_op_16(0x7, dst, src); } void cmpw(Register dst, Immediate src) { immediate_arithmetic_op_16(0x7, dst, src); } void cmpw(Register dst, const Operand& src) { arithmetic_op_16(0x3B, dst, src); } void cmpw(Register dst, Register src) { arithmetic_op_16(0x3B, dst, src); } void cmpw(const Operand& dst, Register src) { arithmetic_op_16(0x39, src, dst); } void cmpl(Register dst, Register src) { arithmetic_op_32(0x3B, dst, src); } void cmpl(Register dst, const Operand& src) { arithmetic_op_32(0x3B, dst, src); } void cmpl(const Operand& dst, Register src) { arithmetic_op_32(0x39, src, dst); } void cmpl(Register dst, Immediate src) { immediate_arithmetic_op_32(0x7, dst, src); } void cmpl(const Operand& dst, Immediate src) { immediate_arithmetic_op_32(0x7, dst, src); } void cmpq(Register dst, Register src) { arithmetic_op(0x3B, dst, src); } void cmpq(Register dst, const Operand& src) { arithmetic_op(0x3B, dst, src); } void cmpq(const Operand& dst, Register src) { arithmetic_op(0x39, src, dst); } void cmpq(Register dst, Immediate src) { immediate_arithmetic_op(0x7, dst, src); } void cmpq(const Operand& dst, Immediate src) { immediate_arithmetic_op(0x7, dst, src); } void and_(Register dst, Register src) { arithmetic_op(0x23, dst, src); } void and_(Register dst, const Operand& src) { arithmetic_op(0x23, dst, src); } void and_(const Operand& dst, Register src) { arithmetic_op(0x21, src, dst); } void and_(Register dst, Immediate src) { immediate_arithmetic_op(0x4, dst, src); } void and_(const Operand& dst, Immediate src) { immediate_arithmetic_op(0x4, dst, src); } void andl(Register dst, Immediate src) { immediate_arithmetic_op_32(0x4, dst, src); } void andl(Register dst, Register src) { arithmetic_op_32(0x23, dst, src); } void andb(Register dst, Immediate src) { immediate_arithmetic_op_8(0x4, dst, src); } void decq(Register dst); void decq(const Operand& dst); void decl(Register dst); void decl(const Operand& dst); void decb(Register dst); void decb(const Operand& dst); // Sign-extends rax into rdx:rax. void cqo(); // Sign-extends eax into edx:eax. void cdq(); // Divide rdx:rax by src. Quotient in rax, remainder in rdx. void idivq(Register src); // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx. void idivl(Register src); // Signed multiply instructions. void imul(Register src); // rdx:rax = rax * src. void imul(Register dst, Register src); // dst = dst * src. void imul(Register dst, const Operand& src); // dst = dst * src. void imul(Register dst, Register src, Immediate imm); // dst = src * imm. // Multiply 32 bit registers void imull(Register dst, Register src); // dst = dst * src. void incq(Register dst); void incq(const Operand& dst); void incl(const Operand& dst); void lea(Register dst, const Operand& src); // Multiply rax by src, put the result in rdx:rax. void mul(Register src); void neg(Register dst); void neg(const Operand& dst); void negl(Register dst); void not_(Register dst); void not_(const Operand& dst); void or_(Register dst, Register src) { arithmetic_op(0x0B, dst, src); } void orl(Register dst, Register src) { arithmetic_op_32(0x0B, dst, src); } void or_(Register dst, const Operand& src) { arithmetic_op(0x0B, dst, src); } void or_(const Operand& dst, Register src) { arithmetic_op(0x09, src, dst); } void or_(Register dst, Immediate src) { immediate_arithmetic_op(0x1, dst, src); } void orl(Register dst, Immediate src) { immediate_arithmetic_op_32(0x1, dst, src); } void or_(const Operand& dst, Immediate src) { immediate_arithmetic_op(0x1, dst, src); } void orl(const Operand& dst, Immediate src) { immediate_arithmetic_op_32(0x1, dst, src); } void rcl(Register dst, Immediate imm8) { shift(dst, imm8, 0x2); } void rol(Register dst, Immediate imm8) { shift(dst, imm8, 0x0); } void rcr(Register dst, Immediate imm8) { shift(dst, imm8, 0x3); } void ror(Register dst, Immediate imm8) { shift(dst, imm8, 0x1); } // Shifts dst:src left by cl bits, affecting only dst. void shld(Register dst, Register src); // Shifts src:dst right by cl bits, affecting only dst. void shrd(Register dst, Register src); // Shifts dst right, duplicating sign bit, by shift_amount bits. // Shifting by 1 is handled efficiently. void sar(Register dst, Immediate shift_amount) { shift(dst, shift_amount, 0x7); } // Shifts dst right, duplicating sign bit, by shift_amount bits. // Shifting by 1 is handled efficiently. void sarl(Register dst, Immediate shift_amount) { shift_32(dst, shift_amount, 0x7); } // Shifts dst right, duplicating sign bit, by cl % 64 bits. void sar_cl(Register dst) { shift(dst, 0x7); } // Shifts dst right, duplicating sign bit, by cl % 64 bits. void sarl_cl(Register dst) { shift_32(dst, 0x7); } void shl(Register dst, Immediate shift_amount) { shift(dst, shift_amount, 0x4); } void shl_cl(Register dst) { shift(dst, 0x4); } void shll_cl(Register dst) { shift_32(dst, 0x4); } void shll(Register dst, Immediate shift_amount) { shift_32(dst, shift_amount, 0x4); } void shr(Register dst, Immediate shift_amount) { shift(dst, shift_amount, 0x5); } void shr_cl(Register dst) { shift(dst, 0x5); } void shrl_cl(Register dst) { shift_32(dst, 0x5); } void shrl(Register dst, Immediate shift_amount) { shift_32(dst, shift_amount, 0x5); } void store_rax(void* dst, RelocInfo::Mode mode); void store_rax(ExternalReference ref); void subq(Register dst, Register src) { arithmetic_op(0x2B, dst, src); } void subq(Register dst, const Operand& src) { arithmetic_op(0x2B, dst, src); } void subq(const Operand& dst, Register src) { arithmetic_op(0x29, src, dst); } void subq(Register dst, Immediate src) { immediate_arithmetic_op(0x5, dst, src); } void subq(const Operand& dst, Immediate src) { immediate_arithmetic_op(0x5, dst, src); } void subl(Register dst, Register src) { arithmetic_op_32(0x2B, dst, src); } void subl(Register dst, const Operand& src) { arithmetic_op_32(0x2B, dst, src); } void subl(const Operand& dst, Immediate src) { immediate_arithmetic_op_32(0x5, dst, src); } void subl(Register dst, Immediate src) { immediate_arithmetic_op_32(0x5, dst, src); } void subb(Register dst, Immediate src) { immediate_arithmetic_op_8(0x5, dst, src); } void testb(Register dst, Register src); void testb(Register reg, Immediate mask); void testb(const Operand& op, Immediate mask); void testb(const Operand& op, Register reg); void testl(Register dst, Register src); void testl(Register reg, Immediate mask); void testl(const Operand& op, Immediate mask); void testq(const Operand& op, Register reg); void testq(Register dst, Register src); void testq(Register dst, Immediate mask); void xor_(Register dst, Register src) { if (dst.code() == src.code()) { arithmetic_op_32(0x33, dst, src); } else { arithmetic_op(0x33, dst, src); } } void xorl(Register dst, Register src) { arithmetic_op_32(0x33, dst, src); } void xor_(Register dst, const Operand& src) { arithmetic_op(0x33, dst, src); } void xor_(const Operand& dst, Register src) { arithmetic_op(0x31, src, dst); } void xor_(Register dst, Immediate src) { immediate_arithmetic_op(0x6, dst, src); } void xor_(const Operand& dst, Immediate src) { immediate_arithmetic_op(0x6, dst, src); } // Bit operations. void bt(const Operand& dst, Register src); void bts(const Operand& dst, Register src); // Miscellaneous void clc(); void cpuid(); void hlt(); void int3(); void nop(); void nop(int n); void rdtsc(); void ret(int imm16); void setcc(Condition cc, Register reg); // Label operations & relative jumps (PPUM Appendix D) // // Takes a branch opcode (cc) and a label (L) and generates // either a backward branch or a forward branch and links it // to the label fixup chain. Usage: // // Label L; // unbound label // j(cc, &L); // forward branch to unbound label // bind(&L); // bind label to the current pc // j(cc, &L); // backward branch to bound label // bind(&L); // illegal: a label may be bound only once // // Note: The same Label can be used for forward and backward branches // but it may be bound only once. void bind(Label* L); // binds an unbound label L to the current code position // Calls // Call near relative 32-bit displacement, relative to next instruction. void call(Label* L); void call(Handle<Code> target, RelocInfo::Mode rmode); // Call near absolute indirect, address in register void call(Register adr); // Call near indirect void call(const Operand& operand); // Jumps // Jump short or near relative. // Use a 32-bit signed displacement. void jmp(Label* L); // unconditional jump to L void jmp(Handle<Code> target, RelocInfo::Mode rmode); // Jump near absolute indirect (r64) void jmp(Register adr); // Jump near absolute indirect (m64) void jmp(const Operand& src); // Conditional jumps void j(Condition cc, Label* L); void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode); // Floating-point operations void fld(int i); void fld1(); void fldz(); void fld_s(const Operand& adr); void fld_d(const Operand& adr); void fstp_s(const Operand& adr); void fstp_d(const Operand& adr); void fstp(int index); void fild_s(const Operand& adr); void fild_d(const Operand& adr); void fist_s(const Operand& adr); void fistp_s(const Operand& adr); void fistp_d(const Operand& adr); void fisttp_s(const Operand& adr); void fisttp_d(const Operand& adr); void fabs(); void fchs(); void fadd(int i); void fsub(int i); void fmul(int i); void fdiv(int i); void fisub_s(const Operand& adr); void faddp(int i = 1); void fsubp(int i = 1); void fsubrp(int i = 1); void fmulp(int i = 1); void fdivp(int i = 1); void fprem(); void fprem1(); void fxch(int i = 1); void fincstp(); void ffree(int i = 0); void ftst(); void fucomp(int i); void fucompp(); void fucomi(int i); void fucomip(); void fcompp(); void fnstsw_ax(); void fwait(); void fnclex(); void fsin(); void fcos(); void frndint(); void sahf(); // SSE2 instructions void movsd(const Operand& dst, XMMRegister src); void movsd(XMMRegister src, XMMRegister dst); void movsd(XMMRegister src, const Operand& dst); void cvttss2si(Register dst, const Operand& src); void cvttsd2si(Register dst, const Operand& src); void cvtlsi2sd(XMMRegister dst, const Operand& src); void cvtlsi2sd(XMMRegister dst, Register src); void cvtqsi2sd(XMMRegister dst, const Operand& src); void cvtqsi2sd(XMMRegister dst, Register src); void addsd(XMMRegister dst, XMMRegister src); void subsd(XMMRegister dst, XMMRegister src); void mulsd(XMMRegister dst, XMMRegister src); void divsd(XMMRegister dst, XMMRegister src); void xorpd(XMMRegister dst, XMMRegister src); void comisd(XMMRegister dst, XMMRegister src); void ucomisd(XMMRegister dst, XMMRegister src); void emit_sse_operand(XMMRegister dst, XMMRegister src); void emit_sse_operand(XMMRegister reg, const Operand& adr); void emit_sse_operand(XMMRegister dst, Register src); // Use either movsd or movlpd. // void movdbl(XMMRegister dst, const Operand& src); // void movdbl(const Operand& dst, XMMRegister src); // Debugging void Print(); // Check the code size generated from label to here. int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); } // Mark address of the ExitJSFrame code. void RecordJSReturn(); // Record a comment relocation entry that can be used by a disassembler. // Use --debug_code to enable. void RecordComment(const char* msg); void RecordPosition(int pos); void RecordStatementPosition(int pos); void WriteRecordedPositions(); int pc_offset() const { return static_cast<int>(pc_ - buffer_); } int current_statement_position() const { return current_statement_position_; } int current_position() const { return current_position_; } // Check if there is less than kGap bytes available in the buffer. // If this is the case, we need to grow the buffer before emitting // an instruction or relocation information. inline bool buffer_overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } // Get the number of bytes available in the buffer. inline int available_space() const { return static_cast<int>(reloc_info_writer.pos() - pc_); } // Avoid overflows for displacements etc. static const int kMaximalBufferSize = 512*MB; static const int kMinimalBufferSize = 4*KB; private: byte* addr_at(int pos) { return buffer_ + pos; } byte byte_at(int pos) { return buffer_[pos]; } uint32_t long_at(int pos) { return *reinterpret_cast<uint32_t*>(addr_at(pos)); } void long_at_put(int pos, uint32_t x) { *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; } // code emission void GrowBuffer(); void emit(byte x) { *pc_++ = x; } inline void emitl(uint32_t x); inline void emitq(uint64_t x, RelocInfo::Mode rmode); inline void emitw(uint16_t x); inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode); void emit(Immediate x) { emitl(x.value_); } // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of both register codes. // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is set. inline void emit_rex_64(Register reg, Register rm_reg); inline void emit_rex_64(XMMRegister reg, Register rm_reg); // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of the destination, index, and base register codes. // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is set. inline void emit_rex_64(Register reg, const Operand& op); inline void emit_rex_64(XMMRegister reg, const Operand& op); // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of the register code. // The high bit of register is used for REX.B. // REX.W is set and REX.R and REX.X are clear. inline void emit_rex_64(Register rm_reg); // Emits a REX prefix that encodes a 64-bit operand size and // the top bit of the index and base register codes. // The high bit of op's base register is used for REX.B, and the high // bit of op's index register is used for REX.X. // REX.W is set and REX.R clear. inline void emit_rex_64(const Operand& op); // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size. void emit_rex_64() { emit(0x48); } // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is clear. inline void emit_rex_32(Register reg, Register rm_reg); // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is cleared. inline void emit_rex_32(Register reg, const Operand& op); // High bit of rm_reg goes to REX.B. // REX.W, REX.R and REX.X are clear. inline void emit_rex_32(Register rm_reg); // High bit of base goes to REX.B and high bit of index to REX.X. // REX.W and REX.R are clear. inline void emit_rex_32(const Operand& op); // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. // REX.W is cleared. If no REX bits are set, no byte is emitted. inline void emit_optional_rex_32(Register reg, Register rm_reg); // The high bit of reg is used for REX.R, the high bit of op's base // register is used for REX.B, and the high bit of op's index register // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing // is emitted. inline void emit_optional_rex_32(Register reg, const Operand& op); // As for emit_optional_rex_32(Register, Register), except that // the registers are XMM registers. inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base); // As for emit_optional_rex_32(Register, Register), except that // the registers are XMM registers. inline void emit_optional_rex_32(XMMRegister reg, Register base); // As for emit_optional_rex_32(Register, const Operand&), except that // the register is an XMM register. inline void emit_optional_rex_32(XMMRegister reg, const Operand& op); // Optionally do as emit_rex_32(Register) if the register number has // the high bit set. inline void emit_optional_rex_32(Register rm_reg); // Optionally do as emit_rex_32(const Operand&) if the operand register // numbers have a high bit set. inline void emit_optional_rex_32(const Operand& op); // Emit the ModR/M byte, and optionally the SIB byte and // 1- or 4-byte offset for a memory operand. Also encodes // the second operand of the operation, a register or operation // subcode, into the reg field of the ModR/M byte. void emit_operand(Register reg, const Operand& adr) { emit_operand(reg.low_bits(), adr); } // Emit the ModR/M byte, and optionally the SIB byte and // 1- or 4-byte offset for a memory operand. Also used to encode // a three-bit opcode extension into the ModR/M byte. void emit_operand(int rm, const Operand& adr); // Emit a ModR/M byte with registers coded in the reg and rm_reg fields. void emit_modrm(Register reg, Register rm_reg) { emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits()); } // Emit a ModR/M byte with an operation subcode in the reg field and // a register in the rm_reg field. void emit_modrm(int code, Register rm_reg) { ASSERT(is_uint3(code)); emit(0xC0 | code << 3 | rm_reg.low_bits()); } // Emit the code-object-relative offset of the label's position inline void emit_code_relative_offset(Label* label); // Emit machine code for one of the operations ADD, ADC, SUB, SBC, // AND, OR, XOR, or CMP. The encodings of these operations are all // similar, differing just in the opcode or in the reg field of the // ModR/M byte. void arithmetic_op_16(byte opcode, Register reg, Register rm_reg); void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg); void arithmetic_op_32(byte opcode, Register reg, Register rm_reg); void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg); void arithmetic_op(byte opcode, Register reg, Register rm_reg); void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg); void immediate_arithmetic_op(byte subcode, Register dst, Immediate src); void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src); // Operate on a byte in memory or register. void immediate_arithmetic_op_8(byte subcode, Register dst, Immediate src); void immediate_arithmetic_op_8(byte subcode, const Operand& dst, Immediate src); // Operate on a word in memory or register. void immediate_arithmetic_op_16(byte subcode, Register dst, Immediate src); void immediate_arithmetic_op_16(byte subcode, const Operand& dst, Immediate src); // Operate on a 32-bit word in memory or register. void immediate_arithmetic_op_32(byte subcode, Register dst, Immediate src); void immediate_arithmetic_op_32(byte subcode, const Operand& dst, Immediate src); // Emit machine code for a shift operation. void shift(Register dst, Immediate shift_amount, int subcode); void shift_32(Register dst, Immediate shift_amount, int subcode); // Shift dst by cl % 64 bits. void shift(Register dst, int subcode); void shift_32(Register dst, int subcode); void emit_farith(int b1, int b2, int i); // labels // void print(Label* L); void bind_to(Label* L, int pos); void link_to(Label* L, Label* appendix); // record reloc info for current pc_ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); friend class CodePatcher; friend class EnsureSpace; friend class RegExpMacroAssemblerX64; // Code buffer: // The buffer into which code and relocation info are generated. byte* buffer_; int buffer_size_; // True if the assembler owns the buffer, false if buffer is external. bool own_buffer_; // A previously allocated buffer of kMinimalBufferSize bytes, or NULL. static byte* spare_buffer_; // code generation byte* pc_; // the program counter; moves forward RelocInfoWriter reloc_info_writer; List< Handle<Code> > code_targets_; // push-pop elimination byte* last_pc_; // source position information int current_statement_position_; int current_position_; int written_statement_position_; int written_position_; }; // Helper class that ensures that there is enough space for generating // instructions and relocation information. The constructor makes // sure that there is enough space and (in debug mode) the destructor // checks that we did not generate too much. class EnsureSpace BASE_EMBEDDED { public: explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { if (assembler_->buffer_overflow()) assembler_->GrowBuffer(); #ifdef DEBUG space_before_ = assembler_->available_space(); #endif } #ifdef DEBUG ~EnsureSpace() { int bytes_generated = space_before_ - assembler_->available_space(); ASSERT(bytes_generated < assembler_->kGap); } #endif private: Assembler* assembler_; #ifdef DEBUG int space_before_; #endif }; } } // namespace v8::internal #endif // V8_X64_ASSEMBLER_X64_H_