// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "assembler-x64.h" #include "macro-assembler-x64.h" #include "serialize.h" #include "debug.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(void* buffer, int size) : Assembler(buffer, size), generating_stub_(false), allow_stub_calls_(true), code_object_(Heap::undefined_value()) { } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { movq(destination, Operand(r13, index << kPointerSizeLog2)); } void MacroAssembler::PushRoot(Heap::RootListIndex index) { push(Operand(r13, index << kPointerSizeLog2)); } void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { cmpq(with, Operand(r13, index << kPointerSizeLog2)); } void MacroAssembler::CompareRoot(Operand with, Heap::RootListIndex index) { LoadRoot(kScratchRegister, index); cmpq(with, kScratchRegister); } void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { CompareRoot(rsp, Heap::kStackLimitRootIndex); j(below, on_stack_overflow); } static void RecordWriteHelper(MacroAssembler* masm, Register object, Register addr, Register scratch) { Label fast; // Compute the page start address from the heap object pointer, and reuse // the 'object' register for it. ASSERT(is_int32(~Page::kPageAlignmentMask)); masm->and_(object, Immediate(static_cast<int32_t>(~Page::kPageAlignmentMask))); Register page_start = object; // Compute the bit addr in the remembered set/index of the pointer in the // page. Reuse 'addr' as pointer_offset. masm->subq(addr, page_start); masm->shr(addr, Immediate(kPointerSizeLog2)); Register pointer_offset = addr; // If the bit offset lies beyond the normal remembered set range, it is in // the extra remembered set area of a large object. masm->cmpq(pointer_offset, Immediate(Page::kPageSize / kPointerSize)); masm->j(less, &fast); // Adjust 'page_start' so that addressing using 'pointer_offset' hits the // extra remembered set after the large object. // Load the array length into 'scratch'. masm->movl(scratch, Operand(page_start, Page::kObjectStartOffset + FixedArray::kLengthOffset)); Register array_length = scratch; // Extra remembered set starts right after the large object (a FixedArray), at // page_start + kObjectStartOffset + objectSize // where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length. // Add the delta between the end of the normal RSet and the start of the // extra RSet to 'page_start', so that addressing the bit using // 'pointer_offset' hits the extra RSet words. masm->lea(page_start, Operand(page_start, array_length, times_pointer_size, Page::kObjectStartOffset + FixedArray::kHeaderSize - Page::kRSetEndOffset)); // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction // to limit code size. We should probably evaluate this decision by // measuring the performance of an equivalent implementation using // "simpler" instructions masm->bind(&fast); masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset); } class RecordWriteStub : public CodeStub { public: RecordWriteStub(Register object, Register addr, Register scratch) : object_(object), addr_(addr), scratch_(scratch) { } void Generate(MacroAssembler* masm); private: Register object_; Register addr_; Register scratch_; #ifdef DEBUG void Print() { PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n", object_.code(), addr_.code(), scratch_.code()); } #endif // Minor key encoding in 12 bits of three registers (object, address and // scratch) OOOOAAAASSSS. class ScratchBits : public BitField<uint32_t, 0, 4> {}; class AddressBits : public BitField<uint32_t, 4, 4> {}; class ObjectBits : public BitField<uint32_t, 8, 4> {}; Major MajorKey() { return RecordWrite; } int MinorKey() { // Encode the registers. return ObjectBits::encode(object_.code()) | AddressBits::encode(addr_.code()) | ScratchBits::encode(scratch_.code()); } }; void RecordWriteStub::Generate(MacroAssembler* masm) { RecordWriteHelper(masm, object_, addr_, scratch_); masm->ret(0); } // Set the remembered set bit for [object+offset]. // object is the object being stored into, value is the object being stored. // If offset is zero, then the smi_index register contains the array index into // the elements array represented as a smi. Otherwise it can be used as a // scratch register. // All registers are clobbered by the operation. void MacroAssembler::RecordWrite(Register object, int offset, Register value, Register smi_index) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are rsi. ASSERT(!object.is(rsi) && !value.is(rsi) && !smi_index.is(rsi)); // First, check if a remembered set write is even needed. The tests below // catch stores of Smis and stores into young gen (which does not have space // for the remembered set bits. Label done; JumpIfSmi(value, &done); RecordWriteNonSmi(object, offset, value, smi_index); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. This clobbering repeats the // clobbering done inside RecordWriteNonSmi but it's necessary to // avoid having the fast case for smis leave the registers // unchanged. if (FLAG_debug_code) { movq(object, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); movq(value, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); movq(smi_index, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); } } void MacroAssembler::RecordWriteNonSmi(Register object, int offset, Register scratch, Register smi_index) { Label done; if (FLAG_debug_code) { Label okay; JumpIfNotSmi(object, &okay); Abort("MacroAssembler::RecordWriteNonSmi cannot deal with smis"); bind(&okay); } // Test that the object address is not in the new space. We cannot // set remembered set bits in the new space. movq(scratch, object); ASSERT(is_int32(static_cast<int64_t>(Heap::NewSpaceMask()))); and_(scratch, Immediate(static_cast<int32_t>(Heap::NewSpaceMask()))); movq(kScratchRegister, ExternalReference::new_space_start()); cmpq(scratch, kScratchRegister); j(equal, &done); if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) { // Compute the bit offset in the remembered set, leave it in 'value'. lea(scratch, Operand(object, offset)); ASSERT(is_int32(Page::kPageAlignmentMask)); and_(scratch, Immediate(static_cast<int32_t>(Page::kPageAlignmentMask))); shr(scratch, Immediate(kObjectAlignmentBits)); // Compute the page address from the heap object pointer, leave it in // 'object' (immediate value is sign extended). and_(object, Immediate(~Page::kPageAlignmentMask)); // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction // to limit code size. We should probably evaluate this decision by // measuring the performance of an equivalent implementation using // "simpler" instructions bts(Operand(object, Page::kRSetOffset), scratch); } else { Register dst = smi_index; if (offset != 0) { lea(dst, Operand(object, offset)); } else { // array access: calculate the destination address in the same manner as // KeyedStoreIC::GenerateGeneric. SmiIndex index = SmiToIndex(smi_index, smi_index, kPointerSizeLog2); lea(dst, Operand(object, index.reg, index.scale, FixedArray::kHeaderSize - kHeapObjectTag)); } // If we are already generating a shared stub, not inlining the // record write code isn't going to save us any memory. if (generating_stub()) { RecordWriteHelper(this, object, dst, scratch); } else { RecordWriteStub stub(object, dst, scratch); CallStub(&stub); } } bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. if (FLAG_debug_code) { movq(object, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); movq(scratch, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); movq(smi_index, bit_cast<int64_t>(kZapValue), RelocInfo::NONE); } } void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg); } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; testl(result, result); j(not_zero, &ok); testl(op, op); j(sign, then_label); bind(&ok); } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast<intptr_t>(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag. ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif // Disable stub call restrictions to always allow calls to abort. set_allow_stub_calls(true); push(rax); movq(kScratchRegister, p0, RelocInfo::NONE); push(kScratchRegister); movq(kScratchRegister, reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))), RelocInfo::NONE); push(kScratchRegister); CallRuntime(Runtime::kAbort, 2); // will not return here int3(); } void MacroAssembler::CallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs Call(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // calls are not allowed in some stubs Jump(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { addq(rsp, Immediate(num_arguments * kPointerSize)); } LoadRoot(rax, Heap::kUndefinedValueRootIndex); } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. movq(rax, Immediate(num_arguments)); movq(rbx, ExternalReference(f)); CEntryStub ces(f->result_size); CallStub(&ces); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { movq(rax, Immediate(num_arguments)); movq(rbx, ext); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::TailCallRuntime(ExternalReference const& ext, int num_arguments, int result_size) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : argument num_arguments - 1 // ... // -- rsp[8 * num_arguments] : argument 0 (receiver) // ----------------------------------- // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. movq(rax, Immediate(num_arguments)); JumpToRuntime(ext, result_size); } void MacroAssembler::JumpToRuntime(const ExternalReference& ext, int result_size) { // Set the entry point and jump to the C entry runtime stub. movq(rbx, ext); CEntryStub ces(result_size); jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { // Calls are not allowed in some stubs. ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); // Rely on the assertion to check that the number of provided // arguments match the expected number of arguments. Fake a // parameter count to avoid emitting code to do the check. ParameterCount expected(0); GetBuiltinEntry(rdx, id); InvokeCode(rdx, expected, expected, flag); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { // Load the JavaScript builtin function from the builtins object. movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); movq(rdi, FieldOperand(rdi, GlobalObject::kBuiltinsOffset)); int builtins_offset = JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); movq(rdi, FieldOperand(rdi, builtins_offset)); // Load the code entry point from the function into the target register. movq(target, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); movq(target, FieldOperand(target, SharedFunctionInfo::kCodeOffset)); addq(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); } void MacroAssembler::Set(Register dst, int64_t x) { if (x == 0) { xor_(dst, dst); } else if (is_int32(x)) { movq(dst, Immediate(static_cast<int32_t>(x))); } else if (is_uint32(x)) { movl(dst, Immediate(static_cast<uint32_t>(x))); } else { movq(dst, x, RelocInfo::NONE); } } void MacroAssembler::Set(const Operand& dst, int64_t x) { if (x == 0) { xor_(kScratchRegister, kScratchRegister); movq(dst, kScratchRegister); } else if (is_int32(x)) { movq(dst, Immediate(static_cast<int32_t>(x))); } else if (is_uint32(x)) { movl(dst, Immediate(static_cast<uint32_t>(x))); } else { movq(kScratchRegister, x, RelocInfo::NONE); movq(dst, kScratchRegister); } } // ---------------------------------------------------------------------------- // Smi tagging, untagging and tag detection. static int kSmiShift = kSmiTagSize + kSmiShiftSize; void MacroAssembler::Integer32ToSmi(Register dst, Register src) { ASSERT_EQ(0, kSmiTag); if (!dst.is(src)) { movl(dst, src); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::Integer32ToSmi(Register dst, Register src, Label* on_overflow) { ASSERT_EQ(0, kSmiTag); // 32-bit integer always fits in a long smi. if (!dst.is(src)) { movl(dst, src); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::Integer64PlusConstantToSmi(Register dst, Register src, int constant) { if (dst.is(src)) { addq(dst, Immediate(constant)); } else { lea(dst, Operand(src, constant)); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger32(Register dst, Register src) { ASSERT_EQ(0, kSmiTag); if (!dst.is(src)) { movq(dst, src); } shr(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger64(Register dst, Register src) { ASSERT_EQ(0, kSmiTag); if (!dst.is(src)) { movq(dst, src); } sar(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiTest(Register src) { testq(src, src); } void MacroAssembler::SmiCompare(Register dst, Register src) { cmpq(dst, src); } void MacroAssembler::SmiCompare(Register dst, Smi* src) { ASSERT(!dst.is(kScratchRegister)); if (src->value() == 0) { testq(dst, dst); } else { Move(kScratchRegister, src); cmpq(dst, kScratchRegister); } } void MacroAssembler::SmiCompare(const Operand& dst, Register src) { cmpq(dst, src); } void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) { if (src->value() == 0) { // Only tagged long smi to have 32-bit representation. cmpq(dst, Immediate(0)); } else { Move(kScratchRegister, src); cmpq(dst, kScratchRegister); } } void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst, Register src, int power) { ASSERT(power >= 0); ASSERT(power < 64); if (power == 0) { SmiToInteger64(dst, src); return; } if (!dst.is(src)) { movq(dst, src); } if (power < kSmiShift) { sar(dst, Immediate(kSmiShift - power)); } else if (power > kSmiShift) { shl(dst, Immediate(power - kSmiShift)); } } Condition MacroAssembler::CheckSmi(Register src) { ASSERT_EQ(0, kSmiTag); testb(src, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckPositiveSmi(Register src) { ASSERT_EQ(0, kSmiTag); movq(kScratchRegister, src); rol(kScratchRegister, Immediate(1)); testl(kScratchRegister, Immediate(0x03)); return zero; } Condition MacroAssembler::CheckBothSmi(Register first, Register second) { if (first.is(second)) { return CheckSmi(first); } movl(kScratchRegister, first); orl(kScratchRegister, second); testb(kScratchRegister, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckBothPositiveSmi(Register first, Register second) { if (first.is(second)) { return CheckPositiveSmi(first); } movl(kScratchRegister, first); orl(kScratchRegister, second); rol(kScratchRegister, Immediate(1)); testl(kScratchRegister, Immediate(0x03)); return zero; } Condition MacroAssembler::CheckEitherSmi(Register first, Register second) { if (first.is(second)) { return CheckSmi(first); } movl(kScratchRegister, first); andl(kScratchRegister, second); testb(kScratchRegister, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckIsMinSmi(Register src) { ASSERT(kSmiTag == 0 && kSmiTagSize == 1); movq(kScratchRegister, src); rol(kScratchRegister, Immediate(1)); cmpq(kScratchRegister, Immediate(1)); return equal; } Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) { // A 32-bit integer value can always be converted to a smi. return always; } Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) { // An unsigned 32-bit integer value is valid as long as the high bit // is not set. testq(src, Immediate(0x80000000)); return zero; } void MacroAssembler::SmiNeg(Register dst, Register src, Label* on_smi_result) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); movq(kScratchRegister, src); neg(dst); // Low 32 bits are retained as zero by negation. // Test if result is zero or Smi::kMinValue. cmpq(dst, kScratchRegister); j(not_equal, on_smi_result); movq(src, kScratchRegister); } else { movq(dst, src); neg(dst); cmpq(dst, src); // If the result is zero or Smi::kMinValue, negation failed to create a smi. j(not_equal, on_smi_result); } } void MacroAssembler::SmiAdd(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(src2)); if (dst.is(src1)) { addq(dst, src2); Label smi_result; j(no_overflow, &smi_result); // Restore src1. subq(src1, src2); jmp(on_not_smi_result); bind(&smi_result); } else { movq(dst, src1); addq(dst, src2); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiSub(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(src2)); if (on_not_smi_result == NULL) { // No overflow checking. Use only when it's known that // overflowing is impossible (e.g., subtracting two positive smis). if (dst.is(src1)) { subq(dst, src2); } else { movq(dst, src1); subq(dst, src2); } Assert(no_overflow, "Smi substraction onverflow"); } else if (dst.is(src1)) { subq(dst, src2); Label smi_result; j(no_overflow, &smi_result); // Restore src1. addq(src1, src2); jmp(on_not_smi_result); bind(&smi_result); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiMul(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(src2)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); if (dst.is(src1)) { Label failure, zero_correct_result; movq(kScratchRegister, src1); // Create backup for later testing. SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, &failure); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. Label correct_result; testq(dst, dst); j(not_zero, &correct_result); movq(dst, kScratchRegister); xor_(dst, src2); j(positive, &zero_correct_result); // Result was positive zero. bind(&failure); // Reused failure exit, restores src1. movq(src1, kScratchRegister); jmp(on_not_smi_result); bind(&zero_correct_result); xor_(dst, dst); bind(&correct_result); } else { SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, on_not_smi_result); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. Label correct_result; testq(dst, dst); j(not_zero, &correct_result); // One of src1 and src2 is zero, the check whether the other is // negative. movq(kScratchRegister, src1); xor_(kScratchRegister, src2); j(negative, on_not_smi_result); bind(&correct_result); } } void MacroAssembler::SmiTryAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result) { // Does not assume that src is a smi. ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask)); ASSERT_EQ(0, kSmiTag); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); JumpIfNotSmi(src, on_not_smi_result); Register tmp = (dst.is(src) ? kScratchRegister : dst); Move(tmp, constant); addq(tmp, src); j(overflow, on_not_smi_result); if (dst.is(src)) { movq(dst, tmp); } } void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); addq(dst, kScratchRegister); } else { Move(dst, constant); addq(dst, src); } } void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); addq(dst, kScratchRegister); Label result_ok; j(no_overflow, &result_ok); subq(dst, kScratchRegister); jmp(on_not_smi_result); bind(&result_ok); } else { Move(dst, constant); addq(dst, src); j(overflow, on_not_smi_result); } } void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); subq(dst, kScratchRegister); } else { // Subtract by adding the negative, to do it in two operations. if (constant->value() == Smi::kMinValue) { Move(kScratchRegister, constant); movq(dst, src); subq(dst, kScratchRegister); } else { Move(dst, Smi::FromInt(-constant->value())); addq(dst, src); } } } void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); subq(dst, kScratchRegister); Label sub_success; j(no_overflow, &sub_success); addq(src, kScratchRegister); jmp(on_not_smi_result); bind(&sub_success); } else { if (constant->value() == Smi::kMinValue) { Move(kScratchRegister, constant); movq(dst, src); subq(dst, kScratchRegister); j(overflow, on_not_smi_result); } else { Move(dst, Smi::FromInt(-(constant->value()))); addq(dst, src); j(overflow, on_not_smi_result); } } } void MacroAssembler::SmiDiv(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); // Check for 0 divisor (result is +/-Infinity). Label positive_divisor; testq(src2, src2); j(zero, on_not_smi_result); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); // We need to rule out dividing Smi::kMinValue by -1, since that would // overflow in idiv and raise an exception. // We combine this with negative zero test (negative zero only happens // when dividing zero by a negative number). // We overshoot a little and go to slow case if we divide min-value // by any negative value, not just -1. Label safe_div; testl(rax, Immediate(0x7fffffff)); j(not_zero, &safe_div); testq(src2, src2); if (src1.is(rax)) { j(positive, &safe_div); movq(src1, kScratchRegister); jmp(on_not_smi_result); } else { j(negative, on_not_smi_result); } bind(&safe_div); SmiToInteger32(src2, src2); // Sign extend src1 into edx:eax. cdq(); idivl(src2); Integer32ToSmi(src2, src2); // Check that the remainder is zero. testl(rdx, rdx); if (src1.is(rax)) { Label smi_result; j(zero, &smi_result); movq(src1, kScratchRegister); jmp(on_not_smi_result); bind(&smi_result); } else { j(not_zero, on_not_smi_result); } if (!dst.is(src1) && src1.is(rax)) { movq(src1, kScratchRegister); } Integer32ToSmi(dst, rax); } void MacroAssembler::SmiMod(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); ASSERT(!src1.is(src2)); testq(src2, src2); j(zero, on_not_smi_result); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); SmiToInteger32(src2, src2); // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). Label safe_div; cmpl(rax, Immediate(Smi::kMinValue)); j(not_equal, &safe_div); cmpl(src2, Immediate(-1)); j(not_equal, &safe_div); // Retag inputs and go slow case. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } jmp(on_not_smi_result); bind(&safe_div); // Sign extend eax into edx:eax. cdq(); idivl(src2); // Restore smi tags on inputs. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } // Check for a negative zero result. If the result is zero, and the // dividend is negative, go slow to return a floating point negative zero. Label smi_result; testl(rdx, rdx); j(not_zero, &smi_result); testq(src1, src1); j(negative, on_not_smi_result); bind(&smi_result); Integer32ToSmi(dst, rdx); } void MacroAssembler::SmiNot(Register dst, Register src) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); // Set tag and padding bits before negating, so that they are zero afterwards. movl(kScratchRegister, Immediate(~0)); if (dst.is(src)) { xor_(dst, kScratchRegister); } else { lea(dst, Operand(src, kScratchRegister, times_1, 0)); } not_(dst); } void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) { ASSERT(!dst.is(src2)); if (!dst.is(src1)) { movq(dst, src1); } and_(dst, src2); } void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { xor_(dst, dst); } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); and_(dst, kScratchRegister); } else { Move(dst, constant); and_(dst, src); } } void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) { if (!dst.is(src1)) { movq(dst, src1); } or_(dst, src2); } void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); or_(dst, kScratchRegister); } else { Move(dst, constant); or_(dst, src); } } void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) { if (!dst.is(src1)) { movq(dst, src1); } xor_(dst, src2); } void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Move(kScratchRegister, constant); xor_(dst, kScratchRegister); } else { Move(dst, constant); xor_(dst, src); } } void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst, Register src, int shift_value) { ASSERT(is_uint5(shift_value)); if (shift_value > 0) { if (dst.is(src)) { sar(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } else { UNIMPLEMENTED(); // Not used. } } } void MacroAssembler::SmiShiftLogicalRightConstant(Register dst, Register src, int shift_value, Label* on_not_smi_result) { // Logic right shift interprets its result as an *unsigned* number. if (dst.is(src)) { UNIMPLEMENTED(); // Not used. } else { movq(dst, src); if (shift_value == 0) { testq(dst, dst); j(negative, on_not_smi_result); } shr(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } } void MacroAssembler::SmiShiftLeftConstant(Register dst, Register src, int shift_value, Label* on_not_smi_result) { if (!dst.is(src)) { movq(dst, src); } if (shift_value > 0) { shl(dst, Immediate(shift_value)); } } void MacroAssembler::SmiShiftLeft(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(rcx)); Label result_ok; // Untag shift amount. if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); // Shift amount specified by lower 5 bits, not six as the shl opcode. and_(rcx, Immediate(0x1f)); shl_cl(dst); } void MacroAssembler::SmiShiftLogicalRight(Register dst, Register src1, Register src2, Label* on_not_smi_result) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); Label result_ok; if (src1.is(rcx) || src2.is(rcx)) { movq(kScratchRegister, rcx); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); shr_cl(dst); // Shift is rcx modulo 0x1f + 32. shl(dst, Immediate(kSmiShift)); testq(dst, dst); if (src1.is(rcx) || src2.is(rcx)) { Label positive_result; j(positive, &positive_result); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else { movq(src2, kScratchRegister); } jmp(on_not_smi_result); bind(&positive_result); } else { j(negative, on_not_smi_result); // src2 was zero and src1 negative. } } void MacroAssembler::SmiShiftArithmeticRight(Register dst, Register src1, Register src2) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); if (src1.is(rcx)) { movq(kScratchRegister, src1); } else if (src2.is(rcx)) { movq(kScratchRegister, src2); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); sar_cl(dst); // Shift 32 + original rcx & 0x1f. shl(dst, Immediate(kSmiShift)); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else if (src2.is(rcx)) { movq(src2, kScratchRegister); } } void MacroAssembler::SelectNonSmi(Register dst, Register src1, Register src2, Label* on_not_smis) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(src1)); ASSERT(!dst.is(src2)); // Both operands must not be smis. #ifdef DEBUG if (allow_stub_calls()) { // Check contains a stub call. Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); Check(not_both_smis, "Both registers were smis in SelectNonSmi."); } #endif ASSERT_EQ(0, kSmiTag); ASSERT_EQ(0, Smi::FromInt(0)); movl(kScratchRegister, Immediate(kSmiTagMask)); and_(kScratchRegister, src1); testl(kScratchRegister, src2); // If non-zero then both are smis. j(not_zero, on_not_smis); // Exactly one operand is a smi. ASSERT_EQ(1, static_cast<int>(kSmiTagMask)); // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. subq(kScratchRegister, Immediate(1)); // If src1 is a smi, then scratch register all 1s, else it is all 0s. movq(dst, src1); xor_(dst, src2); and_(dst, kScratchRegister); // If src1 is a smi, dst holds src1 ^ src2, else it is zero. xor_(dst, src1); // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. } SmiIndex MacroAssembler::SmiToIndex(Register dst, Register src, int shift) { ASSERT(is_uint6(shift)); // There is a possible optimization if shift is in the range 60-63, but that // will (and must) never happen. if (!dst.is(src)) { movq(dst, src); } if (shift < kSmiShift) { sar(dst, Immediate(kSmiShift - shift)); } else { shl(dst, Immediate(shift - kSmiShift)); } return SmiIndex(dst, times_1); } SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst, Register src, int shift) { // Register src holds a positive smi. ASSERT(is_uint6(shift)); if (!dst.is(src)) { movq(dst, src); } neg(dst); if (shift < kSmiShift) { sar(dst, Immediate(kSmiShift - shift)); } else { shl(dst, Immediate(shift - kSmiShift)); } return SmiIndex(dst, times_1); } void MacroAssembler::JumpIfSmi(Register src, Label* on_smi) { ASSERT_EQ(0, kSmiTag); Condition smi = CheckSmi(src); j(smi, on_smi); } void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi) { Condition smi = CheckSmi(src); j(NegateCondition(smi), on_not_smi); } void MacroAssembler::JumpIfNotPositiveSmi(Register src, Label* on_not_positive_smi) { Condition positive_smi = CheckPositiveSmi(src); j(NegateCondition(positive_smi), on_not_positive_smi); } void MacroAssembler::JumpIfSmiEqualsConstant(Register src, Smi* constant, Label* on_equals) { SmiCompare(src, constant); j(equal, on_equals); } void MacroAssembler::JumpIfNotValidSmiValue(Register src, Label* on_invalid) { Condition is_valid = CheckInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid); } void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid) { Condition is_valid = CheckUInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid); } void MacroAssembler::JumpIfNotBothSmi(Register src1, Register src2, Label* on_not_both_smi) { Condition both_smi = CheckBothSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi); } void MacroAssembler::JumpIfNotBothPositiveSmi(Register src1, Register src2, Label* on_not_both_smi) { Condition both_smi = CheckBothPositiveSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object, Register second_object, Register scratch1, Register scratch2, Label* on_fail) { // Check that both objects are not smis. Condition either_smi = CheckEitherSmi(first_object, second_object); j(either_smi, on_fail); // Load instance type for both strings. movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat ascii strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail); } void MacroAssembler::Move(Register dst, Handle<Object> source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { Move(dst, Smi::cast(*source)); } else { movq(dst, source, RelocInfo::EMBEDDED_OBJECT); } } void MacroAssembler::Move(const Operand& dst, Handle<Object> source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { Move(dst, Smi::cast(*source)); } else { movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); movq(dst, kScratchRegister); } } void MacroAssembler::Cmp(Register dst, Handle<Object> source) { if (source->IsSmi()) { SmiCompare(dst, Smi::cast(*source)); } else { Move(kScratchRegister, source); cmpq(dst, kScratchRegister); } } void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) { if (source->IsSmi()) { SmiCompare(dst, Smi::cast(*source)); } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); cmpq(dst, kScratchRegister); } } void MacroAssembler::Push(Handle<Object> source) { if (source->IsSmi()) { Push(Smi::cast(*source)); } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); } } void MacroAssembler::Push(Smi* source) { intptr_t smi = reinterpret_cast<intptr_t>(source); if (is_int32(smi)) { push(Immediate(static_cast<int32_t>(smi))); } else { Set(kScratchRegister, smi); push(kScratchRegister); } } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { addq(rsp, Immediate(stack_elements * kPointerSize)); } } void MacroAssembler::Test(const Operand& src, Smi* source) { intptr_t smi = reinterpret_cast<intptr_t>(source); if (is_int32(smi)) { testl(src, Immediate(static_cast<int32_t>(smi))); } else { Move(kScratchRegister, source); testq(src, kScratchRegister); } } void MacroAssembler::Jump(ExternalReference ext) { movq(kScratchRegister, ext); jmp(kScratchRegister); } void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); jmp(kScratchRegister); } void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) { // TODO(X64): Inline this jmp(code_object, rmode); } void MacroAssembler::Call(ExternalReference ext) { movq(kScratchRegister, ext); call(kScratchRegister); } void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); call(kScratchRegister); } void MacroAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) { ASSERT(RelocInfo::IsCodeTarget(rmode)); WriteRecordedPositions(); call(code_object, rmode); } void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // The pc (return address) is already on TOS. This code pushes state, // frame pointer and current handler. Check that they are expected // next on the stack, in that order. ASSERT_EQ(StackHandlerConstants::kStateOffset, StackHandlerConstants::kPCOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kFPOffset, StackHandlerConstants::kStateOffset - kPointerSize); ASSERT_EQ(StackHandlerConstants::kNextOffset, StackHandlerConstants::kFPOffset - kPointerSize); if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { push(Immediate(StackHandler::TRY_CATCH)); } else { push(Immediate(StackHandler::TRY_FINALLY)); } push(rbp); } else { ASSERT(try_location == IN_JS_ENTRY); // The frame pointer does not point to a JS frame so we save NULL // for rbp. We expect the code throwing an exception to check rbp // before dereferencing it to restore the context. push(Immediate(StackHandler::ENTRY)); push(Immediate(0)); // NULL frame pointer. } // Save the current handler. movq(kScratchRegister, ExternalReference(Top::k_handler_address)); push(Operand(kScratchRegister, 0)); // Link this handler. movq(Operand(kScratchRegister, 0), rsp); } void MacroAssembler::PopTryHandler() { ASSERT_EQ(0, StackHandlerConstants::kNextOffset); // Unlink this handler. movq(kScratchRegister, ExternalReference(Top::k_handler_address)); pop(Operand(kScratchRegister, 0)); // Remove the remaining fields. addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::FCmp() { fucomip(); ffree(0); fincstp(); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(static_cast<int8_t>(type))); } void MacroAssembler::CheckMap(Register obj, Handle<Map> map, Label* fail, bool is_heap_object) { if (!is_heap_object) { JumpIfSmi(obj, fail); } Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); j(not_equal, fail); } void MacroAssembler::AbortIfNotNumber(Register object, const char* msg) { Label ok; Condition is_smi = CheckSmi(object); j(is_smi, &ok); Cmp(FieldOperand(object, HeapObject::kMapOffset), Factory::heap_number_map()); Assert(equal, msg); bind(&ok); } Condition MacroAssembler::IsObjectStringType(Register heap_object, Register map, Register instance_type) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); ASSERT(kNotStringTag != 0); testb(instance_type, Immediate(kIsNotStringMask)); return zero; } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Label* miss) { // Check that the receiver isn't a smi. testl(function, Immediate(kSmiTagMask)); j(zero, miss); // Check that the function really is a function. CmpObjectType(function, JS_FUNCTION_TYPE, result); j(not_equal, miss); // Make sure that the function has an instance prototype. Label non_instance; testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kHasNonInstancePrototype)); j(not_zero, &non_instance); // Get the prototype or initial map from the function. movq(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. CompareRoot(result, Heap::kTheHoleValueRootIndex); j(equal, miss); // If the function does not have an initial map, we're done. Label done; CmpObjectType(result, MAP_TYPE, kScratchRegister); j(not_equal, &done); // Get the prototype from the initial map. movq(result, FieldOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); movq(result, FieldOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); movl(Operand(kScratchRegister, 0), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { incl(operand); } else { addl(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { movq(kScratchRegister, ExternalReference(counter)); Operand operand(kScratchRegister, 0); if (value == 1) { decl(operand); } else { subl(operand, Immediate(value)); } } } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::PushRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Push the content of the memory location to the stack. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); push(Operand(kScratchRegister, 0)); } } } void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), reg); } } } void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(reg, Operand(kScratchRegister, 0)); } } } void MacroAssembler::PopRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Pop the content from the stack to the memory location. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); pop(Operand(kScratchRegister, 0)); } } } void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT(!scratch.is(kScratchRegister)); ASSERT(!base.is(kScratchRegister)); ASSERT(!base.is(scratch)); ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = kNumJSCallerSaved - 1; i >= 0; i--) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { movq(scratch, Operand(base, 0)); ExternalReference reg_addr = ExternalReference(Debug_Address::Register(i)); movq(kScratchRegister, reg_addr); movq(Operand(kScratchRegister, 0), scratch); lea(base, Operand(base, kPointerSize)); } } } void MacroAssembler::DebugBreak() { ASSERT(allow_stub_calls()); xor_(rax, rax); // no arguments movq(rbx, ExternalReference(Runtime::kDebugBreak)); CEntryStub ces(1); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif // ENABLE_DEBUGGER_SUPPORT void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, Register code_register, Label* done, InvokeFlag flag) { bool definitely_matches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { movq(rax, Immediate(actual.immediate())); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for built-ins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { movq(rbx, Immediate(expected.immediate())); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmpq(expected.reg(), Immediate(actual.immediate())); j(equal, &invoke); ASSERT(expected.reg().is(rbx)); movq(rax, Immediate(actual.immediate())); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmpq(expected.reg(), actual.reg()); j(equal, &invoke); ASSERT(actual.reg().is(rax)); ASSERT(expected.reg().is(rbx)); } } if (!definitely_matches) { Handle<Code> adaptor = Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (!code_constant.is_null()) { movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_register.is(rdx)) { movq(rdx, code_register); } if (flag == CALL_FUNCTION) { Call(adaptor, RelocInfo::CODE_TARGET); jmp(done); } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); if (flag == CALL_FUNCTION) { call(code); } else { ASSERT(flag == JUMP_FUNCTION); jmp(code); } bind(&done); } void MacroAssembler::InvokeCode(Handle<Code> code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; Register dummy = rax; InvokePrologue(expected, actual, code, dummy, &done, flag); if (flag == CALL_FUNCTION) { Call(code, rmode); } else { ASSERT(flag == JUMP_FUNCTION); Jump(code, rmode); } bind(&done); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function.is(rdi)); movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); // Advances rdx to the end of the Code object header, to the start of // the executable code. lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); ParameterCount expected(rbx); InvokeCode(rdx, expected, actual, flag); } void MacroAssembler::InvokeFunction(JSFunction* function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function->is_compiled()); // Get the function and setup the context. Move(rdi, Handle<JSFunction>(function)); movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Invoke the cached code. Handle<Code> code(function->code()); ParameterCount expected(function->shared()->formal_parameter_count()); InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(rbp); movq(rbp, rsp); push(rsi); // Context. Push(Smi::FromInt(type)); movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); if (FLAG_debug_code) { movq(kScratchRegister, Factory::undefined_value(), RelocInfo::EMBEDDED_OBJECT); cmpq(Operand(rsp, 0), kScratchRegister); Check(not_equal, "code object not properly patched"); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (FLAG_debug_code) { Move(kScratchRegister, Smi::FromInt(type)); cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); Check(equal, "stack frame types must match"); } movq(rsp, rbp); pop(rbp); } void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode, int result_size) { // Setup the frame structure on the stack. // All constants are relative to the frame pointer of the exit frame. ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(rbp); movq(rbp, rsp); // Reserve room for entry stack pointer and push the debug marker. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // Saved entry sp, patched before call. movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); // Accessed from EditFrame::code_slot. // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); ExternalReference context_address(Top::k_context_address); movq(r14, rax); // Backup rax before we use it. movq(rax, rbp); store_rax(c_entry_fp_address); movq(rax, rsi); store_rax(context_address); // Setup argv in callee-saved register r15. It is reused in LeaveExitFrame, // so it must be retained across the C-call. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; lea(r15, Operand(rbp, r14, times_pointer_size, offset)); #ifdef ENABLE_DEBUGGER_SUPPORT // Save the state of all registers to the stack from the memory // location. This is needed to allow nested break points. if (mode == ExitFrame::MODE_DEBUG) { // TODO(1243899): This should be symmetric to // CopyRegistersFromStackToMemory() but it isn't! esp is assumed // correct here, but computed for the other call. Very error // prone! FIX THIS. Actually there are deeper problems with // register saving than this asymmetry (see the bug report // associated with this issue). PushRegistersFromMemory(kJSCallerSaved); } #endif #ifdef _WIN64 // Reserve space on stack for result and argument structures, if necessary. int result_stack_space = (result_size < 2) ? 0 : result_size * kPointerSize; // Reserve space for the Arguments object. The Windows 64-bit ABI // requires us to pass this structure as a pointer to its location on // the stack. The structure contains 2 values. int argument_stack_space = 2 * kPointerSize; // We also need backing space for 4 parameters, even though // we only pass one or two parameter, and it is in a register. int argument_mirror_space = 4 * kPointerSize; int total_stack_space = argument_mirror_space + argument_stack_space + result_stack_space; subq(rsp, Immediate(total_stack_space)); #endif // Get the required frame alignment for the OS. static const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); movq(kScratchRegister, Immediate(-kFrameAlignment)); and_(rsp, kScratchRegister); } // Patch the saved entry sp. movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); } void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode, int result_size) { // Registers: // r15 : argv #ifdef ENABLE_DEBUGGER_SUPPORT // Restore the memory copy of the registers by digging them out from // the stack. This is needed to allow nested break points. if (mode == ExitFrame::MODE_DEBUG) { // It's okay to clobber register rbx below because we don't need // the function pointer after this. const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize; lea(rbx, Operand(rbp, kOffset)); CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved); } #endif // Get the return address from the stack and restore the frame pointer. movq(rcx, Operand(rbp, 1 * kPointerSize)); movq(rbp, Operand(rbp, 0 * kPointerSize)); // Pop everything up to and including the arguments and the receiver // from the caller stack. lea(rsp, Operand(r15, 1 * kPointerSize)); // Restore current context from top and clear it in debug mode. ExternalReference context_address(Top::k_context_address); movq(kScratchRegister, context_address); movq(rsi, Operand(kScratchRegister, 0)); #ifdef DEBUG movq(Operand(kScratchRegister, 0), Immediate(0)); #endif // Push the return address to get ready to return. push(rcx); // Clear the top frame. ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); movq(kScratchRegister, c_entry_fp_address); movq(Operand(kScratchRegister, 0), Immediate(0)); } Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch, Label* miss) { // Make sure there's no overlap between scratch and the other // registers. ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); // Keep track of the current object in register reg. On the first // iteration, reg is an alias for object_reg, on later iterations, // it is an alias for holder_reg. Register reg = object_reg; int depth = 1; // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. while (object != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); JSObject* prototype = JSObject::cast(object->GetPrototype()); if (Heap::InNewSpace(prototype)) { // Get the map of the current object. movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); Cmp(scratch, Handle<Map>(object->map())); // Branch on the result of the map check. j(not_equal, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); // Restore scratch register to be the map of the object. // We load the prototype from the map in the scratch register. movq(scratch, FieldOperand(reg, HeapObject::kMapOffset)); } // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. reg = holder_reg; // from now the object is in holder_reg movq(reg, FieldOperand(scratch, Map::kPrototypeOffset)); } else { // Check the map of the current object. Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle<Map>(object->map())); // Branch on the result of the map check. j(not_equal, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); } // The prototype is in old space; load it directly. reg = holder_reg; // from now the object is in holder_reg Move(reg, Handle<JSObject>(prototype)); } // Go to the next object in the prototype chain. object = prototype; } // Check the holder map. Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle<Map>(holder->map())); j(not_equal, miss); // Log the check depth. LOG(IntEvent("check-maps-depth", depth)); // Perform security check for access to the global object and return // the holder register. ASSERT(object == holder); ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); } return reg; } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!scratch.is(kScratchRegister)); // Load current lexical context from the stack frame. movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset)); // When generating debug code, make sure the lexical context is set. if (FLAG_debug_code) { cmpq(scratch, Immediate(0)); Check(not_equal, "we should not have an empty lexical context"); } // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, offset)); movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (FLAG_debug_code) { Cmp(FieldOperand(scratch, HeapObject::kMapOffset), Factory::global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); } // Check if both contexts are the same. cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); j(equal, &same_contexts); // Compare security tokens. // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. // Check the context is a global context. if (FLAG_debug_code) { // Preserve original value of holder_reg. push(holder_reg); movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); CompareRoot(holder_reg, Heap::kNullValueRootIndex); Check(not_equal, "JSGlobalProxy::context() should not be null."); // Read the first word and compare to global_context_map(), movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex); Check(equal, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); } movq(kScratchRegister, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, token_offset)); cmpq(scratch, FieldOperand(kScratchRegister, token_offset)); j(not_equal, miss); bind(&same_contexts); } void MacroAssembler::LoadAllocationTopHelper(Register result, Register result_end, Register scratch, AllocationFlags flags) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Just return if allocation top is already known. if ((flags & RESULT_CONTAINS_TOP) != 0) { // No use of scratch if allocation top is provided. ASSERT(scratch.is(no_reg)); #ifdef DEBUG // Assert that result actually contains top on entry. movq(kScratchRegister, new_space_allocation_top); cmpq(result, Operand(kScratchRegister, 0)); Check(equal, "Unexpected allocation top"); #endif return; } // Move address of new object to result. Use scratch register if available. if (scratch.is(no_reg)) { movq(kScratchRegister, new_space_allocation_top); movq(result, Operand(kScratchRegister, 0)); } else { ASSERT(!scratch.is(result_end)); movq(scratch, new_space_allocation_top); movq(result, Operand(scratch, 0)); } } void MacroAssembler::UpdateAllocationTopHelper(Register result_end, Register scratch) { if (FLAG_debug_code) { testq(result_end, Immediate(kObjectAlignmentMask)); Check(zero, "Unaligned allocation in new space"); } ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Update new top. if (result_end.is(rax)) { // rax can be stored directly to a memory location. store_rax(new_space_allocation_top); } else { // Register required - use scratch provided if available. if (scratch.is(no_reg)) { movq(kScratchRegister, new_space_allocation_top); movq(Operand(kScratchRegister, 0), result_end); } else { movq(Operand(scratch, 0), result_end); } } } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, result_end, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); lea(result_end, Operand(result, object_size)); movq(kScratchRegister, new_space_allocation_limit); cmpq(result_end, Operand(kScratchRegister, 0)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, result_end, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); lea(result_end, Operand(result, element_count, element_size, header_size)); movq(kScratchRegister, new_space_allocation_limit); cmpq(result_end, Operand(kScratchRegister, 0)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { // Load address of new object into result. LoadAllocationTopHelper(result, result_end, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); if (!object_size.is(result_end)) { movq(result_end, object_size); } addq(result_end, result); movq(kScratchRegister, new_space_allocation_limit); cmpq(result_end, Operand(kScratchRegister, 0)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Make sure the object has no tag before resetting top. and_(object, Immediate(~kHeapObjectTagMask)); movq(kScratchRegister, new_space_allocation_top); #ifdef DEBUG cmpq(object, Operand(kScratchRegister, 0)); Check(below, "Undo allocation of non allocated memory"); #endif movq(Operand(kScratchRegister, 0), object); } void MacroAssembler::AllocateHeapNumber(Register result, Register scratch, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(HeapNumber::kSize, result, scratch, no_reg, gc_required, TAG_OBJECT); // Set the map. LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); ASSERT(kShortSize == 2); // scratch1 = length * 2 + kObjectAlignmentMask. lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); and_(scratch1, Immediate(~kObjectAlignmentMask)); // Allocate two byte string in new space. AllocateInNewSpace(SeqTwoByteString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(kScratchRegister, Heap::kStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); movl(FieldOperand(result, String::kLengthOffset), length); movl(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); movl(scratch1, length); ASSERT(kCharSize == 1); addq(scratch1, Immediate(kObjectAlignmentMask)); and_(scratch1, Immediate(~kObjectAlignmentMask)); // Allocate ascii string in new space. AllocateInNewSpace(SeqAsciiString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); movl(FieldOperand(result, String::kLengthOffset), length); movl(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateAsciiConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. movq(dst, Operand(rsi, Context::SlotOffset(Context::CLOSURE_INDEX))); // Load the function context (which is the incoming, outer context). movq(dst, FieldOperand(dst, JSFunction::kContextOffset)); for (int i = 1; i < context_chain_length; i++) { movq(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); movq(dst, FieldOperand(dst, JSFunction::kContextOffset)); } // The context may be an intermediate context, not a function context. movq(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); } else { // context is the current function context. // The context may be an intermediate context, not a function context. movq(dst, Operand(rsi, Context::SlotOffset(Context::FCONTEXT_INDEX))); } } int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { // On Windows stack slots are reserved by the caller for all arguments // including the ones passed in registers. On Linux 6 arguments are passed in // registers and the caller does not reserve stack slots for them. ASSERT(num_arguments >= 0); #ifdef _WIN64 static const int kArgumentsWithoutStackSlot = 0; #else static const int kArgumentsWithoutStackSlot = 6; #endif return num_arguments > kArgumentsWithoutStackSlot ? num_arguments - kArgumentsWithoutStackSlot : 0; } void MacroAssembler::PrepareCallCFunction(int num_arguments) { int frame_alignment = OS::ActivationFrameAlignment(); ASSERT(frame_alignment != 0); ASSERT(num_arguments >= 0); // Make stack end at alignment and allocate space for arguments and old rsp. movq(kScratchRegister, rsp); ASSERT(IsPowerOf2(frame_alignment)); int argument_slots_on_stack = ArgumentStackSlotsForCFunctionCall(num_arguments); subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize)); and_(rsp, Immediate(-frame_alignment)); movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { movq(rax, function); CallCFunction(rax, num_arguments); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { call(function); ASSERT(OS::ActivationFrameAlignment() != 0); ASSERT(num_arguments >= 0); int argument_slots_on_stack = ArgumentStackSlotsForCFunctionCall(num_arguments); movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize)); } CodePatcher::CodePatcher(byte* address, int size) : address_(address), size_(size), masm_(address, size + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } } } // namespace v8::internal