// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_VIRTUAL_FRAME_X64_H_ #define V8_X64_VIRTUAL_FRAME_X64_H_ #include "number-info.h" #include "register-allocator.h" #include "scopes.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Virtual frames // // The virtual frame is an abstraction of the physical stack frame. It // encapsulates the parameters, frame-allocated locals, and the expression // stack. It supports push/pop operations on the expression stack, as well // as random access to the expression stack elements, locals, and // parameters. class VirtualFrame : public ZoneObject { public: // A utility class to introduce a scope where the virtual frame is // expected to remain spilled. The constructor spills the code // generator's current frame, but no attempt is made to require it // to stay spilled. It is intended as documentation while the code // generator is being transformed. class SpilledScope BASE_EMBEDDED { public: SpilledScope() : previous_state_(cgen()->in_spilled_code()) { ASSERT(cgen()->has_valid_frame()); cgen()->frame()->SpillAll(); cgen()->set_in_spilled_code(true); } ~SpilledScope() { cgen()->set_in_spilled_code(previous_state_); } private: bool previous_state_; CodeGenerator* cgen() { return CodeGeneratorScope::Current(); } }; // An illegal index into the virtual frame. static const int kIllegalIndex = -1; // Construct an initial virtual frame on entry to a JS function. VirtualFrame(); // Construct a virtual frame as a clone of an existing one. explicit VirtualFrame(VirtualFrame* original); CodeGenerator* cgen() { return CodeGeneratorScope::Current(); } MacroAssembler* masm() { return cgen()->masm(); } // Create a duplicate of an existing valid frame element. FrameElement CopyElementAt(int index, NumberInfo::Type info = NumberInfo::kUninitialized); // The number of elements on the virtual frame. int element_count() { return elements_.length(); } // The height of the virtual expression stack. int height() { return element_count() - expression_base_index(); } int register_location(int num) { ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters); return register_locations_[num]; } int register_location(Register reg) { return register_locations_[RegisterAllocator::ToNumber(reg)]; } void set_register_location(Register reg, int index) { register_locations_[RegisterAllocator::ToNumber(reg)] = index; } bool is_used(int num) { ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters); return register_locations_[num] != kIllegalIndex; } bool is_used(Register reg) { return register_locations_[RegisterAllocator::ToNumber(reg)] != kIllegalIndex; } // Add extra in-memory elements to the top of the frame to match an actual // frame (eg, the frame after an exception handler is pushed). No code is // emitted. void Adjust(int count); // Forget count elements from the top of the frame all in-memory // (including synced) and adjust the stack pointer downward, to // match an external frame effect (examples include a call removing // its arguments, and exiting a try/catch removing an exception // handler). No code will be emitted. void Forget(int count) { ASSERT(count >= 0); ASSERT(stack_pointer_ == element_count() - 1); stack_pointer_ -= count; ForgetElements(count); } // Forget count elements from the top of the frame without adjusting // the stack pointer downward. This is used, for example, before // merging frames at break, continue, and return targets. void ForgetElements(int count); // Spill all values from the frame to memory. void SpillAll(); // Spill all occurrences of a specific register from the frame. void Spill(Register reg) { if (is_used(reg)) SpillElementAt(register_location(reg)); } // Spill all occurrences of an arbitrary register if possible. Return the // register spilled or no_reg if it was not possible to free any register // (ie, they all have frame-external references). Register SpillAnyRegister(); // Sync the range of elements in [begin, end] with memory. void SyncRange(int begin, int end); // Make this frame so that an arbitrary frame of the same height can // be merged to it. Copies and constants are removed from the frame. void MakeMergable(); // Prepare this virtual frame for merging to an expected frame by // performing some state changes that do not require generating // code. It is guaranteed that no code will be generated. void PrepareMergeTo(VirtualFrame* expected); // Make this virtual frame have a state identical to an expected virtual // frame. As a side effect, code may be emitted to make this frame match // the expected one. void MergeTo(VirtualFrame* expected); // Detach a frame from its code generator, perhaps temporarily. This // tells the register allocator that it is free to use frame-internal // registers. Used when the code generator's frame is switched from this // one to NULL by an unconditional jump. void DetachFromCodeGenerator() { RegisterAllocator* cgen_allocator = cgen()->allocator(); for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { if (is_used(i)) cgen_allocator->Unuse(i); } } // (Re)attach a frame to its code generator. This informs the register // allocator that the frame-internal register references are active again. // Used when a code generator's frame is switched from NULL to this one by // binding a label. void AttachToCodeGenerator() { RegisterAllocator* cgen_allocator = cgen()->allocator(); for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { if (is_used(i)) cgen_allocator->Use(i); } } // Emit code for the physical JS entry and exit frame sequences. After // calling Enter, the virtual frame is ready for use; and after calling // Exit it should not be used. Note that Enter does not allocate space in // the physical frame for storing frame-allocated locals. void Enter(); void Exit(); // Prepare for returning from the frame by spilling locals. This // avoids generating unnecessary merge code when jumping to the // shared return site. Emits code for spills. void PrepareForReturn(); // Number of local variables after when we use a loop for allocating. static const int kLocalVarBound = 7; // Allocate and initialize the frame-allocated locals. void AllocateStackSlots(); // An element of the expression stack as an assembly operand. Operand ElementAt(int index) const { return Operand(rsp, index * kPointerSize); } // Random-access store to a frame-top relative frame element. The result // becomes owned by the frame and is invalidated. void SetElementAt(int index, Result* value); // Set a frame element to a constant. The index is frame-top relative. void SetElementAt(int index, Handle<Object> value) { Result temp(value); SetElementAt(index, &temp); } void PushElementAt(int index) { PushFrameSlotAt(element_count() - index - 1); } void StoreToElementAt(int index) { StoreToFrameSlotAt(element_count() - index - 1); } // A frame-allocated local as an assembly operand. Operand LocalAt(int index) { ASSERT(0 <= index); ASSERT(index < local_count()); return Operand(rbp, kLocal0Offset - index * kPointerSize); } // Push a copy of the value of a local frame slot on top of the frame. void PushLocalAt(int index) { PushFrameSlotAt(local0_index() + index); } // Push the value of a local frame slot on top of the frame and invalidate // the local slot. The slot should be written to before trying to read // from it again. void TakeLocalAt(int index) { TakeFrameSlotAt(local0_index() + index); } // Store the top value on the virtual frame into a local frame slot. The // value is left in place on top of the frame. void StoreToLocalAt(int index) { StoreToFrameSlotAt(local0_index() + index); } // Push the address of the receiver slot on the frame. void PushReceiverSlotAddress(); // Push the function on top of the frame. void PushFunction() { PushFrameSlotAt(function_index()); } // Save the value of the esi register to the context frame slot. void SaveContextRegister(); // Restore the esi register from the value of the context frame // slot. void RestoreContextRegister(); // A parameter as an assembly operand. Operand ParameterAt(int index) { ASSERT(-1 <= index); // -1 is the receiver. ASSERT(index < parameter_count()); return Operand(rbp, (1 + parameter_count() - index) * kPointerSize); } // Push a copy of the value of a parameter frame slot on top of the frame. void PushParameterAt(int index) { PushFrameSlotAt(param0_index() + index); } // Push the value of a paramter frame slot on top of the frame and // invalidate the parameter slot. The slot should be written to before // trying to read from it again. void TakeParameterAt(int index) { TakeFrameSlotAt(param0_index() + index); } // Store the top value on the virtual frame into a parameter frame slot. // The value is left in place on top of the frame. void StoreToParameterAt(int index) { StoreToFrameSlotAt(param0_index() + index); } // The receiver frame slot. Operand Receiver() { return ParameterAt(-1); } // Push a try-catch or try-finally handler on top of the virtual frame. void PushTryHandler(HandlerType type); // Call stub given the number of arguments it expects on (and // removes from) the stack. Result CallStub(CodeStub* stub, int arg_count) { PrepareForCall(arg_count, arg_count); return RawCallStub(stub); } // Call stub that takes a single argument passed in eax. The // argument is given as a result which does not have to be eax or // even a register. The argument is consumed by the call. Result CallStub(CodeStub* stub, Result* arg); // Call stub that takes a pair of arguments passed in edx (arg0, rdx) and // eax (arg1, rax). The arguments are given as results which do not have // to be in the proper registers or even in registers. The // arguments are consumed by the call. Result CallStub(CodeStub* stub, Result* arg0, Result* arg1); // Call runtime given the number of arguments expected on (and // removed from) the stack. Result CallRuntime(Runtime::Function* f, int arg_count); Result CallRuntime(Runtime::FunctionId id, int arg_count); #ifdef ENABLE_DEBUGGER_SUPPORT void DebugBreak(); #endif // Invoke builtin given the number of arguments it expects on (and // removes from) the stack. Result InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, int arg_count); // Call load IC. Name and receiver are found on top of the frame. // Receiver is not dropped. Result CallLoadIC(RelocInfo::Mode mode); // Call keyed load IC. Key and receiver are found on top of the // frame. They are not dropped. Result CallKeyedLoadIC(RelocInfo::Mode mode); // Call store IC. Name, value, and receiver are found on top of the // frame. Receiver is not dropped. Result CallStoreIC(); // Call keyed store IC. Value, key, and receiver are found on top // of the frame. Key and receiver are not dropped. Result CallKeyedStoreIC(); // Call call IC. Function name, arguments, and receiver are found on top // of the frame and dropped by the call. // The argument count does not include the receiver. Result CallCallIC(RelocInfo::Mode mode, int arg_count, int loop_nesting); // Allocate and call JS function as constructor. Arguments, // receiver (global object), and function are found on top of the // frame. Function is not dropped. The argument count does not // include the receiver. Result CallConstructor(int arg_count); // Drop a number of elements from the top of the expression stack. May // emit code to affect the physical frame. Does not clobber any registers // excepting possibly the stack pointer. void Drop(int count); // Drop one element. void Drop() { Drop(1); } // Duplicate the top element of the frame. void Dup() { PushFrameSlotAt(element_count() - 1); } // Pop an element from the top of the expression stack. Returns a // Result, which may be a constant or a register. Result Pop(); // Pop and save an element from the top of the expression stack and // emit a corresponding pop instruction. void EmitPop(Register reg); void EmitPop(const Operand& operand); // Push an element on top of the expression stack and emit a // corresponding push instruction. void EmitPush(Register reg, NumberInfo::Type info = NumberInfo::kUnknown); void EmitPush(const Operand& operand, NumberInfo::Type info = NumberInfo::kUnknown); void EmitPush(Heap::RootListIndex index, NumberInfo::Type info = NumberInfo::kUnknown); void EmitPush(Immediate immediate, NumberInfo::Type info = NumberInfo::kUnknown); void EmitPush(Smi* value); // Uses kScratchRegister, emits appropriate relocation info. void EmitPush(Handle<Object> value); // Push an element on the virtual frame. void Push(Register reg, NumberInfo::Type info = NumberInfo::kUnknown); void Push(Handle<Object> value); void Push(Smi* value) { Push(Handle<Object>(value)); } // Pushing a result invalidates it (its contents become owned by the // frame). void Push(Result* result) { if (result->is_register()) { Push(result->reg(), result->number_info()); } else { ASSERT(result->is_constant()); Push(result->handle()); } result->Unuse(); } // Nip removes zero or more elements from immediately below the top // of the frame, leaving the previous top-of-frame value on top of // the frame. Nip(k) is equivalent to x = Pop(), Drop(k), Push(x). void Nip(int num_dropped); private: static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset; static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset; static const int kContextOffset = StandardFrameConstants::kContextOffset; static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize; static const int kPreallocatedElements = 5 + 8; // 8 expression stack slots. ZoneList<FrameElement> elements_; // The index of the element that is at the processor's stack pointer // (the esp register). int stack_pointer_; // The index of the register frame element using each register, or // kIllegalIndex if a register is not on the frame. int register_locations_[RegisterAllocator::kNumRegisters]; // The number of frame-allocated locals and parameters respectively. int parameter_count() { return cgen()->scope()->num_parameters(); } int local_count() { return cgen()->scope()->num_stack_slots(); } // The index of the element that is at the processor's frame pointer // (the ebp register). The parameters, receiver, and return address // are below the frame pointer. int frame_pointer() { return parameter_count() + 2; } // The index of the first parameter. The receiver lies below the first // parameter. int param0_index() { return 1; } // The index of the context slot in the frame. It is immediately // above the frame pointer. int context_index() { return frame_pointer() + 1; } // The index of the function slot in the frame. It is above the frame // pointer and the context slot. int function_index() { return frame_pointer() + 2; } // The index of the first local. Between the frame pointer and the // locals lie the context and the function. int local0_index() { return frame_pointer() + 3; } // The index of the base of the expression stack. int expression_base_index() { return local0_index() + local_count(); } // Convert a frame index into a frame pointer relative offset into the // actual stack. int fp_relative(int index) { ASSERT(index < element_count()); ASSERT(frame_pointer() < element_count()); // FP is on the frame. return (frame_pointer() - index) * kPointerSize; } // Record an occurrence of a register in the virtual frame. This has the // effect of incrementing the register's external reference count and // of updating the index of the register's location in the frame. void Use(Register reg, int index) { ASSERT(!is_used(reg)); set_register_location(reg, index); cgen()->allocator()->Use(reg); } // Record that a register reference has been dropped from the frame. This // decrements the register's external reference count and invalidates the // index of the register's location in the frame. void Unuse(Register reg) { ASSERT(is_used(reg)); set_register_location(reg, kIllegalIndex); cgen()->allocator()->Unuse(reg); } // Spill the element at a particular index---write it to memory if // necessary, free any associated register, and forget its value if // constant. void SpillElementAt(int index); // Sync the element at a particular index. If it is a register or // constant that disagrees with the value on the stack, write it to memory. // Keep the element type as register or constant, and clear the dirty bit. void SyncElementAt(int index); // Sync a single unsynced element that lies beneath or at the stack pointer. void SyncElementBelowStackPointer(int index); // Sync a single unsynced element that lies just above the stack pointer. void SyncElementByPushing(int index); // Push a copy of a frame slot (typically a local or parameter) on top of // the frame. void PushFrameSlotAt(int index); // Push a the value of a frame slot (typically a local or parameter) on // top of the frame and invalidate the slot. void TakeFrameSlotAt(int index); // Store the value on top of the frame to a frame slot (typically a local // or parameter). void StoreToFrameSlotAt(int index); // Spill all elements in registers. Spill the top spilled_args elements // on the frame. Sync all other frame elements. // Then drop dropped_args elements from the virtual frame, to match // the effect of an upcoming call that will drop them from the stack. void PrepareForCall(int spilled_args, int dropped_args); // Move frame elements currently in registers or constants, that // should be in memory in the expected frame, to memory. void MergeMoveRegistersToMemory(VirtualFrame* expected); // Make the register-to-register moves necessary to // merge this frame with the expected frame. // Register to memory moves must already have been made, // and memory to register moves must follow this call. // This is because some new memory-to-register moves are // created in order to break cycles of register moves. // Used in the implementation of MergeTo(). void MergeMoveRegistersToRegisters(VirtualFrame* expected); // Make the memory-to-register and constant-to-register moves // needed to make this frame equal the expected frame. // Called after all register-to-memory and register-to-register // moves have been made. After this function returns, the frames // should be equal. void MergeMoveMemoryToRegisters(VirtualFrame* expected); // Invalidates a frame slot (puts an invalid frame element in it). // Copies on the frame are correctly handled, and if this slot was // the backing store of copies, the index of the new backing store // is returned. Otherwise, returns kIllegalIndex. // Register counts are correctly updated. int InvalidateFrameSlotAt(int index); // Call a code stub that has already been prepared for calling (via // PrepareForCall). Result RawCallStub(CodeStub* stub); // Calls a code object which has already been prepared for calling // (via PrepareForCall). Result RawCallCodeObject(Handle<Code> code, RelocInfo::Mode rmode); bool Equals(VirtualFrame* other); // Classes that need raw access to the elements_ array. friend class DeferredCode; friend class JumpTarget; }; } } // namespace v8::internal #endif // V8_X64_VIRTUAL_FRAME_X64_H_