// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "string-stream.h" #include "cctest.h" #include "zone-inl.h" #include "parser.h" #include "ast.h" #include "jsregexp.h" #include "regexp-macro-assembler.h" #include "regexp-macro-assembler-irregexp.h" #ifdef V8_NATIVE_REGEXP #ifdef V8_TARGET_ARCH_ARM #include "arm/macro-assembler-arm.h" #include "arm/regexp-macro-assembler-arm.h" #endif #ifdef V8_TARGET_ARCH_X64 #include "x64/macro-assembler-x64.h" #include "x64/regexp-macro-assembler-x64.h" #endif #ifdef V8_TARGET_ARCH_IA32 #include "ia32/macro-assembler-ia32.h" #include "ia32/regexp-macro-assembler-ia32.h" #endif #else #include "interpreter-irregexp.h" #endif using namespace v8::internal; static bool CheckParse(const char* input) { V8::Initialize(NULL); v8::HandleScope scope; ZoneScope zone_scope(DELETE_ON_EXIT); FlatStringReader reader(CStrVector(input)); RegExpCompileData result; return v8::internal::ParseRegExp(&reader, false, &result); } static SmartPointer<const char> Parse(const char* input) { V8::Initialize(NULL); v8::HandleScope scope; ZoneScope zone_scope(DELETE_ON_EXIT); FlatStringReader reader(CStrVector(input)); RegExpCompileData result; CHECK(v8::internal::ParseRegExp(&reader, false, &result)); CHECK(result.tree != NULL); CHECK(result.error.is_null()); SmartPointer<const char> output = result.tree->ToString(); return output; } static bool CheckSimple(const char* input) { V8::Initialize(NULL); v8::HandleScope scope; unibrow::Utf8InputBuffer<> buffer(input, StrLength(input)); ZoneScope zone_scope(DELETE_ON_EXIT); FlatStringReader reader(CStrVector(input)); RegExpCompileData result; CHECK(v8::internal::ParseRegExp(&reader, false, &result)); CHECK(result.tree != NULL); CHECK(result.error.is_null()); return result.simple; } struct MinMaxPair { int min_match; int max_match; }; static MinMaxPair CheckMinMaxMatch(const char* input) { V8::Initialize(NULL); v8::HandleScope scope; unibrow::Utf8InputBuffer<> buffer(input, StrLength(input)); ZoneScope zone_scope(DELETE_ON_EXIT); FlatStringReader reader(CStrVector(input)); RegExpCompileData result; CHECK(v8::internal::ParseRegExp(&reader, false, &result)); CHECK(result.tree != NULL); CHECK(result.error.is_null()); int min_match = result.tree->min_match(); int max_match = result.tree->max_match(); MinMaxPair pair = { min_match, max_match }; return pair; } #define CHECK_PARSE_ERROR(input) CHECK(!CheckParse(input)) #define CHECK_PARSE_EQ(input, expected) CHECK_EQ(expected, *Parse(input)) #define CHECK_SIMPLE(input, simple) CHECK_EQ(simple, CheckSimple(input)); #define CHECK_MIN_MAX(input, min, max) \ { MinMaxPair min_max = CheckMinMaxMatch(input); \ CHECK_EQ(min, min_max.min_match); \ CHECK_EQ(max, min_max.max_match); \ } TEST(Parser) { V8::Initialize(NULL); CHECK_PARSE_ERROR("?"); CHECK_PARSE_EQ("abc", "'abc'"); CHECK_PARSE_EQ("", "%"); CHECK_PARSE_EQ("abc|def", "(| 'abc' 'def')"); CHECK_PARSE_EQ("abc|def|ghi", "(| 'abc' 'def' 'ghi')"); CHECK_PARSE_EQ("^xxx$", "(: @^i 'xxx' @$i)"); CHECK_PARSE_EQ("ab\\b\\d\\bcd", "(: 'ab' @b [0-9] @b 'cd')"); CHECK_PARSE_EQ("\\w|\\d", "(| [0-9 A-Z _ a-z] [0-9])"); CHECK_PARSE_EQ("a*", "(# 0 - g 'a')"); CHECK_PARSE_EQ("a*?", "(# 0 - n 'a')"); CHECK_PARSE_EQ("abc+", "(: 'ab' (# 1 - g 'c'))"); CHECK_PARSE_EQ("abc+?", "(: 'ab' (# 1 - n 'c'))"); CHECK_PARSE_EQ("xyz?", "(: 'xy' (# 0 1 g 'z'))"); CHECK_PARSE_EQ("xyz??", "(: 'xy' (# 0 1 n 'z'))"); CHECK_PARSE_EQ("xyz{0,1}", "(: 'xy' (# 0 1 g 'z'))"); CHECK_PARSE_EQ("xyz{0,1}?", "(: 'xy' (# 0 1 n 'z'))"); CHECK_PARSE_EQ("xyz{93}", "(: 'xy' (# 93 93 g 'z'))"); CHECK_PARSE_EQ("xyz{93}?", "(: 'xy' (# 93 93 n 'z'))"); CHECK_PARSE_EQ("xyz{1,32}", "(: 'xy' (# 1 32 g 'z'))"); CHECK_PARSE_EQ("xyz{1,32}?", "(: 'xy' (# 1 32 n 'z'))"); CHECK_PARSE_EQ("xyz{1,}", "(: 'xy' (# 1 - g 'z'))"); CHECK_PARSE_EQ("xyz{1,}?", "(: 'xy' (# 1 - n 'z'))"); CHECK_PARSE_EQ("a\\fb\\nc\\rd\\te\\vf", "'a\\x0cb\\x0ac\\x0dd\\x09e\\x0bf'"); CHECK_PARSE_EQ("a\\nb\\bc", "(: 'a\\x0ab' @b 'c')"); CHECK_PARSE_EQ("(?:foo)", "'foo'"); CHECK_PARSE_EQ("(?: foo )", "' foo '"); CHECK_PARSE_EQ("(foo|bar|baz)", "(^ (| 'foo' 'bar' 'baz'))"); CHECK_PARSE_EQ("foo|(bar|baz)|quux", "(| 'foo' (^ (| 'bar' 'baz')) 'quux')"); CHECK_PARSE_EQ("foo(?=bar)baz", "(: 'foo' (-> + 'bar') 'baz')"); CHECK_PARSE_EQ("foo(?!bar)baz", "(: 'foo' (-> - 'bar') 'baz')"); CHECK_PARSE_EQ("()", "(^ %)"); CHECK_PARSE_EQ("(?=)", "(-> + %)"); CHECK_PARSE_EQ("[]", "^[\\x00-\\uffff]"); // Doesn't compile on windows CHECK_PARSE_EQ("[^]", "[\\x00-\\uffff]"); // \uffff isn't in codepage 1252 CHECK_PARSE_EQ("[x]", "[x]"); CHECK_PARSE_EQ("[xyz]", "[x y z]"); CHECK_PARSE_EQ("[a-zA-Z0-9]", "[a-z A-Z 0-9]"); CHECK_PARSE_EQ("[-123]", "[- 1 2 3]"); CHECK_PARSE_EQ("[^123]", "^[1 2 3]"); CHECK_PARSE_EQ("]", "']'"); CHECK_PARSE_EQ("}", "'}'"); CHECK_PARSE_EQ("[a-b-c]", "[a-b - c]"); CHECK_PARSE_EQ("[\\d]", "[0-9]"); CHECK_PARSE_EQ("[x\\dz]", "[x 0-9 z]"); CHECK_PARSE_EQ("[\\d-z]", "[0-9 - z]"); CHECK_PARSE_EQ("[\\d-\\d]", "[0-9 - 0-9]"); CHECK_PARSE_EQ("[z-\\d]", "[z - 0-9]"); CHECK_PARSE_EQ("\\cj\\cJ\\ci\\cI\\ck\\cK", "'\\x0a\\x0a\\x09\\x09\\x0b\\x0b'"); CHECK_PARSE_EQ("\\c!", "'c!'"); CHECK_PARSE_EQ("\\c_", "'c_'"); CHECK_PARSE_EQ("\\c~", "'c~'"); CHECK_PARSE_EQ("[a\\]c]", "[a ] c]"); CHECK_PARSE_EQ("\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ", "'[]{}()%^# '"); CHECK_PARSE_EQ("[\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ]", "[[ ] { } ( ) % ^ # ]"); CHECK_PARSE_EQ("\\0", "'\\x00'"); CHECK_PARSE_EQ("\\8", "'8'"); CHECK_PARSE_EQ("\\9", "'9'"); CHECK_PARSE_EQ("\\11", "'\\x09'"); CHECK_PARSE_EQ("\\11a", "'\\x09a'"); CHECK_PARSE_EQ("\\011", "'\\x09'"); CHECK_PARSE_EQ("\\00011", "'\\x0011'"); CHECK_PARSE_EQ("\\118", "'\\x098'"); CHECK_PARSE_EQ("\\111", "'I'"); CHECK_PARSE_EQ("\\1111", "'I1'"); CHECK_PARSE_EQ("(x)(x)(x)\\1", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))"); CHECK_PARSE_EQ("(x)(x)(x)\\2", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))"); CHECK_PARSE_EQ("(x)(x)(x)\\3", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))"); CHECK_PARSE_EQ("(x)(x)(x)\\4", "(: (^ 'x') (^ 'x') (^ 'x') '\\x04')"); CHECK_PARSE_EQ("(x)(x)(x)\\1*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g (<- 1)))"); CHECK_PARSE_EQ("(x)(x)(x)\\2*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g (<- 2)))"); CHECK_PARSE_EQ("(x)(x)(x)\\3*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g (<- 3)))"); CHECK_PARSE_EQ("(x)(x)(x)\\4*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g '\\x04'))"); CHECK_PARSE_EQ("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\10", "(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')" " (^ 'x') (^ 'x') (^ 'x') (^ 'x') (<- 10))"); CHECK_PARSE_EQ("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\11", "(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')" " (^ 'x') (^ 'x') (^ 'x') (^ 'x') '\\x09')"); CHECK_PARSE_EQ("(a)\\1", "(: (^ 'a') (<- 1))"); CHECK_PARSE_EQ("(a\\1)", "(^ 'a')"); CHECK_PARSE_EQ("(\\1a)", "(^ 'a')"); CHECK_PARSE_EQ("(?=a)?a", "'a'"); CHECK_PARSE_EQ("(?=a){0,10}a", "'a'"); CHECK_PARSE_EQ("(?=a){1,10}a", "(: (-> + 'a') 'a')"); CHECK_PARSE_EQ("(?=a){9,10}a", "(: (-> + 'a') 'a')"); CHECK_PARSE_EQ("(?!a)?a", "'a'"); CHECK_PARSE_EQ("\\1(a)", "(^ 'a')"); CHECK_PARSE_EQ("(?!(a))\\1", "(: (-> - (^ 'a')) (<- 1))"); CHECK_PARSE_EQ("(?!\\1(a\\1)\\1)\\1", "(: (-> - (: (^ 'a') (<- 1))) (<- 1))"); CHECK_PARSE_EQ("[\\0]", "[\\x00]"); CHECK_PARSE_EQ("[\\11]", "[\\x09]"); CHECK_PARSE_EQ("[\\11a]", "[\\x09 a]"); CHECK_PARSE_EQ("[\\011]", "[\\x09]"); CHECK_PARSE_EQ("[\\00011]", "[\\x00 1 1]"); CHECK_PARSE_EQ("[\\118]", "[\\x09 8]"); CHECK_PARSE_EQ("[\\111]", "[I]"); CHECK_PARSE_EQ("[\\1111]", "[I 1]"); CHECK_PARSE_EQ("\\x34", "'\x34'"); CHECK_PARSE_EQ("\\x60", "'\x60'"); CHECK_PARSE_EQ("\\x3z", "'x3z'"); CHECK_PARSE_EQ("\\c", "'c'"); CHECK_PARSE_EQ("\\u0034", "'\x34'"); CHECK_PARSE_EQ("\\u003z", "'u003z'"); CHECK_PARSE_EQ("foo[z]*", "(: 'foo' (# 0 - g [z]))"); CHECK_SIMPLE("a", true); CHECK_SIMPLE("a|b", false); CHECK_SIMPLE("a\\n", false); CHECK_SIMPLE("^a", false); CHECK_SIMPLE("a$", false); CHECK_SIMPLE("a\\b!", false); CHECK_SIMPLE("a\\Bb", false); CHECK_SIMPLE("a*", false); CHECK_SIMPLE("a*?", false); CHECK_SIMPLE("a?", false); CHECK_SIMPLE("a??", false); CHECK_SIMPLE("a{0,1}?", false); CHECK_SIMPLE("a{1,1}?", false); CHECK_SIMPLE("a{1,2}?", false); CHECK_SIMPLE("a+?", false); CHECK_SIMPLE("(a)", false); CHECK_SIMPLE("(a)\\1", false); CHECK_SIMPLE("(\\1a)", false); CHECK_SIMPLE("\\1(a)", false); CHECK_SIMPLE("a\\s", false); CHECK_SIMPLE("a\\S", false); CHECK_SIMPLE("a\\d", false); CHECK_SIMPLE("a\\D", false); CHECK_SIMPLE("a\\w", false); CHECK_SIMPLE("a\\W", false); CHECK_SIMPLE("a.", false); CHECK_SIMPLE("a\\q", false); CHECK_SIMPLE("a[a]", false); CHECK_SIMPLE("a[^a]", false); CHECK_SIMPLE("a[a-z]", false); CHECK_SIMPLE("a[\\q]", false); CHECK_SIMPLE("a(?:b)", false); CHECK_SIMPLE("a(?=b)", false); CHECK_SIMPLE("a(?!b)", false); CHECK_SIMPLE("\\x60", false); CHECK_SIMPLE("\\u0060", false); CHECK_SIMPLE("\\cA", false); CHECK_SIMPLE("\\q", false); CHECK_SIMPLE("\\1112", false); CHECK_SIMPLE("\\0", false); CHECK_SIMPLE("(a)\\1", false); CHECK_SIMPLE("(?=a)?a", false); CHECK_SIMPLE("(?!a)?a\\1", false); CHECK_SIMPLE("(?:(?=a))a\\1", false); CHECK_PARSE_EQ("a{}", "'a{}'"); CHECK_PARSE_EQ("a{,}", "'a{,}'"); CHECK_PARSE_EQ("a{", "'a{'"); CHECK_PARSE_EQ("a{z}", "'a{z}'"); CHECK_PARSE_EQ("a{1z}", "'a{1z}'"); CHECK_PARSE_EQ("a{12z}", "'a{12z}'"); CHECK_PARSE_EQ("a{12,", "'a{12,'"); CHECK_PARSE_EQ("a{12,3b", "'a{12,3b'"); CHECK_PARSE_EQ("{}", "'{}'"); CHECK_PARSE_EQ("{,}", "'{,}'"); CHECK_PARSE_EQ("{", "'{'"); CHECK_PARSE_EQ("{z}", "'{z}'"); CHECK_PARSE_EQ("{1z}", "'{1z}'"); CHECK_PARSE_EQ("{12z}", "'{12z}'"); CHECK_PARSE_EQ("{12,", "'{12,'"); CHECK_PARSE_EQ("{12,3b", "'{12,3b'"); CHECK_MIN_MAX("a", 1, 1); CHECK_MIN_MAX("abc", 3, 3); CHECK_MIN_MAX("a[bc]d", 3, 3); CHECK_MIN_MAX("a|bc", 1, 2); CHECK_MIN_MAX("ab|c", 1, 2); CHECK_MIN_MAX("a||bc", 0, 2); CHECK_MIN_MAX("|", 0, 0); CHECK_MIN_MAX("(?:ab)", 2, 2); CHECK_MIN_MAX("(?:ab|cde)", 2, 3); CHECK_MIN_MAX("(?:ab)|cde", 2, 3); CHECK_MIN_MAX("(ab)", 2, 2); CHECK_MIN_MAX("(ab|cde)", 2, 3); CHECK_MIN_MAX("(ab)\\1", 2, 4); CHECK_MIN_MAX("(ab|cde)\\1", 2, 6); CHECK_MIN_MAX("(?:ab)?", 0, 2); CHECK_MIN_MAX("(?:ab)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:ab)+", 2, RegExpTree::kInfinity); CHECK_MIN_MAX("a?", 0, 1); CHECK_MIN_MAX("a*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("a+", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("a??", 0, 1); CHECK_MIN_MAX("a*?", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("a+?", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a?)?", 0, 1); CHECK_MIN_MAX("(?:a*)?", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a+)?", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a?)+", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a*)+", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a+)+", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a?)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a*)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a+)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("a{0}", 0, 0); CHECK_MIN_MAX("(?:a+){0}", 0, 0); CHECK_MIN_MAX("(?:a+){0,0}", 0, 0); CHECK_MIN_MAX("a*b", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("a+b", 2, RegExpTree::kInfinity); CHECK_MIN_MAX("a*b|c", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("a+b|c", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a{5,1000000}){3,1000000}", 15, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:ab){4,7}", 8, 14); CHECK_MIN_MAX("a\\bc", 2, 2); CHECK_MIN_MAX("a\\Bc", 2, 2); CHECK_MIN_MAX("a\\sc", 3, 3); CHECK_MIN_MAX("a\\Sc", 3, 3); CHECK_MIN_MAX("a(?=b)c", 2, 2); CHECK_MIN_MAX("a(?=bbb|bb)c", 2, 2); CHECK_MIN_MAX("a(?!bbb|bb)c", 2, 2); } TEST(ParserRegression) { CHECK_PARSE_EQ("[A-Z$-][x]", "(! [A-Z $ -] [x])"); CHECK_PARSE_EQ("a{3,4*}", "(: 'a{3,' (# 0 - g '4') '}')"); CHECK_PARSE_EQ("{", "'{'"); CHECK_PARSE_EQ("a|", "(| 'a' %)"); } static void ExpectError(const char* input, const char* expected) { V8::Initialize(NULL); v8::HandleScope scope; ZoneScope zone_scope(DELETE_ON_EXIT); FlatStringReader reader(CStrVector(input)); RegExpCompileData result; CHECK_EQ(false, v8::internal::ParseRegExp(&reader, false, &result)); CHECK(result.tree == NULL); CHECK(!result.error.is_null()); SmartPointer<char> str = result.error->ToCString(ALLOW_NULLS); CHECK_EQ(expected, *str); } TEST(Errors) { V8::Initialize(NULL); const char* kEndBackslash = "\\ at end of pattern"; ExpectError("\\", kEndBackslash); const char* kUnterminatedGroup = "Unterminated group"; ExpectError("(foo", kUnterminatedGroup); const char* kInvalidGroup = "Invalid group"; ExpectError("(?", kInvalidGroup); const char* kUnterminatedCharacterClass = "Unterminated character class"; ExpectError("[", kUnterminatedCharacterClass); ExpectError("[a-", kUnterminatedCharacterClass); const char* kNothingToRepeat = "Nothing to repeat"; ExpectError("*", kNothingToRepeat); ExpectError("?", kNothingToRepeat); ExpectError("+", kNothingToRepeat); ExpectError("{1}", kNothingToRepeat); ExpectError("{1,2}", kNothingToRepeat); ExpectError("{1,}", kNothingToRepeat); // Check that we don't allow more than kMaxCapture captures const int kMaxCaptures = 1 << 16; // Must match RegExpParser::kMaxCaptures. const char* kTooManyCaptures = "Too many captures"; HeapStringAllocator allocator; StringStream accumulator(&allocator); for (int i = 0; i <= kMaxCaptures; i++) { accumulator.Add("()"); } SmartPointer<const char> many_captures(accumulator.ToCString()); ExpectError(*many_captures, kTooManyCaptures); } static bool IsDigit(uc16 c) { return ('0' <= c && c <= '9'); } static bool NotDigit(uc16 c) { return !IsDigit(c); } static bool IsWhiteSpace(uc16 c) { switch (c) { case 0x09: case 0x0A: case 0x0B: case 0x0C: case 0x0d: case 0x20: case 0xA0: case 0x2028: case 0x2029: return true; default: return unibrow::Space::Is(c); } } static bool NotWhiteSpace(uc16 c) { return !IsWhiteSpace(c); } static bool NotWord(uc16 c) { return !IsRegExpWord(c); } static void TestCharacterClassEscapes(uc16 c, bool (pred)(uc16 c)) { ZoneScope scope(DELETE_ON_EXIT); ZoneList<CharacterRange>* ranges = new ZoneList<CharacterRange>(2); CharacterRange::AddClassEscape(c, ranges); for (unsigned i = 0; i < (1 << 16); i++) { bool in_class = false; for (int j = 0; !in_class && j < ranges->length(); j++) { CharacterRange& range = ranges->at(j); in_class = (range.from() <= i && i <= range.to()); } CHECK_EQ(pred(i), in_class); } } TEST(CharacterClassEscapes) { TestCharacterClassEscapes('.', IsRegExpNewline); TestCharacterClassEscapes('d', IsDigit); TestCharacterClassEscapes('D', NotDigit); TestCharacterClassEscapes('s', IsWhiteSpace); TestCharacterClassEscapes('S', NotWhiteSpace); TestCharacterClassEscapes('w', IsRegExpWord); TestCharacterClassEscapes('W', NotWord); } static RegExpNode* Compile(const char* input, bool multiline, bool is_ascii) { V8::Initialize(NULL); FlatStringReader reader(CStrVector(input)); RegExpCompileData compile_data; if (!v8::internal::ParseRegExp(&reader, multiline, &compile_data)) return NULL; Handle<String> pattern = Factory::NewStringFromUtf8(CStrVector(input)); RegExpEngine::Compile(&compile_data, false, multiline, pattern, is_ascii); return compile_data.node; } static void Execute(const char* input, bool multiline, bool is_ascii, bool dot_output = false) { v8::HandleScope scope; ZoneScope zone_scope(DELETE_ON_EXIT); RegExpNode* node = Compile(input, multiline, is_ascii); USE(node); #ifdef DEBUG if (dot_output) { RegExpEngine::DotPrint(input, node, false); exit(0); } #endif // DEBUG } class TestConfig { public: typedef int Key; typedef int Value; static const int kNoKey; static const int kNoValue; static inline int Compare(int a, int b) { if (a < b) return -1; else if (a > b) return 1; else return 0; } }; const int TestConfig::kNoKey = 0; const int TestConfig::kNoValue = 0; static unsigned PseudoRandom(int i, int j) { return ~(~((i * 781) ^ (j * 329))); } TEST(SplayTreeSimple) { static const unsigned kLimit = 1000; ZoneScope zone_scope(DELETE_ON_EXIT); ZoneSplayTree<TestConfig> tree; bool seen[kLimit]; for (unsigned i = 0; i < kLimit; i++) seen[i] = false; #define CHECK_MAPS_EQUAL() do { \ for (unsigned k = 0; k < kLimit; k++) \ CHECK_EQ(seen[k], tree.Find(k, &loc)); \ } while (false) for (int i = 0; i < 50; i++) { for (int j = 0; j < 50; j++) { unsigned next = PseudoRandom(i, j) % kLimit; if (seen[next]) { // We've already seen this one. Check the value and remove // it. ZoneSplayTree<TestConfig>::Locator loc; CHECK(tree.Find(next, &loc)); CHECK_EQ(next, loc.key()); CHECK_EQ(3 * next, loc.value()); tree.Remove(next); seen[next] = false; CHECK_MAPS_EQUAL(); } else { // Check that it wasn't there already and then add it. ZoneSplayTree<TestConfig>::Locator loc; CHECK(!tree.Find(next, &loc)); CHECK(tree.Insert(next, &loc)); CHECK_EQ(next, loc.key()); loc.set_value(3 * next); seen[next] = true; CHECK_MAPS_EQUAL(); } int val = PseudoRandom(j, i) % kLimit; if (seen[val]) { ZoneSplayTree<TestConfig>::Locator loc; CHECK(tree.FindGreatestLessThan(val, &loc)); CHECK_EQ(loc.key(), val); break; } val = PseudoRandom(i + j, i - j) % kLimit; if (seen[val]) { ZoneSplayTree<TestConfig>::Locator loc; CHECK(tree.FindLeastGreaterThan(val, &loc)); CHECK_EQ(loc.key(), val); break; } } } } TEST(DispatchTableConstruction) { // Initialize test data. static const int kLimit = 1000; static const int kRangeCount = 8; static const int kRangeSize = 16; uc16 ranges[kRangeCount][2 * kRangeSize]; for (int i = 0; i < kRangeCount; i++) { Vector<uc16> range(ranges[i], 2 * kRangeSize); for (int j = 0; j < 2 * kRangeSize; j++) { range[j] = PseudoRandom(i + 25, j + 87) % kLimit; } range.Sort(); for (int j = 1; j < 2 * kRangeSize; j++) { CHECK(range[j-1] <= range[j]); } } // Enter test data into dispatch table. ZoneScope zone_scope(DELETE_ON_EXIT); DispatchTable table; for (int i = 0; i < kRangeCount; i++) { uc16* range = ranges[i]; for (int j = 0; j < 2 * kRangeSize; j += 2) table.AddRange(CharacterRange(range[j], range[j + 1]), i); } // Check that the table looks as we would expect for (int p = 0; p < kLimit; p++) { OutSet* outs = table.Get(p); for (int j = 0; j < kRangeCount; j++) { uc16* range = ranges[j]; bool is_on = false; for (int k = 0; !is_on && (k < 2 * kRangeSize); k += 2) is_on = (range[k] <= p && p <= range[k + 1]); CHECK_EQ(is_on, outs->Get(j)); } } } // Test of debug-only syntax. #ifdef DEBUG TEST(ParsePossessiveRepetition) { bool old_flag_value = FLAG_regexp_possessive_quantifier; // Enable possessive quantifier syntax. FLAG_regexp_possessive_quantifier = true; CHECK_PARSE_EQ("a*+", "(# 0 - p 'a')"); CHECK_PARSE_EQ("a++", "(# 1 - p 'a')"); CHECK_PARSE_EQ("a?+", "(# 0 1 p 'a')"); CHECK_PARSE_EQ("a{10,20}+", "(# 10 20 p 'a')"); CHECK_PARSE_EQ("za{10,20}+b", "(: 'z' (# 10 20 p 'a') 'b')"); // Disable possessive quantifier syntax. FLAG_regexp_possessive_quantifier = false; CHECK_PARSE_ERROR("a*+"); CHECK_PARSE_ERROR("a++"); CHECK_PARSE_ERROR("a?+"); CHECK_PARSE_ERROR("a{10,20}+"); CHECK_PARSE_ERROR("a{10,20}+b"); FLAG_regexp_possessive_quantifier = old_flag_value; } #endif // Tests of interpreter. #ifdef V8_NATIVE_REGEXP #if V8_TARGET_ARCH_IA32 typedef RegExpMacroAssemblerIA32 ArchRegExpMacroAssembler; #elif V8_TARGET_ARCH_X64 typedef RegExpMacroAssemblerX64 ArchRegExpMacroAssembler; #elif V8_TARGET_ARCH_ARM typedef RegExpMacroAssemblerARM ArchRegExpMacroAssembler; #elif V8_TARGET_ARCH_MIPS typedef RegExpMacroAssembler ArchRegExpMacroAssembler; #endif class ContextInitializer { public: ContextInitializer() : env_(), scope_(), zone_(DELETE_ON_EXIT), stack_guard_() { env_ = v8::Context::New(); env_->Enter(); } ~ContextInitializer() { env_->Exit(); env_.Dispose(); } private: v8::Persistent<v8::Context> env_; v8::HandleScope scope_; v8::internal::ZoneScope zone_; v8::internal::StackGuard stack_guard_; }; static ArchRegExpMacroAssembler::Result Execute(Code* code, String* input, int start_offset, const byte* input_start, const byte* input_end, int* captures) { return NativeRegExpMacroAssembler::Execute( code, input, start_offset, input_start, input_end, captures); } TEST(MacroAssemblerNativeSuccess) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4); m.Succeed(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); int captures[4] = {42, 37, 87, 117}; Handle<String> input = Factory::NewStringFromAscii(CStrVector("foofoo")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); const byte* start_adr = reinterpret_cast<const byte*>(seq_input->GetCharsAddress()); NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + seq_input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(-1, captures[0]); CHECK_EQ(-1, captures[1]); CHECK_EQ(-1, captures[2]); CHECK_EQ(-1, captures[3]); } TEST(MacroAssemblerNativeSimple) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4); uc16 foo_chars[3] = {'f', 'o', 'o'}; Vector<const uc16> foo(foo_chars, 3); Label fail; m.CheckCharacters(foo, 0, &fail, true); m.WriteCurrentPositionToRegister(0, 0); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(1, 0); m.Succeed(); m.Bind(&fail); m.Fail(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("^foo")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); int captures[4] = {42, 37, 87, 117}; Handle<String> input = Factory::NewStringFromAscii(CStrVector("foofoo")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, captures[0]); CHECK_EQ(3, captures[1]); CHECK_EQ(-1, captures[2]); CHECK_EQ(-1, captures[3]); input = Factory::NewStringFromAscii(CStrVector("barbarbar")); seq_input = Handle<SeqAsciiString>::cast(input); start_adr = seq_input->GetCharsAddress(); result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result); } TEST(MacroAssemblerNativeSimpleUC16) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::UC16, 4); uc16 foo_chars[3] = {'f', 'o', 'o'}; Vector<const uc16> foo(foo_chars, 3); Label fail; m.CheckCharacters(foo, 0, &fail, true); m.WriteCurrentPositionToRegister(0, 0); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(1, 0); m.Succeed(); m.Bind(&fail); m.Fail(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("^foo")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); int captures[4] = {42, 37, 87, 117}; const uc16 input_data[6] = {'f', 'o', 'o', 'f', 'o', '\xa0'}; Handle<String> input = Factory::NewStringFromTwoByte(Vector<const uc16>(input_data, 6)); Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, captures[0]); CHECK_EQ(3, captures[1]); CHECK_EQ(-1, captures[2]); CHECK_EQ(-1, captures[3]); const uc16 input_data2[9] = {'b', 'a', 'r', 'b', 'a', 'r', 'b', 'a', '\xa0'}; input = Factory::NewStringFromTwoByte(Vector<const uc16>(input_data2, 9)); seq_input = Handle<SeqTwoByteString>::cast(input); start_adr = seq_input->GetCharsAddress(); result = Execute(*code, *input, 0, start_adr, start_adr + input->length() * 2, captures); CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result); } TEST(MacroAssemblerNativeBacktrack) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 0); Label fail; Label backtrack; m.LoadCurrentCharacter(10, &fail); m.Succeed(); m.Bind(&fail); m.PushBacktrack(&backtrack); m.LoadCurrentCharacter(10, NULL); m.Succeed(); m.Bind(&backtrack); m.Fail(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("..........")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); Handle<String> input = Factory::NewStringFromAscii(CStrVector("foofoo")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), NULL); CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result); } TEST(MacroAssemblerNativeBackReferenceASCII) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4); m.WriteCurrentPositionToRegister(0, 0); m.AdvanceCurrentPosition(2); m.WriteCurrentPositionToRegister(1, 0); Label nomatch; m.CheckNotBackReference(0, &nomatch); m.Fail(); m.Bind(&nomatch); m.AdvanceCurrentPosition(2); Label missing_match; m.CheckNotBackReference(0, &missing_match); m.WriteCurrentPositionToRegister(2, 0); m.Succeed(); m.Bind(&missing_match); m.Fail(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("^(..)..\1")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); Handle<String> input = Factory::NewStringFromAscii(CStrVector("fooofo")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[4]; NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(2, output[1]); CHECK_EQ(6, output[2]); CHECK_EQ(-1, output[3]); } TEST(MacroAssemblerNativeBackReferenceUC16) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::UC16, 4); m.WriteCurrentPositionToRegister(0, 0); m.AdvanceCurrentPosition(2); m.WriteCurrentPositionToRegister(1, 0); Label nomatch; m.CheckNotBackReference(0, &nomatch); m.Fail(); m.Bind(&nomatch); m.AdvanceCurrentPosition(2); Label missing_match; m.CheckNotBackReference(0, &missing_match); m.WriteCurrentPositionToRegister(2, 0); m.Succeed(); m.Bind(&missing_match); m.Fail(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("^(..)..\1")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); const uc16 input_data[6] = {'f', 0x2028, 'o', 'o', 'f', 0x2028}; Handle<String> input = Factory::NewStringFromTwoByte(Vector<const uc16>(input_data, 6)); Handle<SeqTwoByteString> seq_input = Handle<SeqTwoByteString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[4]; NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length() * 2, output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(2, output[1]); CHECK_EQ(6, output[2]); CHECK_EQ(-1, output[3]); } TEST(MacroAssemblernativeAtStart) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 0); Label not_at_start, newline, fail; m.CheckNotAtStart(¬_at_start); // Check that prevchar = '\n' and current = 'f'. m.CheckCharacter('\n', &newline); m.Bind(&fail); m.Fail(); m.Bind(&newline); m.LoadCurrentCharacter(0, &fail); m.CheckNotCharacter('f', &fail); m.Succeed(); m.Bind(¬_at_start); // Check that prevchar = 'o' and current = 'b'. Label prevo; m.CheckCharacter('o', &prevo); m.Fail(); m.Bind(&prevo); m.LoadCurrentCharacter(0, &fail); m.CheckNotCharacter('b', &fail); m.Succeed(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("(^f|ob)")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); Handle<String> input = Factory::NewStringFromAscii(CStrVector("foobar")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), NULL); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); result = Execute(*code, *input, 3, start_adr + 3, start_adr + input->length(), NULL); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); } TEST(MacroAssemblerNativeBackRefNoCase) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 4); Label fail, succ; m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(2, 0); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(3, 0); m.CheckNotBackReferenceIgnoreCase(2, &fail); // Match "AbC". m.CheckNotBackReferenceIgnoreCase(2, &fail); // Match "ABC". Label expected_fail; m.CheckNotBackReferenceIgnoreCase(2, &expected_fail); m.Bind(&fail); m.Fail(); m.Bind(&expected_fail); m.AdvanceCurrentPosition(3); // Skip "xYz" m.CheckNotBackReferenceIgnoreCase(2, &succ); m.Fail(); m.Bind(&succ); m.WriteCurrentPositionToRegister(1, 0); m.Succeed(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("^(abc)\1\1(?!\1)...(?!\1)")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); Handle<String> input = Factory::NewStringFromAscii(CStrVector("aBcAbCABCxYzab")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[4]; NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(12, output[1]); CHECK_EQ(0, output[2]); CHECK_EQ(3, output[3]); } TEST(MacroAssemblerNativeRegisters) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 6); uc16 foo_chars[3] = {'f', 'o', 'o'}; Vector<const uc16> foo(foo_chars, 3); enum registers { out1, out2, out3, out4, out5, out6, sp, loop_cnt }; Label fail; Label backtrack; m.WriteCurrentPositionToRegister(out1, 0); // Output: [0] m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck); m.PushBacktrack(&backtrack); m.WriteStackPointerToRegister(sp); // Fill stack and registers m.AdvanceCurrentPosition(2); m.WriteCurrentPositionToRegister(out1, 0); m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck); m.PushBacktrack(&fail); // Drop backtrack stack frames. m.ReadStackPointerFromRegister(sp); // And take the first backtrack (to &backtrack) m.Backtrack(); m.PushCurrentPosition(); m.AdvanceCurrentPosition(2); m.PopCurrentPosition(); m.Bind(&backtrack); m.PopRegister(out1); m.ReadCurrentPositionFromRegister(out1); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(out2, 0); // [0,3] Label loop; m.SetRegister(loop_cnt, 0); // loop counter m.Bind(&loop); m.AdvanceRegister(loop_cnt, 1); m.AdvanceCurrentPosition(1); m.IfRegisterLT(loop_cnt, 3, &loop); m.WriteCurrentPositionToRegister(out3, 0); // [0,3,6] Label loop2; m.SetRegister(loop_cnt, 2); // loop counter m.Bind(&loop2); m.AdvanceRegister(loop_cnt, -1); m.AdvanceCurrentPosition(1); m.IfRegisterGE(loop_cnt, 0, &loop2); m.WriteCurrentPositionToRegister(out4, 0); // [0,3,6,9] Label loop3; Label exit_loop3; m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck); m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck); m.ReadCurrentPositionFromRegister(out3); m.Bind(&loop3); m.AdvanceCurrentPosition(1); m.CheckGreedyLoop(&exit_loop3); m.GoTo(&loop3); m.Bind(&exit_loop3); m.PopCurrentPosition(); m.WriteCurrentPositionToRegister(out5, 0); // [0,3,6,9,9,-1] m.Succeed(); m.Bind(&fail); m.Fail(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("<loop test>")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); // String long enough for test (content doesn't matter). Handle<String> input = Factory::NewStringFromAscii(CStrVector("foofoofoofoofoo")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[6]; NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(3, output[1]); CHECK_EQ(6, output[2]); CHECK_EQ(9, output[3]); CHECK_EQ(9, output[4]); CHECK_EQ(-1, output[5]); } TEST(MacroAssemblerStackOverflow) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 0); Label loop; m.Bind(&loop); m.PushBacktrack(&loop); m.GoTo(&loop); Handle<String> source = Factory::NewStringFromAscii(CStrVector("<stack overflow test>")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); // String long enough for test (content doesn't matter). Handle<String> input = Factory::NewStringFromAscii(CStrVector("dummy")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), NULL); CHECK_EQ(NativeRegExpMacroAssembler::EXCEPTION, result); CHECK(Top::has_pending_exception()); Top::clear_pending_exception(); } TEST(MacroAssemblerNativeLotsOfRegisters) { v8::V8::Initialize(); ContextInitializer initializer; ArchRegExpMacroAssembler m(NativeRegExpMacroAssembler::ASCII, 2); // At least 2048, to ensure the allocated space for registers // span one full page. const int large_number = 8000; m.WriteCurrentPositionToRegister(large_number, 42); m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(1, 1); Label done; m.CheckNotBackReference(0, &done); // Performs a system-stack push. m.Bind(&done); m.PushRegister(large_number, RegExpMacroAssembler::kNoStackLimitCheck); m.PopRegister(1); m.Succeed(); Handle<String> source = Factory::NewStringFromAscii(CStrVector("<huge register space test>")); Handle<Object> code_object = m.GetCode(source); Handle<Code> code = Handle<Code>::cast(code_object); // String long enough for test (content doesn't matter). Handle<String> input = Factory::NewStringFromAscii(CStrVector("sample text")); Handle<SeqAsciiString> seq_input = Handle<SeqAsciiString>::cast(input); Address start_adr = seq_input->GetCharsAddress(); int captures[2]; NativeRegExpMacroAssembler::Result result = Execute(*code, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, captures[0]); CHECK_EQ(42, captures[1]); Top::clear_pending_exception(); } #else // ! V8_REGEX_NATIVE TEST(MacroAssembler) { V8::Initialize(NULL); byte codes[1024]; RegExpMacroAssemblerIrregexp m(Vector<byte>(codes, 1024)); // ^f(o)o. Label fail, fail2, start; uc16 foo_chars[3]; foo_chars[0] = 'f'; foo_chars[1] = 'o'; foo_chars[2] = 'o'; Vector<const uc16> foo(foo_chars, 3); m.SetRegister(4, 42); m.PushRegister(4, RegExpMacroAssembler::kNoStackLimitCheck); m.AdvanceRegister(4, 42); m.GoTo(&start); m.Fail(); m.Bind(&start); m.PushBacktrack(&fail2); m.CheckCharacters(foo, 0, &fail, true); m.WriteCurrentPositionToRegister(0, 0); m.PushCurrentPosition(); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(1, 0); m.PopCurrentPosition(); m.AdvanceCurrentPosition(1); m.WriteCurrentPositionToRegister(2, 0); m.AdvanceCurrentPosition(1); m.WriteCurrentPositionToRegister(3, 0); m.Succeed(); m.Bind(&fail); m.Backtrack(); m.Succeed(); m.Bind(&fail2); m.PopRegister(0); m.Fail(); v8::HandleScope scope; Handle<String> source = Factory::NewStringFromAscii(CStrVector("^f(o)o")); Handle<ByteArray> array = Handle<ByteArray>::cast(m.GetCode(source)); int captures[5]; const uc16 str1[] = {'f', 'o', 'o', 'b', 'a', 'r'}; Handle<String> f1_16 = Factory::NewStringFromTwoByte(Vector<const uc16>(str1, 6)); CHECK(IrregexpInterpreter::Match(array, f1_16, captures, 0)); CHECK_EQ(0, captures[0]); CHECK_EQ(3, captures[1]); CHECK_EQ(1, captures[2]); CHECK_EQ(2, captures[3]); CHECK_EQ(84, captures[4]); const uc16 str2[] = {'b', 'a', 'r', 'f', 'o', 'o'}; Handle<String> f2_16 = Factory::NewStringFromTwoByte(Vector<const uc16>(str2, 6)); CHECK(!IrregexpInterpreter::Match(array, f2_16, captures, 0)); CHECK_EQ(42, captures[0]); } #endif // ! V8_REGEXP_NATIVE TEST(AddInverseToTable) { static const int kLimit = 1000; static const int kRangeCount = 16; for (int t = 0; t < 10; t++) { ZoneScope zone_scope(DELETE_ON_EXIT); ZoneList<CharacterRange>* ranges = new ZoneList<CharacterRange>(kRangeCount); for (int i = 0; i < kRangeCount; i++) { int from = PseudoRandom(t + 87, i + 25) % kLimit; int to = from + (PseudoRandom(i + 87, t + 25) % (kLimit / 20)); if (to > kLimit) to = kLimit; ranges->Add(CharacterRange(from, to)); } DispatchTable table; DispatchTableConstructor cons(&table, false); cons.set_choice_index(0); cons.AddInverse(ranges); for (int i = 0; i < kLimit; i++) { bool is_on = false; for (int j = 0; !is_on && j < kRangeCount; j++) is_on = ranges->at(j).Contains(i); OutSet* set = table.Get(i); CHECK_EQ(is_on, set->Get(0) == false); } } ZoneScope zone_scope(DELETE_ON_EXIT); ZoneList<CharacterRange>* ranges = new ZoneList<CharacterRange>(1); ranges->Add(CharacterRange(0xFFF0, 0xFFFE)); DispatchTable table; DispatchTableConstructor cons(&table, false); cons.set_choice_index(0); cons.AddInverse(ranges); CHECK(!table.Get(0xFFFE)->Get(0)); CHECK(table.Get(0xFFFF)->Get(0)); } static uc32 canonicalize(uc32 c) { unibrow::uchar canon[unibrow::Ecma262Canonicalize::kMaxWidth]; int count = unibrow::Ecma262Canonicalize::Convert(c, '\0', canon, NULL); if (count == 0) { return c; } else { CHECK_EQ(1, count); return canon[0]; } } TEST(LatinCanonicalize) { unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize; for (char lower = 'a'; lower <= 'z'; lower++) { char upper = lower + ('A' - 'a'); CHECK_EQ(canonicalize(lower), canonicalize(upper)); unibrow::uchar uncanon[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length = un_canonicalize.get(lower, '\0', uncanon); CHECK_EQ(2, length); CHECK_EQ(upper, uncanon[0]); CHECK_EQ(lower, uncanon[1]); } for (uc32 c = 128; c < (1 << 21); c++) CHECK_GE(canonicalize(c), 128); unibrow::Mapping<unibrow::ToUppercase> to_upper; for (uc32 c = 0; c < (1 << 21); c++) { unibrow::uchar upper[unibrow::ToUppercase::kMaxWidth]; int length = to_upper.get(c, '\0', upper); if (length == 0) { length = 1; upper[0] = c; } uc32 u = upper[0]; if (length > 1 || (c >= 128 && u < 128)) u = c; CHECK_EQ(u, canonicalize(c)); } } static uc32 CanonRange(uc32 c) { unibrow::uchar canon[unibrow::CanonicalizationRange::kMaxWidth]; int count = unibrow::CanonicalizationRange::Convert(c, '\0', canon, NULL); if (count == 0) { return c; } else { CHECK_EQ(1, count); return canon[0]; } } TEST(RangeCanonicalization) { CHECK_NE(CanonRange(0) & CharacterRange::kStartMarker, 0); // Check that we arrive at the same result when using the basic // range canonicalization primitives as when using immediate // canonicalization. unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize; for (int i = 0; i < CharacterRange::kRangeCanonicalizeMax; i++) { int range = CanonRange(i); int indirect_length = 0; unibrow::uchar indirect[unibrow::Ecma262UnCanonicalize::kMaxWidth]; if ((range & CharacterRange::kStartMarker) == 0) { indirect_length = un_canonicalize.get(i - range, '\0', indirect); for (int i = 0; i < indirect_length; i++) indirect[i] += range; } else { indirect_length = un_canonicalize.get(i, '\0', indirect); } unibrow::uchar direct[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int direct_length = un_canonicalize.get(i, '\0', direct); CHECK_EQ(direct_length, indirect_length); } // Check that we arrive at the same results when skipping over // canonicalization ranges. int next_block = 0; while (next_block < CharacterRange::kRangeCanonicalizeMax) { uc32 start = CanonRange(next_block); CHECK_NE((start & CharacterRange::kStartMarker), 0); unsigned dist = start & CharacterRange::kPayloadMask; unibrow::uchar first[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int first_length = un_canonicalize.get(next_block, '\0', first); for (unsigned i = 1; i < dist; i++) { CHECK_EQ(i, CanonRange(next_block + i)); unibrow::uchar succ[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int succ_length = un_canonicalize.get(next_block + i, '\0', succ); CHECK_EQ(first_length, succ_length); for (int j = 0; j < succ_length; j++) { int calc = first[j] + i; int found = succ[j]; CHECK_EQ(calc, found); } } next_block = next_block + dist; } } TEST(UncanonicalizeEquivalence) { unibrow::Mapping<unibrow::Ecma262UnCanonicalize> un_canonicalize; unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; for (int i = 0; i < (1 << 16); i++) { int length = un_canonicalize.get(i, '\0', chars); for (int j = 0; j < length; j++) { unibrow::uchar chars2[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length2 = un_canonicalize.get(chars[j], '\0', chars2); CHECK_EQ(length, length2); for (int k = 0; k < length; k++) CHECK_EQ(static_cast<int>(chars[k]), static_cast<int>(chars2[k])); } } } static void TestRangeCaseIndependence(CharacterRange input, Vector<CharacterRange> expected) { ZoneScope zone_scope(DELETE_ON_EXIT); int count = expected.length(); ZoneList<CharacterRange>* list = new ZoneList<CharacterRange>(count); input.AddCaseEquivalents(list, false); CHECK_EQ(count, list->length()); for (int i = 0; i < list->length(); i++) { CHECK_EQ(expected[i].from(), list->at(i).from()); CHECK_EQ(expected[i].to(), list->at(i).to()); } } static void TestSimpleRangeCaseIndependence(CharacterRange input, CharacterRange expected) { EmbeddedVector<CharacterRange, 1> vector; vector[0] = expected; TestRangeCaseIndependence(input, vector); } TEST(CharacterRangeCaseIndependence) { TestSimpleRangeCaseIndependence(CharacterRange::Singleton('a'), CharacterRange::Singleton('A')); TestSimpleRangeCaseIndependence(CharacterRange::Singleton('z'), CharacterRange::Singleton('Z')); TestSimpleRangeCaseIndependence(CharacterRange('a', 'z'), CharacterRange('A', 'Z')); TestSimpleRangeCaseIndependence(CharacterRange('c', 'f'), CharacterRange('C', 'F')); TestSimpleRangeCaseIndependence(CharacterRange('a', 'b'), CharacterRange('A', 'B')); TestSimpleRangeCaseIndependence(CharacterRange('y', 'z'), CharacterRange('Y', 'Z')); TestSimpleRangeCaseIndependence(CharacterRange('a' - 1, 'z' + 1), CharacterRange('A', 'Z')); TestSimpleRangeCaseIndependence(CharacterRange('A', 'Z'), CharacterRange('a', 'z')); TestSimpleRangeCaseIndependence(CharacterRange('C', 'F'), CharacterRange('c', 'f')); TestSimpleRangeCaseIndependence(CharacterRange('A' - 1, 'Z' + 1), CharacterRange('a', 'z')); // Here we need to add [l-z] to complete the case independence of // [A-Za-z] but we expect [a-z] to be added since we always add a // whole block at a time. TestSimpleRangeCaseIndependence(CharacterRange('A', 'k'), CharacterRange('a', 'z')); } static bool InClass(uc16 c, ZoneList<CharacterRange>* ranges) { if (ranges == NULL) return false; for (int i = 0; i < ranges->length(); i++) { CharacterRange range = ranges->at(i); if (range.from() <= c && c <= range.to()) return true; } return false; } TEST(CharClassDifference) { ZoneScope zone_scope(DELETE_ON_EXIT); ZoneList<CharacterRange>* base = new ZoneList<CharacterRange>(1); base->Add(CharacterRange::Everything()); Vector<const uc16> overlay = CharacterRange::GetWordBounds(); ZoneList<CharacterRange>* included = NULL; ZoneList<CharacterRange>* excluded = NULL; CharacterRange::Split(base, overlay, &included, &excluded); for (int i = 0; i < (1 << 16); i++) { bool in_base = InClass(i, base); if (in_base) { bool in_overlay = false; for (int j = 0; !in_overlay && j < overlay.length(); j += 2) { if (overlay[j] <= i && i <= overlay[j+1]) in_overlay = true; } CHECK_EQ(in_overlay, InClass(i, included)); CHECK_EQ(!in_overlay, InClass(i, excluded)); } else { CHECK(!InClass(i, included)); CHECK(!InClass(i, excluded)); } } } TEST(CanonicalizeCharacterSets) { ZoneScope scope(DELETE_ON_EXIT); ZoneList<CharacterRange>* list = new ZoneList<CharacterRange>(4); CharacterSet set(list); list->Add(CharacterRange(10, 20)); list->Add(CharacterRange(30, 40)); list->Add(CharacterRange(50, 60)); set.Canonicalize(); ASSERT_EQ(3, list->length()); ASSERT_EQ(10, list->at(0).from()); ASSERT_EQ(20, list->at(0).to()); ASSERT_EQ(30, list->at(1).from()); ASSERT_EQ(40, list->at(1).to()); ASSERT_EQ(50, list->at(2).from()); ASSERT_EQ(60, list->at(2).to()); list->Rewind(0); list->Add(CharacterRange(10, 20)); list->Add(CharacterRange(50, 60)); list->Add(CharacterRange(30, 40)); set.Canonicalize(); ASSERT_EQ(3, list->length()); ASSERT_EQ(10, list->at(0).from()); ASSERT_EQ(20, list->at(0).to()); ASSERT_EQ(30, list->at(1).from()); ASSERT_EQ(40, list->at(1).to()); ASSERT_EQ(50, list->at(2).from()); ASSERT_EQ(60, list->at(2).to()); list->Rewind(0); list->Add(CharacterRange(30, 40)); list->Add(CharacterRange(10, 20)); list->Add(CharacterRange(25, 25)); list->Add(CharacterRange(100, 100)); list->Add(CharacterRange(1, 1)); set.Canonicalize(); ASSERT_EQ(5, list->length()); ASSERT_EQ(1, list->at(0).from()); ASSERT_EQ(1, list->at(0).to()); ASSERT_EQ(10, list->at(1).from()); ASSERT_EQ(20, list->at(1).to()); ASSERT_EQ(25, list->at(2).from()); ASSERT_EQ(25, list->at(2).to()); ASSERT_EQ(30, list->at(3).from()); ASSERT_EQ(40, list->at(3).to()); ASSERT_EQ(100, list->at(4).from()); ASSERT_EQ(100, list->at(4).to()); list->Rewind(0); list->Add(CharacterRange(10, 19)); list->Add(CharacterRange(21, 30)); list->Add(CharacterRange(20, 20)); set.Canonicalize(); ASSERT_EQ(1, list->length()); ASSERT_EQ(10, list->at(0).from()); ASSERT_EQ(30, list->at(0).to()); } // Checks whether a character is in the set represented by a list of ranges. static bool CharacterInSet(ZoneList<CharacterRange>* set, uc16 value) { for (int i = 0; i < set->length(); i++) { CharacterRange range = set->at(i); if (range.from() <= value && value <= range.to()) { return true; } } return false; } TEST(CharacterRangeMerge) { ZoneScope zone_scope(DELETE_ON_EXIT); ZoneList<CharacterRange> l1(4); ZoneList<CharacterRange> l2(4); // Create all combinations of intersections of ranges, both singletons and // longer. int offset = 0; // The five kinds of singleton intersections: // X // Y - outside before // Y - outside touching start // Y - overlap // Y - outside touching end // Y - outside after for (int i = 0; i < 5; i++) { l1.Add(CharacterRange::Singleton(offset + 2)); l2.Add(CharacterRange::Singleton(offset + i)); offset += 6; } // The seven kinds of singleton/non-singleton intersections: // XXX // Y - outside before // Y - outside touching start // Y - inside touching start // Y - entirely inside // Y - inside touching end // Y - outside touching end // Y - disjoint after for (int i = 0; i < 7; i++) { l1.Add(CharacterRange::Range(offset + 2, offset + 4)); l2.Add(CharacterRange::Singleton(offset + i)); offset += 8; } // The eleven kinds of non-singleton intersections: // // XXXXXXXX // YYYY - outside before. // YYYY - outside touching start. // YYYY - overlapping start // YYYY - inside touching start // YYYY - entirely inside // YYYY - inside touching end // YYYY - overlapping end // YYYY - outside touching end // YYYY - outside after // YYYYYYYY - identical // YYYYYYYYYYYY - containing entirely. for (int i = 0; i < 9; i++) { l1.Add(CharacterRange::Range(offset + 6, offset + 15)); // Length 8. l2.Add(CharacterRange::Range(offset + 2 * i, offset + 2 * i + 3)); offset += 22; } l1.Add(CharacterRange::Range(offset + 6, offset + 15)); l2.Add(CharacterRange::Range(offset + 6, offset + 15)); offset += 22; l1.Add(CharacterRange::Range(offset + 6, offset + 15)); l2.Add(CharacterRange::Range(offset + 4, offset + 17)); offset += 22; // Different kinds of multi-range overlap: // XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX // YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y l1.Add(CharacterRange::Range(offset, offset + 21)); l1.Add(CharacterRange::Range(offset + 31, offset + 52)); for (int i = 0; i < 6; i++) { l2.Add(CharacterRange::Range(offset + 2, offset + 5)); l2.Add(CharacterRange::Singleton(offset + 8)); offset += 9; } ASSERT(CharacterRange::IsCanonical(&l1)); ASSERT(CharacterRange::IsCanonical(&l2)); ZoneList<CharacterRange> first_only(4); ZoneList<CharacterRange> second_only(4); ZoneList<CharacterRange> both(4); // Merge one direction. CharacterRange::Merge(&l1, &l2, &first_only, &second_only, &both); CHECK(CharacterRange::IsCanonical(&first_only)); CHECK(CharacterRange::IsCanonical(&second_only)); CHECK(CharacterRange::IsCanonical(&both)); for (uc16 i = 0; i < offset; i++) { bool in_first = CharacterInSet(&l1, i); bool in_second = CharacterInSet(&l2, i); CHECK((in_first && !in_second) == CharacterInSet(&first_only, i)); CHECK((!in_first && in_second) == CharacterInSet(&second_only, i)); CHECK((in_first && in_second) == CharacterInSet(&both, i)); } first_only.Clear(); second_only.Clear(); both.Clear(); // Merge other direction. CharacterRange::Merge(&l2, &l1, &second_only, &first_only, &both); CHECK(CharacterRange::IsCanonical(&first_only)); CHECK(CharacterRange::IsCanonical(&second_only)); CHECK(CharacterRange::IsCanonical(&both)); for (uc16 i = 0; i < offset; i++) { bool in_first = CharacterInSet(&l1, i); bool in_second = CharacterInSet(&l2, i); CHECK((in_first && !in_second) == CharacterInSet(&first_only, i)); CHECK((!in_first && in_second) == CharacterInSet(&second_only, i)); CHECK((in_first && in_second) == CharacterInSet(&both, i)); } first_only.Clear(); second_only.Clear(); both.Clear(); // Merge but don't record all combinations. CharacterRange::Merge(&l1, &l2, NULL, NULL, &both); CHECK(CharacterRange::IsCanonical(&both)); for (uc16 i = 0; i < offset; i++) { bool in_first = CharacterInSet(&l1, i); bool in_second = CharacterInSet(&l2, i); CHECK((in_first && in_second) == CharacterInSet(&both, i)); } // Merge into same set. ZoneList<CharacterRange> all(4); CharacterRange::Merge(&l1, &l2, &all, &all, &all); CHECK(CharacterRange::IsCanonical(&all)); for (uc16 i = 0; i < offset; i++) { bool in_first = CharacterInSet(&l1, i); bool in_second = CharacterInSet(&l2, i); CHECK((in_first || in_second) == CharacterInSet(&all, i)); } } TEST(Graph) { V8::Initialize(NULL); Execute("\\b\\w+\\b", false, true, true); }