/* * Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com) * Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "BitmapImage.h" #include "FloatRect.h" #include "ImageObserver.h" #include "IntRect.h" #include "MIMETypeRegistry.h" #include "PlatformString.h" #include "Timer.h" #include <wtf/CurrentTime.h> #include <wtf/Vector.h> namespace WebCore { static int frameBytes(const IntSize& frameSize) { return frameSize.width() * frameSize.height() * 4; } BitmapImage::BitmapImage(ImageObserver* observer) : Image(observer) , m_currentFrame(0) , m_frames(0) , m_frameTimer(0) , m_repetitionCount(cAnimationNone) , m_repetitionCountStatus(Unknown) , m_repetitionsComplete(0) , m_desiredFrameStartTime(0) , m_isSolidColor(false) , m_checkedForSolidColor(false) , m_animationFinished(false) , m_allDataReceived(false) , m_haveSize(false) , m_sizeAvailable(false) , m_hasUniformFrameSize(true) , m_decodedSize(0) , m_haveFrameCount(false) , m_frameCount(0) { initPlatformData(); } BitmapImage::~BitmapImage() { invalidatePlatformData(); stopAnimation(); } void BitmapImage::destroyDecodedData(bool destroyAll) { int framesCleared = 0; const size_t clearBeforeFrame = destroyAll ? m_frames.size() : m_currentFrame; for (size_t i = 0; i < clearBeforeFrame; ++i) { // The underlying frame isn't actually changing (we're just trying to // save the memory for the framebuffer data), so we don't need to clear // the metadata. if (m_frames[i].clear(false)) ++framesCleared; } destroyMetadataAndNotify(framesCleared); m_source.clear(destroyAll, clearBeforeFrame, data(), m_allDataReceived); return; } void BitmapImage::destroyDecodedDataIfNecessary(bool destroyAll) { // Animated images >5MB are considered large enough that we'll only hang on // to one frame at a time. static const unsigned cLargeAnimationCutoff = 5242880; if (m_frames.size() * frameBytes(m_size) > cLargeAnimationCutoff) destroyDecodedData(destroyAll); } void BitmapImage::destroyMetadataAndNotify(int framesCleared) { m_isSolidColor = false; invalidatePlatformData(); const int deltaBytes = framesCleared * -frameBytes(m_size); m_decodedSize += deltaBytes; if (deltaBytes && imageObserver()) imageObserver()->decodedSizeChanged(this, deltaBytes); } void BitmapImage::cacheFrame(size_t index) { size_t numFrames = frameCount(); ASSERT(m_decodedSize == 0 || numFrames > 1); if (m_frames.size() < numFrames) m_frames.grow(numFrames); m_frames[index].m_frame = m_source.createFrameAtIndex(index); if (numFrames == 1 && m_frames[index].m_frame) checkForSolidColor(); m_frames[index].m_haveMetadata = true; m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index); if (repetitionCount(false) != cAnimationNone) m_frames[index].m_duration = m_source.frameDurationAtIndex(index); m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index); const IntSize frameSize(index ? m_source.frameSizeAtIndex(index) : m_size); if (frameSize != m_size) m_hasUniformFrameSize = false; if (m_frames[index].m_frame) { const int deltaBytes = frameBytes(frameSize); m_decodedSize += deltaBytes; if (imageObserver()) imageObserver()->decodedSizeChanged(this, deltaBytes); } } IntSize BitmapImage::size() const { if (m_sizeAvailable && !m_haveSize) { m_size = m_source.size(); m_haveSize = true; } return m_size; } IntSize BitmapImage::currentFrameSize() const { if (!m_currentFrame || m_hasUniformFrameSize) return size(); return m_source.frameSizeAtIndex(m_currentFrame); } bool BitmapImage::dataChanged(bool allDataReceived) { // Because we're modifying the current frame, clear its (now possibly // inaccurate) metadata as well. destroyMetadataAndNotify((!m_frames.isEmpty() && m_frames[m_frames.size() - 1].clear(true)) ? 1 : 0); // Feed all the data we've seen so far to the image decoder. m_allDataReceived = allDataReceived; m_source.setData(data(), allDataReceived); // Clear the frame count. m_haveFrameCount = false; m_hasUniformFrameSize = true; // Image properties will not be available until the first frame of the file // reaches kCGImageStatusIncomplete. return isSizeAvailable(); } String BitmapImage::filenameExtension() const { return m_source.filenameExtension(); } size_t BitmapImage::frameCount() { if (!m_haveFrameCount) { m_haveFrameCount = true; m_frameCount = m_source.frameCount(); } return m_frameCount; } bool BitmapImage::isSizeAvailable() { if (m_sizeAvailable) return true; m_sizeAvailable = m_source.isSizeAvailable(); return m_sizeAvailable; } NativeImagePtr BitmapImage::frameAtIndex(size_t index) { if (index >= frameCount()) return 0; if (index >= m_frames.size() || !m_frames[index].m_frame) cacheFrame(index); return m_frames[index].m_frame; } bool BitmapImage::frameIsCompleteAtIndex(size_t index) { if (index >= frameCount()) return true; if (index >= m_frames.size() || !m_frames[index].m_haveMetadata) cacheFrame(index); return m_frames[index].m_isComplete; } float BitmapImage::frameDurationAtIndex(size_t index) { if (index >= frameCount()) return 0; if (index >= m_frames.size() || !m_frames[index].m_haveMetadata) cacheFrame(index); return m_frames[index].m_duration; } bool BitmapImage::frameHasAlphaAtIndex(size_t index) { if (index >= frameCount()) return true; if (index >= m_frames.size() || !m_frames[index].m_haveMetadata) cacheFrame(index); return m_frames[index].m_hasAlpha; } int BitmapImage::repetitionCount(bool imageKnownToBeComplete) { if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) { // Snag the repetition count. If |imageKnownToBeComplete| is false, the // repetition count may not be accurate yet for GIFs; in this case the // decoder will default to cAnimationLoopOnce, and we'll try and read // the count again once the whole image is decoded. m_repetitionCount = m_source.repetitionCount(); m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain; } return m_repetitionCount; } bool BitmapImage::shouldAnimate() { return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver()); } void BitmapImage::startAnimation(bool catchUpIfNecessary) { #ifdef ANDROID_ANIMATED_GIF // We can't ever seem to keep up, so always let us just show the next frame catchUpIfNecessary = false; #endif if (m_frameTimer || !shouldAnimate() || frameCount() <= 1) return; // Determine time for next frame to start. By ignoring paint and timer lag // in this calculation, we make the animation appear to run at its desired // rate regardless of how fast it's being repainted. const double currentDuration = frameDurationAtIndex(m_currentFrame); const double time = currentTime(); if (m_desiredFrameStartTime == 0) { m_desiredFrameStartTime = time + currentDuration; } else { m_desiredFrameStartTime += currentDuration; // When an animated image is more than five minutes out of date, the // user probably doesn't care about resyncing and we could burn a lot of // time looping through frames below. Just reset the timings. const double cAnimationResyncCutoff = 5 * 60; if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff) m_desiredFrameStartTime = time + currentDuration; } // Don't advance the animation to an incomplete frame. size_t nextFrame = (m_currentFrame + 1) % frameCount(); if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame)) return; // Don't advance past the last frame if we haven't decoded the whole image // yet and our repetition count is potentially unset. The repetition count // in a GIF can potentially come after all the rest of the image data, so // wait on it. if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1)) return; // The image may load more slowly than it's supposed to animate, so that by // the time we reach the end of the first repetition, we're well behind. // Clamp the desired frame start time in this case, so that we don't skip // frames (or whole iterations) trying to "catch up". This is a tradeoff: // It guarantees users see the whole animation the second time through and // don't miss any repetitions, and is closer to what other browsers do; on // the other hand, it makes animations "less accurate" for pages that try to // sync an image and some other resource (e.g. audio), especially if users // switch tabs (and thus stop drawing the animation, which will pause it) // during that initial loop, then switch back later. if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time) m_desiredFrameStartTime = time; if (!catchUpIfNecessary || time < m_desiredFrameStartTime) { // Haven't yet reached time for next frame to start; delay until then. m_frameTimer = new Timer<BitmapImage>(this, &BitmapImage::advanceAnimation); m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.)); } else { // We've already reached or passed the time for the next frame to start. // See if we've also passed the time for frames after that to start, in // case we need to skip some frames entirely. Remember not to advance // to an incomplete frame. for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) { // Should we skip the next frame? double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame); if (time < frameAfterNextStartTime) break; // Yes; skip over it without notifying our observers. if (!internalAdvanceAnimation(true)) return; m_desiredFrameStartTime = frameAfterNextStartTime; nextFrame = frameAfterNext; } // Draw the next frame immediately. Note that m_desiredFrameStartTime // may be in the past, meaning the next time through this function we'll // kick off the next advancement sooner than this frame's duration would // suggest. if (internalAdvanceAnimation(false)) { // The image region has been marked dirty, but once we return to our // caller, draw() will clear it, and nothing will cause the // animation to advance again. We need to start the timer for the // next frame running, or the animation can hang. (Compare this // with when advanceAnimation() is called, and the region is dirtied // while draw() is not in the callstack, meaning draw() gets called // to update the region and thus startAnimation() is reached again.) // NOTE: For large images with slow or heavily-loaded systems, // throwing away data as we go (see destroyDecodedData()) means we // can spend so much time re-decoding data above that by the time we // reach here we're behind again. If we let startAnimation() run // the catch-up code again, we can get long delays without painting // as we race the timer, or even infinite recursion. In this // situation the best we can do is to simply change frames as fast // as possible, so force startAnimation() to set a zero-delay timer // and bail out if we're not caught up. startAnimation(false); } } } void BitmapImage::stopAnimation() { // This timer is used to animate all occurrences of this image. Don't invalidate // the timer unless all renderers have stopped drawing. delete m_frameTimer; m_frameTimer = 0; } void BitmapImage::resetAnimation() { stopAnimation(); m_currentFrame = 0; m_repetitionsComplete = 0; m_desiredFrameStartTime = 0; m_animationFinished = false; // For extremely large animations, when the animation is reset, we just throw everything away. destroyDecodedDataIfNecessary(true); } void BitmapImage::advanceAnimation(Timer<BitmapImage>*) { internalAdvanceAnimation(false); // At this point the image region has been marked dirty, and if it's // onscreen, we'll soon make a call to draw(), which will call // startAnimation() again to keep the animation moving. } bool BitmapImage::internalAdvanceAnimation(bool skippingFrames) { // Stop the animation. stopAnimation(); // See if anyone is still paying attention to this animation. If not, we don't // advance and will remain suspended at the current frame until the animation is resumed. if (!skippingFrames && imageObserver()->shouldPauseAnimation(this)) return false; ++m_currentFrame; bool advancedAnimation = true; bool destroyAll = false; if (m_currentFrame >= frameCount()) { ++m_repetitionsComplete; // Get the repetition count again. If we weren't able to get a // repetition count before, we should have decoded the whole image by // now, so it should now be available. if (repetitionCount(true) && m_repetitionsComplete >= m_repetitionCount) { m_animationFinished = true; m_desiredFrameStartTime = 0; --m_currentFrame; advancedAnimation = false; } else { m_currentFrame = 0; destroyAll = true; } } destroyDecodedDataIfNecessary(destroyAll); // We need to draw this frame if we advanced to it while not skipping, or if // while trying to skip frames we hit the last frame and thus had to stop. if (skippingFrames != advancedAnimation) imageObserver()->animationAdvanced(this); return advancedAnimation; } }