/* * Misc utility routines for accessing chip-specific features * of the SiliconBackplane-based Broadcom chips. * * Copyright (C) 1999-2010, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * $Id: sbutils.c,v 1.662.4.10.2.7.4.2 2010/04/19 05:48:48 Exp $ */ #include <typedefs.h> #include <bcmdefs.h> #include <osl.h> #include <bcmutils.h> #include <siutils.h> #include <bcmdevs.h> #include <hndsoc.h> #include <sbchipc.h> #include <pcicfg.h> #include <sbpcmcia.h> #include "siutils_priv.h" /* local prototypes */ static uint _sb_coreidx(si_info_t *sii, uint32 sba); static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint ncores); static uint32 _sb_coresba(si_info_t *sii); static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); #define SET_SBREG(sii, r, mask, val) \ W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) /* sonicsrev */ #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) #define R_SBREG(sii, sbr) sb_read_sbreg((sii), (sbr)) #define W_SBREG(sii, sbr, v) sb_write_sbreg((sii), (sbr), (v)) #define AND_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) #define OR_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) static uint32 sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) { uint8 tmp; uint32 val, intr_val = 0; /* * compact flash only has 11 bits address, while we needs 12 bits address. * MEM_SEG will be OR'd with other 11 bits address in hardware, * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special */ if (PCMCIA(sii)) { INTR_OFF(sii, intr_val); tmp = 1; OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ } val = R_REG(sii->osh, sbr); if (PCMCIA(sii)) { tmp = 0; OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); INTR_RESTORE(sii, intr_val); } return (val); } static void sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) { uint8 tmp; volatile uint32 dummy; uint32 intr_val = 0; /* * compact flash only has 11 bits address, while we needs 12 bits address. * MEM_SEG will be OR'd with other 11 bits address in hardware, * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special */ if (PCMCIA(sii)) { INTR_OFF(sii, intr_val); tmp = 1; OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ } if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { #ifdef IL_BIGENDIAN dummy = R_REG(sii->osh, sbr); W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); dummy = R_REG(sii->osh, sbr); W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); #else dummy = R_REG(sii->osh, sbr); W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); dummy = R_REG(sii->osh, sbr); W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); #endif /* IL_BIGENDIAN */ } else W_REG(sii->osh, sbr, v); if (PCMCIA(sii)) { tmp = 0; OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); INTR_RESTORE(sii, intr_val); } } uint sb_coreid(si_t *sih) { si_info_t *sii; sbconfig_t *sb; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); } uint sb_flag(si_t *sih) { si_info_t *sii; sbconfig_t *sb; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; } void sb_setint(si_t *sih, int siflag) { si_info_t *sii; sbconfig_t *sb; uint32 vec; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); if (siflag == -1) vec = 0; else vec = 1 << siflag; W_SBREG(sii, &sb->sbintvec, vec); } /* return core index of the core with address 'sba' */ static uint _sb_coreidx(si_info_t *sii, uint32 sba) { uint i; for (i = 0; i < sii->numcores; i ++) if (sba == sii->common_info->coresba[i]) return i; return BADIDX; } /* return core address of the current core */ static uint32 _sb_coresba(si_info_t *sii) { uint32 sbaddr; switch (BUSTYPE(sii->pub.bustype)) { case SI_BUS: { sbconfig_t *sb = REGS2SB(sii->curmap); sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); break; } case PCI_BUS: sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); break; case PCMCIA_BUS: { uint8 tmp = 0; OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); sbaddr = (uint32)tmp << 12; OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); sbaddr |= (uint32)tmp << 16; OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); sbaddr |= (uint32)tmp << 24; break; } case SPI_BUS: case SDIO_BUS: sbaddr = (uint32)(uintptr)sii->curmap; break; default: sbaddr = BADCOREADDR; break; } return sbaddr; } uint sb_corevendor(si_t *sih) { si_info_t *sii; sbconfig_t *sb; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); } uint sb_corerev(si_t *sih) { si_info_t *sii; sbconfig_t *sb; uint sbidh; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); sbidh = R_SBREG(sii, &sb->sbidhigh); return (SBCOREREV(sbidh)); } /* set core-specific control flags */ void sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii; sbconfig_t *sb; uint32 w; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); ASSERT((val & ~mask) == 0); /* mask and set */ w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | (val << SBTML_SICF_SHIFT); W_SBREG(sii, &sb->sbtmstatelow, w); } /* set/clear core-specific control flags */ uint32 sb_core_cflags(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii; sbconfig_t *sb; uint32 w; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); ASSERT((val & ~mask) == 0); /* mask and set */ if (mask || val) { w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | (val << SBTML_SICF_SHIFT); W_SBREG(sii, &sb->sbtmstatelow, w); } /* return the new value * for write operation, the following readback ensures the completion of write opration. */ return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); } /* set/clear core-specific status flags */ uint32 sb_core_sflags(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii; sbconfig_t *sb; uint32 w; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); ASSERT((val & ~mask) == 0); ASSERT((mask & ~SISF_CORE_BITS) == 0); /* mask and set */ if (mask || val) { w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | (val << SBTMH_SISF_SHIFT); W_SBREG(sii, &sb->sbtmstatehigh, w); } /* return the new value */ return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); } bool sb_iscoreup(si_t *sih) { si_info_t *sii; sbconfig_t *sb; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); return ((R_SBREG(sii, &sb->sbtmstatelow) & (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); } /* * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, * switch back to the original core, and return the new value. * * When using the silicon backplane, no fidleing with interrupts or core switches are needed. * * Also, when using pci/pcie, we can optimize away the core switching for pci registers * and (on newer pci cores) chipcommon registers. */ uint sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) { uint origidx = 0; uint32 *r = NULL; uint w; uint intr_val = 0; bool fast = FALSE; si_info_t *sii; sii = SI_INFO(sih); ASSERT(GOODIDX(coreidx)); ASSERT(regoff < SI_CORE_SIZE); ASSERT((val & ~mask) == 0); if (coreidx >= SI_MAXCORES) return 0; if (BUSTYPE(sii->pub.bustype) == SI_BUS) { /* If internal bus, we can always get at everything */ fast = TRUE; /* map if does not exist */ if (!sii->common_info->regs[coreidx]) { sii->common_info->regs[coreidx] = REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE); ASSERT(GOODREGS(sii->common_info->regs[coreidx])); } r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff); } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { /* Chipc registers are mapped at 12KB */ fast = TRUE; r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); } else if (sii->pub.buscoreidx == coreidx) { /* pci registers are at either in the last 2KB of an 8KB window * or, in pcie and pci rev 13 at 8KB */ fast = TRUE; if (SI_FAST(sii)) r = (uint32 *)((char *)sii->curmap + PCI_16KB0_PCIREGS_OFFSET + regoff); else r = (uint32 *)((char *)sii->curmap + ((regoff >= SBCONFIGOFF) ? PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff); } } if (!fast) { INTR_OFF(sii, intr_val); /* save current core index */ origidx = si_coreidx(&sii->pub); /* switch core */ r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); } ASSERT(r != NULL); /* mask and set */ if (mask || val) { if (regoff >= SBCONFIGOFF) { w = (R_SBREG(sii, r) & ~mask) | val; W_SBREG(sii, r, w); } else { w = (R_REG(sii->osh, r) & ~mask) | val; W_REG(sii->osh, r, w); } } /* readback */ if (regoff >= SBCONFIGOFF) w = R_SBREG(sii, r); else { if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && (coreidx == SI_CC_IDX) && (regoff == OFFSETOF(chipcregs_t, watchdog))) { w = val; } else w = R_REG(sii->osh, r); } if (!fast) { /* restore core index */ if (origidx != coreidx) sb_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); } return (w); } /* Scan the enumeration space to find all cores starting from the given * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' * is the default core address at chip POR time and 'regs' is the virtual * address that the default core is mapped at. 'ncores' is the number of * cores expected on bus 'sbba'. It returns the total number of cores * starting from bus 'sbba', inclusive. */ #define SB_MAXBUSES 2 static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) { uint next; uint ncc = 0; uint i; if (bus >= SB_MAXBUSES) { SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); return 0; } SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); /* Scan all cores on the bus starting from core 0. * Core addresses must be contiguous on each bus. */ for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { sii->common_info->coresba[next] = sbba + (i * SI_CORE_SIZE); /* keep and reuse the initial register mapping */ if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && (sii->common_info->coresba[next] == sba)) { SI_MSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); sii->common_info->regs[next] = regs; } /* change core to 'next' and read its coreid */ sii->curmap = _sb_setcoreidx(sii, next); sii->curidx = next; sii->common_info->coreid[next] = sb_coreid(&sii->pub); /* core specific processing... */ /* chipc provides # cores */ if (sii->common_info->coreid[next] == CC_CORE_ID) { chipcregs_t *cc = (chipcregs_t *)sii->curmap; uint32 ccrev = sb_corerev(&sii->pub); /* determine numcores - this is the total # cores in the chip */ if (((ccrev == 4) || (ccrev >= 6))) numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> CID_CC_SHIFT; else { /* Older chips */ uint chip = sii->pub.chip; if (chip == BCM4306_CHIP_ID) /* < 4306c0 */ numcores = 6; else if (chip == BCM4704_CHIP_ID) numcores = 9; else if (chip == BCM5365_CHIP_ID) numcores = 7; else { SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", chip)); ASSERT(0); numcores = 1; } } SI_MSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, sii->pub.issim ? "QT" : "")); } /* scan bridged SB(s) and add results to the end of the list */ else if (sii->common_info->coreid[next] == OCP_CORE_ID) { sbconfig_t *sb = REGS2SB(sii->curmap); uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); uint nsbcc; sii->numcores = next + 1; if ((nsbba & 0xfff00000) != SI_ENUM_BASE) continue; nsbba &= 0xfffff000; if (_sb_coreidx(sii, nsbba) != BADIDX) continue; nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); if (sbba == SI_ENUM_BASE) numcores -= nsbcc; ncc += nsbcc; } } SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); sii->numcores = i + ncc; return sii->numcores; } /* scan the sb enumerated space to identify all cores */ void sb_scan(si_t *sih, void *regs, uint devid) { si_info_t *sii; uint32 origsba; sii = SI_INFO(sih); /* Save the current core info and validate it later till we know * for sure what is good and what is bad. */ origsba = _sb_coresba(sii); /* scan all SB(s) starting from SI_ENUM_BASE */ sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); } /* * This function changes logical "focus" to the indicated core; * must be called with interrupts off. * Moreover, callers should keep interrupts off during switching out of and back to d11 core */ void * sb_setcoreidx(si_t *sih, uint coreidx) { si_info_t *sii; sii = SI_INFO(sih); if (coreidx >= sii->numcores) return (NULL); /* * If the user has provided an interrupt mask enabled function, * then assert interrupts are disabled before switching the core. */ ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); sii->curmap = _sb_setcoreidx(sii, coreidx); sii->curidx = coreidx; return (sii->curmap); } /* This function changes the logical "focus" to the indicated core. * Return the current core's virtual address. */ static void * _sb_setcoreidx(si_info_t *sii, uint coreidx) { uint32 sbaddr = sii->common_info->coresba[coreidx]; void *regs; switch (BUSTYPE(sii->pub.bustype)) { case SI_BUS: /* map new one */ if (!sii->common_info->regs[coreidx]) { sii->common_info->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); ASSERT(GOODREGS(sii->common_info->regs[coreidx])); } regs = sii->common_info->regs[coreidx]; break; case PCI_BUS: /* point bar0 window */ OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); regs = sii->curmap; break; case PCMCIA_BUS: { uint8 tmp = (sbaddr >> 12) & 0x0f; OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); tmp = (sbaddr >> 16) & 0xff; OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); tmp = (sbaddr >> 24) & 0xff; OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); regs = sii->curmap; break; } case SPI_BUS: case SDIO_BUS: /* map new one */ if (!sii->common_info->regs[coreidx]) { sii->common_info->regs[coreidx] = (void *)(uintptr)sbaddr; ASSERT(GOODREGS(sii->common_info->regs[coreidx])); } regs = sii->common_info->regs[coreidx]; break; default: ASSERT(0); regs = NULL; break; } return regs; } /* Return the address of sbadmatch0/1/2/3 register */ static volatile uint32 * sb_admatch(si_info_t *sii, uint asidx) { sbconfig_t *sb; volatile uint32 *addrm; sb = REGS2SB(sii->curmap); switch (asidx) { case 0: addrm = &sb->sbadmatch0; break; case 1: addrm = &sb->sbadmatch1; break; case 2: addrm = &sb->sbadmatch2; break; case 3: addrm = &sb->sbadmatch3; break; default: SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); return 0; } return (addrm); } /* Return the number of address spaces in current core */ int sb_numaddrspaces(si_t *sih) { si_info_t *sii; sbconfig_t *sb; sii = SI_INFO(sih); sb = REGS2SB(sii->curmap); /* + 1 because of enumeration space */ return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; } /* Return the address of the nth address space in the current core */ uint32 sb_addrspace(si_t *sih, uint asidx) { si_info_t *sii; sii = SI_INFO(sih); return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); } /* Return the size of the nth address space in the current core */ uint32 sb_addrspacesize(si_t *sih, uint asidx) { si_info_t *sii; sii = SI_INFO(sih); return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); } /* do buffered registers update */ void sb_commit(si_t *sih) { si_info_t *sii; uint origidx; uint intr_val = 0; sii = SI_INFO(sih); origidx = sii->curidx; ASSERT(GOODIDX(origidx)); INTR_OFF(sii, intr_val); /* switch over to chipcommon core if there is one, else use pci */ if (sii->pub.ccrev != NOREV) { chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); /* do the buffer registers update */ W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); W_REG(sii->osh, &ccregs->broadcastdata, 0x0); } else ASSERT(0); /* restore core index */ sb_setcoreidx(sih, origidx); INTR_RESTORE(sii, intr_val); } void sb_core_disable(si_t *sih, uint32 bits) { si_info_t *sii; volatile uint32 dummy; sbconfig_t *sb; sii = SI_INFO(sih); ASSERT(GOODREGS(sii->curmap)); sb = REGS2SB(sii->curmap); /* if core is already in reset, just return */ if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) return; /* if clocks are not enabled, put into reset and return */ if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) goto disable; /* set target reject and spin until busy is clear (preserve core-specific bits) */ OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); dummy = R_SBREG(sii, &sb->sbtmstatelow); OSL_DELAY(1); SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); dummy = R_SBREG(sii, &sb->sbimstate); OSL_DELAY(1); SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); } /* set reset and reject while enabling the clocks */ W_SBREG(sii, &sb->sbtmstatelow, (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); dummy = R_SBREG(sii, &sb->sbtmstatelow); OSL_DELAY(10); /* don't forget to clear the initiator reject bit */ if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); disable: /* leave reset and reject asserted */ W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); OSL_DELAY(1); } /* reset and re-enable a core * inputs: * bits - core specific bits that are set during and after reset sequence * resetbits - core specific bits that are set only during reset sequence */ void sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) { si_info_t *sii; sbconfig_t *sb; volatile uint32 dummy; sii = SI_INFO(sih); ASSERT(GOODREGS(sii->curmap)); sb = REGS2SB(sii->curmap); /* * Must do the disable sequence first to work for arbitrary current core state. */ sb_core_disable(sih, (bits | resetbits)); /* * Now do the initialization sequence. */ /* set reset while enabling the clock and forcing them on throughout the core */ W_SBREG(sii, &sb->sbtmstatelow, (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | SBTML_RESET)); dummy = R_SBREG(sii, &sb->sbtmstatelow); OSL_DELAY(1); if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { W_SBREG(sii, &sb->sbtmstatehigh, 0); } if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); } /* clear reset and allow it to propagate throughout the core */ W_SBREG(sii, &sb->sbtmstatelow, ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); dummy = R_SBREG(sii, &sb->sbtmstatelow); OSL_DELAY(1); /* leave clock enabled */ W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); dummy = R_SBREG(sii, &sb->sbtmstatelow); OSL_DELAY(1); } void sb_core_tofixup(si_t *sih) { si_info_t *sii; sbconfig_t *sb; sii = SI_INFO(sih); if ((BUSTYPE(sii->pub.bustype) != PCI_BUS) || PCIE(sii) || (PCI(sii) && (sii->pub.buscorerev >= 5))) return; ASSERT(GOODREGS(sii->curmap)); sb = REGS2SB(sii->curmap); if (BUSTYPE(sii->pub.bustype) == SI_BUS) { SET_SBREG(sii, &sb->sbimconfiglow, SBIMCL_RTO_MASK | SBIMCL_STO_MASK, (0x5 << SBIMCL_RTO_SHIFT) | 0x3); } else { if (sb_coreid(sih) == PCI_CORE_ID) { SET_SBREG(sii, &sb->sbimconfiglow, SBIMCL_RTO_MASK | SBIMCL_STO_MASK, (0x3 << SBIMCL_RTO_SHIFT) | 0x2); } else { SET_SBREG(sii, &sb->sbimconfiglow, (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0); } } sb_commit(sih); } /* * Set the initiator timeout for the "master core". * The master core is defined to be the core in control * of the chip and so it issues accesses to non-memory * locations (Because of dma *any* core can access memeory). * * The routine uses the bus to decide who is the master: * SI_BUS => mips * JTAG_BUS => chipc * PCI_BUS => pci or pcie * PCMCIA_BUS => pcmcia * SDIO_BUS => pcmcia * * This routine exists so callers can disable initiator * timeouts so accesses to very slow devices like otp * won't cause an abort. The routine allows arbitrary * settings of the service and request timeouts, though. * * Returns the timeout state before changing it or -1 * on error. */ #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK) uint32 sb_set_initiator_to(si_t *sih, uint32 to, uint idx) { si_info_t *sii; uint origidx; uint intr_val = 0; uint32 tmp, ret = 0xffffffff; sbconfig_t *sb; sii = SI_INFO(sih); if ((to & ~TO_MASK) != 0) return ret; /* Figure out the master core */ if (idx == BADIDX) { switch (BUSTYPE(sii->pub.bustype)) { case PCI_BUS: idx = sii->pub.buscoreidx; break; case JTAG_BUS: idx = SI_CC_IDX; break; case PCMCIA_BUS: case SDIO_BUS: idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); break; case SI_BUS: idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); break; default: ASSERT(0); } if (idx == BADIDX) return ret; } INTR_OFF(sii, intr_val); origidx = si_coreidx(sih); sb = REGS2SB(sb_setcoreidx(sih, idx)); tmp = R_SBREG(sii, &sb->sbimconfiglow); ret = tmp & TO_MASK; W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); sb_commit(sih); sb_setcoreidx(sih, origidx); INTR_RESTORE(sii, intr_val); return ret; } uint32 sb_base(uint32 admatch) { uint32 base; uint type; type = admatch & SBAM_TYPE_MASK; ASSERT(type < 3); base = 0; if (type == 0) { base = admatch & SBAM_BASE0_MASK; } else if (type == 1) { ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ base = admatch & SBAM_BASE1_MASK; } else if (type == 2) { ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ base = admatch & SBAM_BASE2_MASK; } return (base); } uint32 sb_size(uint32 admatch) { uint32 size; uint type; type = admatch & SBAM_TYPE_MASK; ASSERT(type < 3); size = 0; if (type == 0) { size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); } else if (type == 1) { ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); } else if (type == 2) { ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); } return (size); }