/* @(#)s_cbrt.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
#ifndef lint
static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.10 2005/12/13 20:17:23 bde Exp $";
#endif
#include "math.h"
#include "math_private.h"
/* cbrt(x)
* Return cube root of x
*/
static const u_int32_t
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
static const double
C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
double
cbrt(double x)
{
int32_t hx;
double r,s,t=0.0,w;
u_int32_t sign;
u_int32_t high,low;
GET_HIGH_WORD(hx,x);
sign=hx&0x80000000; /* sign= sign(x) */
hx ^=sign;
if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
GET_LOW_WORD(low,x);
if((hx|low)==0)
return(x); /* cbrt(0) is itself */
/*
* Rough cbrt to 5 bits:
* cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
* where e is integral and >= 0, m is real and in [0, 1), and "/" and
* "%" are integer division and modulus with rounding towards minus
* infinity. The RHS is always >= the LHS and has a maximum relative
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
* floating point representation, for finite positive normal values,
* ordinary integer divison of the value in bits magically gives
* almost exactly the RHS of the above provided we first subtract the
* exponent bias (1023 for doubles) and later add it back. We do the
* subtraction virtually to keep e >= 0 so that ordinary integer
* division rounds towards minus infinity; this is also efficient.
*/
if(hx<0x00100000) { /* subnormal number */
SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
t*=x;
GET_HIGH_WORD(high,t);
SET_HIGH_WORD(t,sign|((high&0x7fffffff)/3+B2));
} else
SET_HIGH_WORD(t,sign|(hx/3+B1));
/* new cbrt to 23 bits; may be implemented in single precision */
r=t*t/x;
s=C+r*t;
t*=G+F/(s+E+D/s);
/* chop t to 20 bits and make it larger in magnitude than cbrt(x) */
GET_HIGH_WORD(high,t);
INSERT_WORDS(t,high+0x00000001,0);
/* one step Newton iteration to 53 bits with error less than 0.667 ulps */
s=t*t; /* t*t is exact */
r=x/s;
w=t+t;
r=(r-t)/(w+r); /* r-t is exact */
t=t+t*r;
return(t);
}