// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/crypto/rsa_private_key.h"
#include <iostream>
#include <list>
#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "base/string_util.h"
namespace {
// Helper for error handling during key import.
#define READ_ASSERT(truth) \
if (!(truth)) { \
NOTREACHED(); \
return false; \
}
} // namespace
namespace base {
// static
RSAPrivateKey* RSAPrivateKey::Create(uint16 num_bits) {
scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
if (!result->InitProvider())
return NULL;
DWORD flags = CRYPT_EXPORTABLE;
// The size is encoded as the upper 16 bits of the flags. :: sigh ::.
flags |= (num_bits << 16);
if (!CryptGenKey(result->provider_, CALG_RSA_SIGN, flags, &result->key_))
return NULL;
return result.release();
}
// static
RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo(
const std::vector<uint8>& input) {
scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
if (!result->InitProvider())
return NULL;
PrivateKeyInfoCodec pki(false); // Little-Endian
pki.Import(input);
int blob_size = sizeof(PUBLICKEYSTRUC) +
sizeof(RSAPUBKEY) +
pki.modulus()->size() +
pki.prime1()->size() +
pki.prime2()->size() +
pki.exponent1()->size() +
pki.exponent2()->size() +
pki.coefficient()->size() +
pki.private_exponent()->size();
scoped_array<BYTE> blob(new BYTE[blob_size]);
uint8* dest = blob.get();
PUBLICKEYSTRUC* public_key_struc = reinterpret_cast<PUBLICKEYSTRUC*>(dest);
public_key_struc->bType = PRIVATEKEYBLOB;
public_key_struc->bVersion = 0x02;
public_key_struc->reserved = 0;
public_key_struc->aiKeyAlg = CALG_RSA_SIGN;
dest += sizeof(PUBLICKEYSTRUC);
RSAPUBKEY* rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(dest);
rsa_pub_key->magic = 0x32415352;
rsa_pub_key->bitlen = pki.modulus()->size() * 8;
int public_exponent_int = 0;
for (size_t i = pki.public_exponent()->size(); i > 0; --i) {
public_exponent_int <<= 8;
public_exponent_int |= (*pki.public_exponent())[i - 1];
}
rsa_pub_key->pubexp = public_exponent_int;
dest += sizeof(RSAPUBKEY);
memcpy(dest, &pki.modulus()->front(), pki.modulus()->size());
dest += pki.modulus()->size();
memcpy(dest, &pki.prime1()->front(), pki.prime1()->size());
dest += pki.prime1()->size();
memcpy(dest, &pki.prime2()->front(), pki.prime2()->size());
dest += pki.prime2()->size();
memcpy(dest, &pki.exponent1()->front(), pki.exponent1()->size());
dest += pki.exponent1()->size();
memcpy(dest, &pki.exponent2()->front(), pki.exponent2()->size());
dest += pki.exponent2()->size();
memcpy(dest, &pki.coefficient()->front(), pki.coefficient()->size());
dest += pki.coefficient()->size();
memcpy(dest, &pki.private_exponent()->front(), pki.private_exponent()->size());
dest += pki.private_exponent()->size();
READ_ASSERT(dest == blob.get() + blob_size);
if (!CryptImportKey(
result->provider_, reinterpret_cast<uint8*>(public_key_struc), blob_size,
NULL, CRYPT_EXPORTABLE, &result->key_)) {
return NULL;
}
return result.release();
}
RSAPrivateKey::RSAPrivateKey() : provider_(NULL), key_(NULL) {}
RSAPrivateKey::~RSAPrivateKey() {
if (key_) {
if (!CryptDestroyKey(key_))
NOTREACHED();
}
if (provider_) {
if (!CryptReleaseContext(provider_, 0))
NOTREACHED();
}
}
bool RSAPrivateKey::InitProvider() {
return FALSE != CryptAcquireContext(&provider_, NULL, NULL,
PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
}
bool RSAPrivateKey::ExportPrivateKey(std::vector<uint8>* output) {
// Export the key
DWORD blob_length = 0;
if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, NULL, &blob_length)) {
NOTREACHED();
return false;
}
scoped_array<uint8> blob(new uint8[blob_length]);
if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, blob.get(),
&blob_length)) {
NOTREACHED();
return false;
}
uint8* pos = blob.get();
PUBLICKEYSTRUC *publickey_struct = reinterpret_cast<PUBLICKEYSTRUC*>(pos);
pos += sizeof(PUBLICKEYSTRUC);
RSAPUBKEY *rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(pos);
pos += sizeof(RSAPUBKEY);
int mod_size = rsa_pub_key->bitlen / 8;
int primes_size = rsa_pub_key->bitlen / 16;
PrivateKeyInfoCodec pki(false); // Little-Endian
pki.modulus()->assign(pos, pos + mod_size);
pos += mod_size;
pki.prime1()->assign(pos, pos + primes_size);
pos += primes_size;
pki.prime2()->assign(pos, pos + primes_size);
pos += primes_size;
pki.exponent1()->assign(pos, pos + primes_size);
pos += primes_size;
pki.exponent2()->assign(pos, pos + primes_size);
pos += primes_size;
pki.coefficient()->assign(pos, pos + primes_size);
pos += primes_size;
pki.private_exponent()->assign(pos, pos + mod_size);
pos += mod_size;
pki.public_exponent()->assign(reinterpret_cast<uint8*>(&rsa_pub_key->pubexp),
reinterpret_cast<uint8*>(&rsa_pub_key->pubexp) + 4);
CHECK((pos - blob_length) == reinterpret_cast<BYTE*>(publickey_struct));
return pki.Export(output);
}
bool RSAPrivateKey::ExportPublicKey(std::vector<uint8>* output) {
DWORD key_info_len;
if (!CryptExportPublicKeyInfo(
provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
NULL, &key_info_len)) {
NOTREACHED();
return false;
}
scoped_array<uint8> key_info(new uint8[key_info_len]);
if (!CryptExportPublicKeyInfo(
provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), &key_info_len)) {
NOTREACHED();
return false;
}
DWORD encoded_length;
if (!CryptEncodeObject(
X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), NULL,
&encoded_length)) {
NOTREACHED();
return false;
}
scoped_array<BYTE> encoded(new BYTE[encoded_length]);
if (!CryptEncodeObject(
X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), encoded.get(),
&encoded_length)) {
NOTREACHED();
return false;
}
for (size_t i = 0; i < encoded_length; ++i)
output->push_back(encoded[i]);
return true;
}
} // namespace base