// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_pump_glib.h"
#include <gtk/gtk.h>
#include <math.h>
#include <algorithm>
#include <vector>
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/platform_thread.h"
#include "base/ref_counted.h"
#include "base/thread.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
// This class injects dummy "events" into the GLib loop. When "handled" these
// events can run tasks. This is intended to mock gtk events (the corresponding
// GLib source runs at the same priority).
class EventInjector {
public:
EventInjector() : processed_events_(0) {
source_ = static_cast<Source*>(g_source_new(&SourceFuncs, sizeof(Source)));
source_->injector = this;
g_source_attach(source_, NULL);
g_source_set_can_recurse(source_, TRUE);
}
~EventInjector() {
g_source_destroy(source_);
g_source_unref(source_);
}
int HandlePrepare() {
// If the queue is empty, block.
if (events_.empty())
return -1;
base::TimeDelta delta = events_[0].time - base::Time::NowFromSystemTime();
return std::max(0, static_cast<int>(ceil(delta.InMillisecondsF())));
}
bool HandleCheck() {
if (events_.empty())
return false;
Event event = events_[0];
return events_[0].time <= base::Time::NowFromSystemTime();
}
void HandleDispatch() {
if (events_.empty())
return;
Event event = events_[0];
events_.erase(events_.begin());
++processed_events_;
if (event.task) {
event.task->Run();
delete event.task;
}
}
// Adds an event to the queue. When "handled", executes |task|.
// delay_ms is relative to the last event if any, or to Now() otherwise.
void AddEvent(int delay_ms, Task* task) {
base::Time last_time;
if (!events_.empty()) {
last_time = (events_.end()-1)->time;
} else {
last_time = base::Time::NowFromSystemTime();
}
base::Time future = last_time + base::TimeDelta::FromMilliseconds(delay_ms);
EventInjector::Event event = { future, task };
events_.push_back(event);
}
void Reset() {
processed_events_ = 0;
events_.clear();
}
int processed_events() const { return processed_events_; }
private:
struct Event {
base::Time time;
Task* task;
};
struct Source : public GSource {
EventInjector* injector;
};
static gboolean Prepare(GSource* source, gint* timeout_ms) {
*timeout_ms = static_cast<Source*>(source)->injector->HandlePrepare();
return FALSE;
}
static gboolean Check(GSource* source) {
return static_cast<Source*>(source)->injector->HandleCheck();
}
static gboolean Dispatch(GSource* source,
GSourceFunc unused_func,
gpointer unused_data) {
static_cast<Source*>(source)->injector->HandleDispatch();
return TRUE;
}
Source* source_;
std::vector<Event> events_;
int processed_events_;
static GSourceFuncs SourceFuncs;
DISALLOW_COPY_AND_ASSIGN(EventInjector);
};
GSourceFuncs EventInjector::SourceFuncs = {
EventInjector::Prepare,
EventInjector::Check,
EventInjector::Dispatch,
NULL
};
// Does nothing. This function can be called from a task.
void DoNothing() {
}
void IncrementInt(int *value) {
++*value;
}
// Checks how many events have been processed by the injector.
void ExpectProcessedEvents(EventInjector* injector, int count) {
EXPECT_EQ(injector->processed_events(), count);
}
// Quits the current message loop.
void QuitMessageLoop() {
MessageLoop::current()->Quit();
}
// Returns a new task that quits the main loop.
Task* NewQuitTask() {
return NewRunnableFunction(QuitMessageLoop);
}
// Posts a task on the current message loop.
void PostMessageLoopTask(const tracked_objects::Location& from_here,
Task* task) {
MessageLoop::current()->PostTask(from_here, task);
}
// Test fixture.
class MessagePumpGLibTest : public testing::Test {
public:
MessagePumpGLibTest() : loop_(NULL), injector_(NULL) { }
virtual void SetUp() {
loop_ = new MessageLoop(MessageLoop::TYPE_UI);
injector_ = new EventInjector();
}
virtual void TearDown() {
delete injector_;
injector_ = NULL;
delete loop_;
loop_ = NULL;
}
MessageLoop* loop() const { return loop_; }
EventInjector* injector() const { return injector_; }
private:
MessageLoop* loop_;
EventInjector* injector_;
DISALLOW_COPY_AND_ASSIGN(MessagePumpGLibTest);
};
} // namespace
// EventInjector is expected to always live longer than the runnable methods.
// This lets us call NewRunnableMethod on EventInjector instances.
template<>
struct RunnableMethodTraits<EventInjector> {
void RetainCallee(EventInjector* obj) { }
void ReleaseCallee(EventInjector* obj) { }
};
TEST_F(MessagePumpGLibTest, TestQuit) {
// Checks that Quit works and that the basic infrastructure is working.
// Quit from a task
loop()->PostTask(FROM_HERE, NewQuitTask());
loop()->Run();
EXPECT_EQ(0, injector()->processed_events());
injector()->Reset();
// Quit from an event
injector()->AddEvent(0, NewQuitTask());
loop()->Run();
EXPECT_EQ(1, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) {
// Checks that tasks posted by events are executed before the next event if
// the posted task queue is empty.
// MessageLoop doesn't make strong guarantees that it is the case, but the
// current implementation ensures it and the tests below rely on it.
// If changes cause this test to fail, it is reasonable to change it, but
// TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be
// changed accordingly, otherwise they can become flaky.
injector()->AddEvent(0, NewRunnableFunction(DoNothing));
Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2);
Task* posted_task = NewRunnableFunction(PostMessageLoopTask,
FROM_HERE, check_task);
injector()->AddEvent(0, posted_task);
injector()->AddEvent(0, NewRunnableFunction(DoNothing));
injector()->AddEvent(0, NewQuitTask());
loop()->Run();
EXPECT_EQ(4, injector()->processed_events());
injector()->Reset();
injector()->AddEvent(0, NewRunnableFunction(DoNothing));
check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2);
posted_task = NewRunnableFunction(PostMessageLoopTask, FROM_HERE, check_task);
injector()->AddEvent(0, posted_task);
injector()->AddEvent(10, NewRunnableFunction(DoNothing));
injector()->AddEvent(0, NewQuitTask());
loop()->Run();
EXPECT_EQ(4, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) {
int task_count = 0;
// Tests that we process tasks while waiting for new events.
// The event queue is empty at first.
for (int i = 0; i < 10; ++i) {
loop()->PostTask(FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
}
// After all the previous tasks have executed, enqueue an event that will
// quit.
loop()->PostTask(
FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent,
0, NewQuitTask()));
loop()->Run();
ASSERT_EQ(10, task_count);
EXPECT_EQ(1, injector()->processed_events());
// Tests that we process delayed tasks while waiting for new events.
injector()->Reset();
task_count = 0;
for (int i = 0; i < 10; ++i) {
loop()->PostDelayedTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 10*i);
}
// After all the previous tasks have executed, enqueue an event that will
// quit.
// This relies on the fact that delayed tasks are executed in delay order.
// That is verified in message_loop_unittest.cc.
loop()->PostDelayedTask(
FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent,
10, NewQuitTask()), 150);
loop()->Run();
ASSERT_EQ(10, task_count);
EXPECT_EQ(1, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) {
// Tests that we process events while waiting for work.
// The event queue is empty at first.
for (int i = 0; i < 10; ++i) {
injector()->AddEvent(0, NULL);
}
// After all the events have been processed, post a task that will check that
// the events have been processed (note: the task executes after the event
// that posted it has been handled, so we expect 11 at that point).
Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 11);
Task* posted_task = NewRunnableFunction(PostMessageLoopTask,
FROM_HERE, check_task);
injector()->AddEvent(10, posted_task);
// And then quit (relies on the condition tested by TestEventTaskInterleave).
injector()->AddEvent(10, NewQuitTask());
loop()->Run();
EXPECT_EQ(12, injector()->processed_events());
}
namespace {
// This class is a helper for the concurrent events / posted tasks test below.
// It will quit the main loop once enough tasks and events have been processed,
// while making sure there is always work to do and events in the queue.
class ConcurrentHelper : public base::RefCounted<ConcurrentHelper> {
public:
explicit ConcurrentHelper(EventInjector* injector)
: injector_(injector),
event_count_(kStartingEventCount),
task_count_(kStartingTaskCount) {
}
void FromTask() {
if (task_count_ > 0) {
--task_count_;
}
if (task_count_ == 0 && event_count_ == 0) {
MessageLoop::current()->Quit();
} else {
MessageLoop::current()->PostTask(
FROM_HERE, NewRunnableMethod(this, &ConcurrentHelper::FromTask));
}
}
void FromEvent() {
if (event_count_ > 0) {
--event_count_;
}
if (task_count_ == 0 && event_count_ == 0) {
MessageLoop::current()->Quit();
} else {
injector_->AddEvent(
0, NewRunnableMethod(this, &ConcurrentHelper::FromEvent));
}
}
int event_count() const { return event_count_; }
int task_count() const { return task_count_; }
private:
friend class base::RefCounted<ConcurrentHelper>;
~ConcurrentHelper() {}
static const int kStartingEventCount = 20;
static const int kStartingTaskCount = 20;
EventInjector* injector_;
int event_count_;
int task_count_;
};
} // namespace
TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) {
// Tests that posted tasks don't starve events, nor the opposite.
// We use the helper class above. We keep both event and posted task queues
// full, the helper verifies that both tasks and events get processed.
// If that is not the case, either event_count_ or task_count_ will not get
// to 0, and MessageLoop::Quit() will never be called.
scoped_refptr<ConcurrentHelper> helper = new ConcurrentHelper(injector());
// Add 2 events to the queue to make sure it is always full (when we remove
// the event before processing it).
injector()->AddEvent(
0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent));
injector()->AddEvent(
0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent));
// Similarly post 2 tasks.
loop()->PostTask(
FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask));
loop()->PostTask(
FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask));
loop()->Run();
EXPECT_EQ(0, helper->event_count());
EXPECT_EQ(0, helper->task_count());
}
namespace {
void AddEventsAndDrainGLib(EventInjector* injector) {
// Add a couple of dummy events
injector->AddEvent(0, NULL);
injector->AddEvent(0, NULL);
// Then add an event that will quit the main loop.
injector->AddEvent(0, NewQuitTask());
// Post a couple of dummy tasks
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
// Drain the events
while (g_main_context_pending(NULL)) {
g_main_context_iteration(NULL, FALSE);
}
}
} // namespace
TEST_F(MessagePumpGLibTest, TestDrainingGLib) {
// Tests that draining events using GLib works.
loop()->PostTask(
FROM_HERE, NewRunnableFunction(AddEventsAndDrainGLib, injector()));
loop()->Run();
EXPECT_EQ(3, injector()->processed_events());
}
namespace {
void AddEventsAndDrainGtk(EventInjector* injector) {
// Add a couple of dummy events
injector->AddEvent(0, NULL);
injector->AddEvent(0, NULL);
// Then add an event that will quit the main loop.
injector->AddEvent(0, NewQuitTask());
// Post a couple of dummy tasks
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
// Drain the events
while (gtk_events_pending()) {
gtk_main_iteration();
}
}
} // namespace
TEST_F(MessagePumpGLibTest, TestDrainingGtk) {
// Tests that draining events using Gtk works.
loop()->PostTask(
FROM_HERE, NewRunnableFunction(AddEventsAndDrainGtk, injector()));
loop()->Run();
EXPECT_EQ(3, injector()->processed_events());
}
namespace {
// Helper class that lets us run the GLib message loop.
class GLibLoopRunner : public base::RefCounted<GLibLoopRunner> {
public:
GLibLoopRunner() : quit_(false) { }
void RunGLib() {
while (!quit_) {
g_main_context_iteration(NULL, TRUE);
}
}
void RunGtk() {
while (!quit_) {
gtk_main_iteration();
}
}
void Quit() {
quit_ = true;
}
void Reset() {
quit_ = false;
}
private:
friend class base::RefCounted<GLibLoopRunner>;
~GLibLoopRunner() {}
bool quit_;
};
void TestGLibLoopInternal(EventInjector* injector) {
// Allow tasks to be processed from 'native' event loops.
MessageLoop::current()->SetNestableTasksAllowed(true);
scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
int task_count = 0;
// Add a couple of dummy events
injector->AddEvent(0, NULL);
injector->AddEvent(0, NULL);
// Post a couple of dummy tasks
MessageLoop::current()->PostTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
MessageLoop::current()->PostTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
// Delayed events
injector->AddEvent(10, NULL);
injector->AddEvent(10, NULL);
// Delayed work
MessageLoop::current()->PostDelayedTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30);
MessageLoop::current()->PostDelayedTask(
FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40);
// Run a nested, straight GLib message loop.
runner->RunGLib();
ASSERT_EQ(3, task_count);
EXPECT_EQ(4, injector->processed_events());
MessageLoop::current()->Quit();
}
void TestGtkLoopInternal(EventInjector* injector) {
// Allow tasks to be processed from 'native' event loops.
MessageLoop::current()->SetNestableTasksAllowed(true);
scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
int task_count = 0;
// Add a couple of dummy events
injector->AddEvent(0, NULL);
injector->AddEvent(0, NULL);
// Post a couple of dummy tasks
MessageLoop::current()->PostTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
MessageLoop::current()->PostTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
// Delayed events
injector->AddEvent(10, NULL);
injector->AddEvent(10, NULL);
// Delayed work
MessageLoop::current()->PostDelayedTask(
FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30);
MessageLoop::current()->PostDelayedTask(
FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40);
// Run a nested, straight Gtk message loop.
runner->RunGtk();
ASSERT_EQ(3, task_count);
EXPECT_EQ(4, injector->processed_events());
MessageLoop::current()->Quit();
}
} // namespace
TEST_F(MessagePumpGLibTest, TestGLibLoop) {
// Tests that events and posted tasks are correctly exectuted if the message
// loop is not run by MessageLoop::Run() but by a straight GLib loop.
// Note that in this case we don't make strong guarantees about niceness
// between events and posted tasks.
loop()->PostTask(FROM_HERE,
NewRunnableFunction(TestGLibLoopInternal, injector()));
loop()->Run();
}
TEST_F(MessagePumpGLibTest, TestGtkLoop) {
// Tests that events and posted tasks are correctly exectuted if the message
// loop is not run by MessageLoop::Run() but by a straight Gtk loop.
// Note that in this case we don't make strong guarantees about niceness
// between events and posted tasks.
loop()->PostTask(FROM_HERE,
NewRunnableFunction(TestGtkLoopInternal, injector()));
loop()->Run();
}