// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/waitable_event.h"
#include "base/condition_variable.h"
#include "base/lock.h"
#include "base/message_loop.h"
// -----------------------------------------------------------------------------
// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
// support cross-process events (where one process can signal an event which
// others are waiting on). Because of this, we can avoid having one thread per
// listener in several cases.
//
// The WaitableEvent maintains a list of waiters, protected by a lock. Each
// waiter is either an async wait, in which case we have a Task and the
// MessageLoop to run it on, or a blocking wait, in which case we have the
// condition variable to signal.
//
// Waiting involves grabbing the lock and adding oneself to the wait list. Async
// waits can be canceled, which means grabbing the lock and removing oneself
// from the list.
//
// Waiting on multiple events is handled by adding a single, synchronous wait to
// the wait-list of many events. An event passes a pointer to itself when
// firing a waiter and so we can store that pointer to find out which event
// triggered.
// -----------------------------------------------------------------------------
namespace base {
// -----------------------------------------------------------------------------
// This is just an abstract base class for waking the two types of waiters
// -----------------------------------------------------------------------------
WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
: kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
}
WaitableEvent::~WaitableEvent() {
}
void WaitableEvent::Reset() {
AutoLock locked(kernel_->lock_);
kernel_->signaled_ = false;
}
void WaitableEvent::Signal() {
AutoLock locked(kernel_->lock_);
if (kernel_->signaled_)
return;
if (kernel_->manual_reset_) {
SignalAll();
kernel_->signaled_ = true;
} else {
// In the case of auto reset, if no waiters were woken, we remain
// signaled.
if (!SignalOne())
kernel_->signaled_ = true;
}
}
bool WaitableEvent::IsSignaled() {
AutoLock locked(kernel_->lock_);
const bool result = kernel_->signaled_;
if (result && !kernel_->manual_reset_)
kernel_->signaled_ = false;
return result;
}
// -----------------------------------------------------------------------------
// Synchronous waits
// -----------------------------------------------------------------------------
// This is a synchronous waiter. The thread is waiting on the given condition
// variable and the fired flag in this object.
// -----------------------------------------------------------------------------
class SyncWaiter : public WaitableEvent::Waiter {
public:
SyncWaiter()
: fired_(false),
signaling_event_(NULL),
lock_(),
cv_(&lock_) {
}
bool Fire(WaitableEvent* signaling_event) {
AutoLock locked(lock_);
if (fired_)
return false;
fired_ = true;
signaling_event_ = signaling_event;
cv_.Broadcast();
// Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
// the blocking thread's stack. There is no |delete this;| in Fire. The
// SyncWaiter object is destroyed when it goes out of scope.
return true;
}
WaitableEvent* signaling_event() const {
return signaling_event_;
}
// ---------------------------------------------------------------------------
// These waiters are always stack allocated and don't delete themselves. Thus
// there's no problem and the ABA tag is the same as the object pointer.
// ---------------------------------------------------------------------------
bool Compare(void* tag) {
return this == tag;
}
// ---------------------------------------------------------------------------
// Called with lock held.
// ---------------------------------------------------------------------------
bool fired() const {
return fired_;
}
// ---------------------------------------------------------------------------
// During a TimedWait, we need a way to make sure that an auto-reset
// WaitableEvent doesn't think that this event has been signaled between
// unlocking it and removing it from the wait-list. Called with lock held.
// ---------------------------------------------------------------------------
void Disable() {
fired_ = true;
}
Lock* lock() {
return &lock_;
}
ConditionVariable* cv() {
return &cv_;
}
private:
bool fired_;
WaitableEvent* signaling_event_; // The WaitableEvent which woke us
Lock lock_;
ConditionVariable cv_;
};
bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
const Time end_time(Time::Now() + max_time);
const bool finite_time = max_time.ToInternalValue() >= 0;
kernel_->lock_.Acquire();
if (kernel_->signaled_) {
if (!kernel_->manual_reset_) {
// In this case we were signaled when we had no waiters. Now that
// someone has waited upon us, we can automatically reset.
kernel_->signaled_ = false;
}
kernel_->lock_.Release();
return true;
}
SyncWaiter sw;
sw.lock()->Acquire();
Enqueue(&sw);
kernel_->lock_.Release();
// We are violating locking order here by holding the SyncWaiter lock but not
// the WaitableEvent lock. However, this is safe because we don't lock @lock_
// again before unlocking it.
for (;;) {
const Time current_time(Time::Now());
if (sw.fired() || (finite_time && current_time >= end_time)) {
const bool return_value = sw.fired();
// We can't acquire @lock_ before releasing the SyncWaiter lock (because
// of locking order), however, in between the two a signal could be fired
// and @sw would accept it, however we will still return false, so the
// signal would be lost on an auto-reset WaitableEvent. Thus we call
// Disable which makes sw::Fire return false.
sw.Disable();
sw.lock()->Release();
kernel_->lock_.Acquire();
kernel_->Dequeue(&sw, &sw);
kernel_->lock_.Release();
return return_value;
}
if (finite_time) {
const TimeDelta max_wait(end_time - current_time);
sw.cv()->TimedWait(max_wait);
} else {
sw.cv()->Wait();
}
}
}
bool WaitableEvent::Wait() {
return TimedWait(TimeDelta::FromSeconds(-1));
}
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// Synchronous waiting on multiple objects.
static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
const std::pair<WaitableEvent*, unsigned> &b) {
return a.first < b.first;
}
// static
size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
size_t count) {
DCHECK(count) << "Cannot wait on no events";
// We need to acquire the locks in a globally consistent order. Thus we sort
// the array of waitables by address. We actually sort a pairs so that we can
// map back to the original index values later.
std::vector<std::pair<WaitableEvent*, size_t> > waitables;
waitables.reserve(count);
for (size_t i = 0; i < count; ++i)
waitables.push_back(std::make_pair(raw_waitables[i], i));
DCHECK_EQ(count, waitables.size());
sort(waitables.begin(), waitables.end(), cmp_fst_addr);
// The set of waitables must be distinct. Since we have just sorted by
// address, we can check this cheaply by comparing pairs of consecutive
// elements.
for (size_t i = 0; i < waitables.size() - 1; ++i) {
DCHECK(waitables[i].first != waitables[i+1].first);
}
SyncWaiter sw;
const size_t r = EnqueueMany(&waitables[0], count, &sw);
if (r) {
// One of the events is already signaled. The SyncWaiter has not been
// enqueued anywhere. EnqueueMany returns the count of remaining waitables
// when the signaled one was seen, so the index of the signaled event is
// @count - @r.
return waitables[count - r].second;
}
// At this point, we hold the locks on all the WaitableEvents and we have
// enqueued our waiter in them all.
sw.lock()->Acquire();
// Release the WaitableEvent locks in the reverse order
for (size_t i = 0; i < count; ++i) {
waitables[count - (1 + i)].first->kernel_->lock_.Release();
}
for (;;) {
if (sw.fired())
break;
sw.cv()->Wait();
}
sw.lock()->Release();
// The address of the WaitableEvent which fired is stored in the SyncWaiter.
WaitableEvent *const signaled_event = sw.signaling_event();
// This will store the index of the raw_waitables which fired.
size_t signaled_index = 0;
// Take the locks of each WaitableEvent in turn (except the signaled one) and
// remove our SyncWaiter from the wait-list
for (size_t i = 0; i < count; ++i) {
if (raw_waitables[i] != signaled_event) {
raw_waitables[i]->kernel_->lock_.Acquire();
// There's no possible ABA issue with the address of the SyncWaiter here
// because it lives on the stack. Thus the tag value is just the pointer
// value again.
raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
raw_waitables[i]->kernel_->lock_.Release();
} else {
signaled_index = i;
}
}
return signaled_index;
}
// -----------------------------------------------------------------------------
// If return value == 0:
// The locks of the WaitableEvents have been taken in order and the Waiter has
// been enqueued in the wait-list of each. None of the WaitableEvents are
// currently signaled
// else:
// None of the WaitableEvent locks are held. The Waiter has not been enqueued
// in any of them and the return value is the index of the first WaitableEvent
// which was signaled, from the end of the array.
// -----------------------------------------------------------------------------
// static
size_t WaitableEvent::EnqueueMany
(std::pair<WaitableEvent*, size_t>* waitables,
size_t count, Waiter* waiter) {
if (!count)
return 0;
waitables[0].first->kernel_->lock_.Acquire();
if (waitables[0].first->kernel_->signaled_) {
if (!waitables[0].first->kernel_->manual_reset_)
waitables[0].first->kernel_->signaled_ = false;
waitables[0].first->kernel_->lock_.Release();
return count;
}
const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
if (r) {
waitables[0].first->kernel_->lock_.Release();
} else {
waitables[0].first->Enqueue(waiter);
}
return r;
}
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// Private functions...
// -----------------------------------------------------------------------------
// Wake all waiting waiters. Called with lock held.
// -----------------------------------------------------------------------------
bool WaitableEvent::SignalAll() {
bool signaled_at_least_one = false;
for (std::list<Waiter*>::iterator
i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
if ((*i)->Fire(this))
signaled_at_least_one = true;
}
kernel_->waiters_.clear();
return signaled_at_least_one;
}
// ---------------------------------------------------------------------------
// Try to wake a single waiter. Return true if one was woken. Called with lock
// held.
// ---------------------------------------------------------------------------
bool WaitableEvent::SignalOne() {
for (;;) {
if (kernel_->waiters_.empty())
return false;
const bool r = (*kernel_->waiters_.begin())->Fire(this);
kernel_->waiters_.pop_front();
if (r)
return true;
}
}
// -----------------------------------------------------------------------------
// Add a waiter to the list of those waiting. Called with lock held.
// -----------------------------------------------------------------------------
void WaitableEvent::Enqueue(Waiter* waiter) {
kernel_->waiters_.push_back(waiter);
}
// -----------------------------------------------------------------------------
// Remove a waiter from the list of those waiting. Return true if the waiter was
// actually removed. Called with lock held.
// -----------------------------------------------------------------------------
bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
for (std::list<Waiter*>::iterator
i = waiters_.begin(); i != waiters_.end(); ++i) {
if (*i == waiter && (*i)->Compare(tag)) {
waiters_.erase(i);
return true;
}
}
return false;
}
// -----------------------------------------------------------------------------
} // namespace base