// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/http/http_network_transaction.h"
#include "base/format_macros.h"
#include "base/scoped_ptr.h"
#include "base/compiler_specific.h"
#include "base/field_trial.h"
#include "base/histogram.h"
#include "base/stats_counters.h"
#include "base/string_util.h"
#include "base/trace_event.h"
#include "build/build_config.h"
#include "net/base/connection_type_histograms.h"
#include "net/base/io_buffer.h"
#include "net/base/load_flags.h"
#include "net/base/net_errors.h"
#include "net/base/net_util.h"
#include "net/base/ssl_cert_request_info.h"
#include "net/base/upload_data_stream.h"
#include "net/flip/flip_session.h"
#include "net/flip/flip_session_pool.h"
#include "net/flip/flip_stream.h"
#include "net/http/http_auth.h"
#include "net/http/http_auth_handler.h"
#include "net/http/http_basic_stream.h"
#include "net/http/http_chunked_decoder.h"
#include "net/http/http_network_session.h"
#include "net/http/http_request_info.h"
#include "net/http/http_response_headers.h"
#include "net/http/http_response_info.h"
#include "net/http/http_util.h"
#include "net/socket/client_socket_factory.h"
#include "net/socket/socks5_client_socket.h"
#include "net/socket/socks_client_socket.h"
#include "net/socket/ssl_client_socket.h"
using base::Time;
namespace net {
namespace {
void BuildRequestHeaders(const HttpRequestInfo* request_info,
const std::string& authorization_headers,
const UploadDataStream* upload_data_stream,
bool using_proxy,
std::string* request_headers) {
const std::string path = using_proxy ?
HttpUtil::SpecForRequest(request_info->url) :
HttpUtil::PathForRequest(request_info->url);
*request_headers =
StringPrintf("%s %s HTTP/1.1\r\nHost: %s\r\n",
request_info->method.c_str(), path.c_str(),
GetHostAndOptionalPort(request_info->url).c_str());
// For compat with HTTP/1.0 servers and proxies:
if (using_proxy)
*request_headers += "Proxy-";
*request_headers += "Connection: keep-alive\r\n";
if (!request_info->user_agent.empty()) {
StringAppendF(request_headers, "User-Agent: %s\r\n",
request_info->user_agent.c_str());
}
// Our consumer should have made sure that this is a safe referrer. See for
// instance WebCore::FrameLoader::HideReferrer.
if (request_info->referrer.is_valid())
StringAppendF(request_headers, "Referer: %s\r\n",
request_info->referrer.spec().c_str());
// Add a content length header?
if (upload_data_stream) {
StringAppendF(request_headers, "Content-Length: %" PRIu64 "\r\n",
upload_data_stream->size());
} else if (request_info->method == "POST" || request_info->method == "PUT" ||
request_info->method == "HEAD") {
// An empty POST/PUT request still needs a content length. As for HEAD,
// IE and Safari also add a content length header. Presumably it is to
// support sending a HEAD request to an URL that only expects to be sent a
// POST or some other method that normally would have a message body.
*request_headers += "Content-Length: 0\r\n";
}
// Honor load flags that impact proxy caches.
if (request_info->load_flags & LOAD_BYPASS_CACHE) {
*request_headers += "Pragma: no-cache\r\nCache-Control: no-cache\r\n";
} else if (request_info->load_flags & LOAD_VALIDATE_CACHE) {
*request_headers += "Cache-Control: max-age=0\r\n";
}
if (!authorization_headers.empty()) {
*request_headers += authorization_headers;
}
// TODO(darin): Need to prune out duplicate headers.
*request_headers += request_info->extra_headers;
*request_headers += "\r\n";
}
// The HTTP CONNECT method for establishing a tunnel connection is documented
// in draft-luotonen-web-proxy-tunneling-01.txt and RFC 2817, Sections 5.2 and
// 5.3.
void BuildTunnelRequest(const HttpRequestInfo* request_info,
const std::string& authorization_headers,
std::string* request_headers) {
// RFC 2616 Section 9 says the Host request-header field MUST accompany all
// HTTP/1.1 requests. Add "Proxy-Connection: keep-alive" for compat with
// HTTP/1.0 proxies such as Squid (required for NTLM authentication).
*request_headers = StringPrintf(
"CONNECT %s HTTP/1.1\r\nHost: %s\r\nProxy-Connection: keep-alive\r\n",
GetHostAndPort(request_info->url).c_str(),
GetHostAndOptionalPort(request_info->url).c_str());
if (!request_info->user_agent.empty())
StringAppendF(request_headers, "User-Agent: %s\r\n",
request_info->user_agent.c_str());
if (!authorization_headers.empty()) {
*request_headers += authorization_headers;
}
*request_headers += "\r\n";
}
} // namespace
//-----------------------------------------------------------------------------
std::string* HttpNetworkTransaction::g_next_protos = NULL;
HttpNetworkTransaction::HttpNetworkTransaction(HttpNetworkSession* session)
: pending_auth_target_(HttpAuth::AUTH_NONE),
ALLOW_THIS_IN_INITIALIZER_LIST(
io_callback_(this, &HttpNetworkTransaction::OnIOComplete)),
user_callback_(NULL),
session_(session),
request_(NULL),
pac_request_(NULL),
connection_(new ClientSocketHandle),
reused_socket_(false),
headers_valid_(false),
logged_response_time(false),
using_ssl_(false),
proxy_mode_(kDirectConnection),
establishing_tunnel_(false),
embedded_identity_used_(false),
read_buf_len_(0),
next_state_(STATE_NONE) {
session->ssl_config_service()->GetSSLConfig(&ssl_config_);
if (g_next_protos)
ssl_config_.next_protos = *g_next_protos;
}
// static
void HttpNetworkTransaction::SetNextProtos(const std::string& next_protos) {
delete g_next_protos;
g_next_protos = new std::string(next_protos);
}
int HttpNetworkTransaction::Start(const HttpRequestInfo* request_info,
CompletionCallback* callback,
LoadLog* load_log) {
SIMPLE_STATS_COUNTER("HttpNetworkTransaction.Count");
load_log_ = load_log;
request_ = request_info;
start_time_ = base::Time::Now();
next_state_ = STATE_RESOLVE_PROXY;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
int HttpNetworkTransaction::RestartIgnoringLastError(
CompletionCallback* callback) {
if (connection_->socket()->IsConnectedAndIdle()) {
next_state_ = STATE_SEND_REQUEST;
} else {
connection_->socket()->Disconnect();
connection_->Reset();
next_state_ = STATE_INIT_CONNECTION;
}
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
int HttpNetworkTransaction::RestartWithCertificate(
X509Certificate* client_cert,
CompletionCallback* callback) {
ssl_config_.client_cert = client_cert;
if (client_cert) {
session_->ssl_client_auth_cache()->Add(GetHostAndPort(request_->url),
client_cert);
}
ssl_config_.send_client_cert = true;
next_state_ = STATE_INIT_CONNECTION;
// Reset the other member variables.
// Note: this is necessary only with SSL renegotiation.
ResetStateForRestart();
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
int HttpNetworkTransaction::RestartWithAuth(
const std::wstring& username,
const std::wstring& password,
CompletionCallback* callback) {
HttpAuth::Target target = pending_auth_target_;
if (target == HttpAuth::AUTH_NONE) {
NOTREACHED();
return ERR_UNEXPECTED;
}
pending_auth_target_ = HttpAuth::AUTH_NONE;
DCHECK(auth_identity_[target].invalid ||
(username.empty() && password.empty()));
if (auth_identity_[target].invalid) {
// Update the username/password.
auth_identity_[target].source = HttpAuth::IDENT_SRC_EXTERNAL;
auth_identity_[target].invalid = false;
auth_identity_[target].username = username;
auth_identity_[target].password = password;
}
PrepareForAuthRestart(target);
DCHECK(user_callback_ == NULL);
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
void HttpNetworkTransaction::PrepareForAuthRestart(HttpAuth::Target target) {
DCHECK(HaveAuth(target));
DCHECK(auth_identity_[target].source != HttpAuth::IDENT_SRC_PATH_LOOKUP);
// Add the auth entry to the cache before restarting. We don't know whether
// the identity is valid yet, but if it is valid we want other transactions
// to know about it. If an entry for (origin, handler->realm()) already
// exists, we update it.
//
// If auth_identity_[target].source is HttpAuth::IDENT_SRC_NONE,
// auth_identity_[target] contains no identity because identity is not
// required yet.
//
// TODO(wtc): For NTLM_SSPI, we add the same auth entry to the cache in
// round 1 and round 2, which is redundant but correct. It would be nice
// to add an auth entry to the cache only once, preferrably in round 1.
// See http://crbug.com/21015.
bool has_auth_identity =
auth_identity_[target].source != HttpAuth::IDENT_SRC_NONE;
if (has_auth_identity) {
session_->auth_cache()->Add(AuthOrigin(target), auth_handler_[target],
auth_identity_[target].username, auth_identity_[target].password,
AuthPath(target));
}
bool keep_alive = false;
// Even if the server says the connection is keep-alive, we have to be
// able to find the end of each response in order to reuse the connection.
if (GetResponseHeaders()->IsKeepAlive() &&
http_stream_->CanFindEndOfResponse()) {
// If the response body hasn't been completely read, we need to drain
// it first.
if (!http_stream_->IsResponseBodyComplete()) {
next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART;
read_buf_ = new IOBuffer(kDrainBodyBufferSize); // A bit bucket.
read_buf_len_ = kDrainBodyBufferSize;
return;
}
keep_alive = true;
}
// We don't need to drain the response body, so we act as if we had drained
// the response body.
DidDrainBodyForAuthRestart(keep_alive);
}
void HttpNetworkTransaction::DidDrainBodyForAuthRestart(bool keep_alive) {
if (keep_alive && connection_->socket()->IsConnectedAndIdle()) {
// We should call connection_->set_idle_time(), but this doesn't occur
// often enough to be worth the trouble.
next_state_ = STATE_SEND_REQUEST;
connection_->set_is_reused(true);
reused_socket_ = true;
} else {
next_state_ = STATE_INIT_CONNECTION;
connection_->socket()->Disconnect();
connection_->Reset();
}
// Reset the other member variables.
ResetStateForRestart();
}
int HttpNetworkTransaction::Read(IOBuffer* buf, int buf_len,
CompletionCallback* callback) {
DCHECK(buf);
DCHECK_LT(0, buf_len);
State next_state = STATE_NONE;
// Are we using SPDY or HTTP?
if (spdy_stream_.get()) {
DCHECK(!http_stream_.get());
DCHECK(spdy_stream_->GetResponseInfo()->headers);
next_state = STATE_SPDY_READ_BODY;
} else {
scoped_refptr<HttpResponseHeaders> headers = GetResponseHeaders();
DCHECK(headers.get());
next_state = STATE_READ_BODY;
if (!connection_->is_initialized())
return 0; // connection_->has been reset. Treat like EOF.
if (establishing_tunnel_) {
// We're trying to read the body of the response but we're still trying
// to establish an SSL tunnel through the proxy. We can't read these
// bytes when establishing a tunnel because they might be controlled by
// an active network attacker. We don't worry about this for HTTP
// because an active network attacker can already control HTTP sessions.
// We reach this case when the user cancels a 407 proxy auth prompt.
// See http://crbug.com/8473.
DCHECK_EQ(407, headers->response_code());
LogBlockedTunnelResponse(headers->response_code());
return ERR_TUNNEL_CONNECTION_FAILED;
}
}
read_buf_ = buf;
read_buf_len_ = buf_len;
next_state_ = next_state;
int rv = DoLoop(OK);
if (rv == ERR_IO_PENDING)
user_callback_ = callback;
return rv;
}
const HttpResponseInfo* HttpNetworkTransaction::GetResponseInfo() const {
return ((headers_valid_ && response_.headers) || response_.ssl_info.cert ||
response_.cert_request_info) ? &response_ : NULL;
}
LoadState HttpNetworkTransaction::GetLoadState() const {
// TODO(wtc): Define a new LoadState value for the
// STATE_INIT_CONNECTION_COMPLETE state, which delays the HTTP request.
switch (next_state_) {
case STATE_RESOLVE_PROXY_COMPLETE:
return LOAD_STATE_RESOLVING_PROXY_FOR_URL;
case STATE_INIT_CONNECTION_COMPLETE:
return connection_->GetLoadState();
case STATE_SEND_REQUEST_COMPLETE:
return LOAD_STATE_SENDING_REQUEST;
case STATE_READ_HEADERS_COMPLETE:
return LOAD_STATE_WAITING_FOR_RESPONSE;
case STATE_READ_BODY_COMPLETE:
return LOAD_STATE_READING_RESPONSE;
default:
return LOAD_STATE_IDLE;
}
}
uint64 HttpNetworkTransaction::GetUploadProgress() const {
if (!http_stream_.get())
return 0;
return http_stream_->GetUploadProgress();
}
HttpNetworkTransaction::~HttpNetworkTransaction() {
// If we still have an open socket, then make sure to disconnect it so it
// won't call us back and we don't try to reuse it later on.
if (connection_.get() && connection_->is_initialized())
connection_->socket()->Disconnect();
if (pac_request_)
session_->proxy_service()->CancelPacRequest(pac_request_);
if (spdy_stream_.get())
spdy_stream_->Cancel();
}
void HttpNetworkTransaction::DoCallback(int rv) {
DCHECK(rv != ERR_IO_PENDING);
DCHECK(user_callback_);
// Since Run may result in Read being called, clear user_callback_ up front.
CompletionCallback* c = user_callback_;
user_callback_ = NULL;
c->Run(rv);
}
void HttpNetworkTransaction::OnIOComplete(int result) {
int rv = DoLoop(result);
if (rv != ERR_IO_PENDING)
DoCallback(rv);
}
int HttpNetworkTransaction::DoLoop(int result) {
DCHECK(next_state_ != STATE_NONE);
int rv = result;
do {
State state = next_state_;
next_state_ = STATE_NONE;
switch (state) {
case STATE_RESOLVE_PROXY:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.resolve_proxy", request_, request_->url.spec());
rv = DoResolveProxy();
break;
case STATE_RESOLVE_PROXY_COMPLETE:
rv = DoResolveProxyComplete(rv);
TRACE_EVENT_END("http.resolve_proxy", request_, request_->url.spec());
break;
case STATE_INIT_CONNECTION:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.init_conn", request_, request_->url.spec());
rv = DoInitConnection();
break;
case STATE_INIT_CONNECTION_COMPLETE:
rv = DoInitConnectionComplete(rv);
TRACE_EVENT_END("http.init_conn", request_, request_->url.spec());
break;
case STATE_SOCKS_CONNECT:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.socks_connect", request_, request_->url.spec());
rv = DoSOCKSConnect();
break;
case STATE_SOCKS_CONNECT_COMPLETE:
rv = DoSOCKSConnectComplete(rv);
TRACE_EVENT_END("http.socks_connect", request_, request_->url.spec());
break;
case STATE_SSL_CONNECT:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.ssl_connect", request_, request_->url.spec());
rv = DoSSLConnect();
break;
case STATE_SSL_CONNECT_COMPLETE:
rv = DoSSLConnectComplete(rv);
TRACE_EVENT_END("http.ssl_connect", request_, request_->url.spec());
break;
case STATE_SEND_REQUEST:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.send_request", request_, request_->url.spec());
LoadLog::BeginEvent(load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST);
rv = DoSendRequest();
break;
case STATE_SEND_REQUEST_COMPLETE:
rv = DoSendRequestComplete(rv);
TRACE_EVENT_END("http.send_request", request_, request_->url.spec());
LoadLog::EndEvent(load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST);
break;
case STATE_READ_HEADERS:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.read_headers", request_, request_->url.spec());
LoadLog::BeginEvent(load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_READ_HEADERS);
rv = DoReadHeaders();
break;
case STATE_READ_HEADERS_COMPLETE:
rv = DoReadHeadersComplete(rv);
TRACE_EVENT_END("http.read_headers", request_, request_->url.spec());
LoadLog::EndEvent(load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_READ_HEADERS);
break;
case STATE_READ_BODY:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.read_body", request_, request_->url.spec());
LoadLog::BeginEvent(load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_READ_BODY);
rv = DoReadBody();
break;
case STATE_READ_BODY_COMPLETE:
rv = DoReadBodyComplete(rv);
TRACE_EVENT_END("http.read_body", request_, request_->url.spec());
LoadLog::EndEvent(load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_READ_BODY);
break;
case STATE_DRAIN_BODY_FOR_AUTH_RESTART:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.drain_body_for_auth_restart",
request_, request_->url.spec());
LoadLog::BeginEvent(
load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_DRAIN_BODY_FOR_AUTH_RESTART);
rv = DoDrainBodyForAuthRestart();
break;
case STATE_DRAIN_BODY_FOR_AUTH_RESTART_COMPLETE:
rv = DoDrainBodyForAuthRestartComplete(rv);
TRACE_EVENT_END("http.drain_body_for_auth_restart",
request_, request_->url.spec());
LoadLog::EndEvent(
load_log_,
LoadLog::TYPE_HTTP_TRANSACTION_DRAIN_BODY_FOR_AUTH_RESTART);
break;
case STATE_SPDY_SEND_REQUEST:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.send_request", request_, request_->url.spec());
LoadLog::BeginEvent(load_log_,
LoadLog::TYPE_FLIP_TRANSACTION_SEND_REQUEST);
rv = DoSpdySendRequest();
break;
case STATE_SPDY_SEND_REQUEST_COMPLETE:
rv = DoSpdySendRequestComplete(rv);
TRACE_EVENT_END("http.send_request", request_, request_->url.spec());
LoadLog::EndEvent(load_log_,
LoadLog::TYPE_FLIP_TRANSACTION_SEND_REQUEST);
break;
case STATE_SPDY_READ_HEADERS:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.read_headers", request_, request_->url.spec());
LoadLog::BeginEvent(load_log_,
LoadLog::TYPE_FLIP_TRANSACTION_READ_HEADERS);
rv = DoSpdyReadHeaders();
break;
case STATE_SPDY_READ_HEADERS_COMPLETE:
rv = DoSpdyReadHeadersComplete(rv);
TRACE_EVENT_END("http.read_headers", request_, request_->url.spec());
LoadLog::EndEvent(load_log_,
LoadLog::TYPE_FLIP_TRANSACTION_READ_HEADERS);
break;
case STATE_SPDY_READ_BODY:
DCHECK_EQ(OK, rv);
TRACE_EVENT_BEGIN("http.read_body", request_, request_->url.spec());
LoadLog::BeginEvent(load_log_,
LoadLog::TYPE_FLIP_TRANSACTION_READ_BODY);
rv = DoSpdyReadBody();
break;
case STATE_SPDY_READ_BODY_COMPLETE:
rv = DoSpdyReadBodyComplete(rv);
TRACE_EVENT_END("http.read_body", request_, request_->url.spec());
LoadLog::EndEvent(load_log_,
LoadLog::TYPE_FLIP_TRANSACTION_READ_BODY);
break;
default:
NOTREACHED() << "bad state";
rv = ERR_FAILED;
break;
}
} while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE);
return rv;
}
int HttpNetworkTransaction::DoResolveProxy() {
DCHECK(!pac_request_);
next_state_ = STATE_RESOLVE_PROXY_COMPLETE;
if (request_->load_flags & LOAD_BYPASS_PROXY) {
proxy_info_.UseDirect();
return OK;
}
return session_->proxy_service()->ResolveProxy(
request_->url, &proxy_info_, &io_callback_, &pac_request_, load_log_);
}
int HttpNetworkTransaction::DoResolveProxyComplete(int result) {
pac_request_ = NULL;
if (result != OK) {
DLOG(ERROR) << "Failed to resolve proxy: " << result;
// Fall-back to direct when there were runtime errors in the PAC script,
// or some other failure with the settings.
proxy_info_.UseDirect();
}
// Remove unsupported proxies from the list.
proxy_info_.RemoveProxiesWithoutScheme(
ProxyServer::SCHEME_DIRECT | ProxyServer::SCHEME_HTTP |
ProxyServer::SCHEME_SOCKS4 | ProxyServer::SCHEME_SOCKS5);
// There are four possible outcomes of having run the ProxyService:
// (1) The ProxyService decided we should connect through a proxy.
// (2) The ProxyService decided we should direct-connect.
// (3) The ProxyService decided we should give up, as there are no more
// proxies to try (this is more likely to happen during
// ReconsiderProxyAfterError()).
// (4) The ProxyService failed (which can happen if the PAC script
// we were configured with threw a runtime exception).
//
// It is important that we fail the connection in case (3) rather than
// falling-back to a direct connection, since sending traffic through
// a proxy may be integral to the user's privacy/security model.
//
// For example if a user had configured traffic to go through the TOR
// anonymizing proxy to protect their privacy, it would be bad if we
// silently fell-back to direct connect if the proxy server were to
// become unreachable.
//
// In case (4) it is less obvious what the right thing to do is. On the
// one hand, for consistency it would be natural to hard-fail as well.
// However, both Firefox 3.5 and Internet Explorer 8 will silently fall-back
// to DIRECT in this case, so we will do the same for compatibility.
//
// For more information, see:
// http://www.chromium.org/developers/design-documents/proxy-settings-fallback
if (proxy_info_.is_empty()) {
// No proxies/direct to choose from. This happens when we don't support any
// of the proxies in the returned list.
return ERR_NO_SUPPORTED_PROXIES;
}
next_state_ = STATE_INIT_CONNECTION;
return OK;
}
int HttpNetworkTransaction::DoInitConnection() {
DCHECK(!connection_->is_initialized());
DCHECK(proxy_info_.proxy_server().is_valid());
next_state_ = STATE_INIT_CONNECTION_COMPLETE;
using_ssl_ = request_->url.SchemeIs("https");
if (proxy_info_.is_direct())
proxy_mode_ = kDirectConnection;
else if (proxy_info_.proxy_server().is_socks())
proxy_mode_ = kSOCKSProxy;
else if (using_ssl_)
proxy_mode_ = kHTTPProxyUsingTunnel;
else
proxy_mode_ = kHTTPProxy;
// Build the string used to uniquely identify connections of this type.
// Determine the host and port to connect to.
std::string connection_group;
std::string host;
int port;
if (proxy_mode_ != kDirectConnection) {
ProxyServer proxy_server = proxy_info_.proxy_server();
connection_group = "proxy/" + proxy_server.ToURI() + "/";
host = proxy_server.HostNoBrackets();
port = proxy_server.port();
} else {
host = request_->url.HostNoBrackets();
port = request_->url.EffectiveIntPort();
}
// Use the fixed testing ports if they've been provided.
if (using_ssl_) {
if (session_->fixed_https_port() != 0)
port = session_->fixed_https_port();
} else if (session_->fixed_http_port() != 0) {
port = session_->fixed_http_port();
}
// For a connection via HTTP proxy not using CONNECT, the connection
// is to the proxy server only. For all other cases
// (direct, HTTP proxy CONNECT, SOCKS), the connection is upto the
// url endpoint. Hence we append the url data into the connection_group.
if (proxy_mode_ != kHTTPProxy)
connection_group.append(request_->url.GetOrigin().spec());
DCHECK(!connection_group.empty());
HostResolver::RequestInfo resolve_info(host, port);
resolve_info.set_priority(request_->priority);
// The referrer is used by the DNS prefetch system to correlate resolutions
// with the page that triggered them. It doesn't impact the actual addresses
// that we resolve to.
resolve_info.set_referrer(request_->referrer);
// If the user is refreshing the page, bypass the host cache.
if (request_->load_flags & LOAD_BYPASS_CACHE ||
request_->load_flags & LOAD_DISABLE_CACHE) {
resolve_info.set_allow_cached_response(false);
}
// Check first if we have a flip session for this group. If so, then go
// straight to using that.
if (session_->flip_session_pool()->HasSession(resolve_info))
return OK;
int rv = connection_->Init(connection_group, resolve_info, request_->priority,
&io_callback_, session_->tcp_socket_pool(),
load_log_);
return rv;
}
int HttpNetworkTransaction::DoInitConnectionComplete(int result) {
if (result < 0) {
UpdateConnectionTypeHistograms(CONNECTION_HTTP, false);
return ReconsiderProxyAfterError(result);
}
DCHECK_EQ(OK, result);
// If we don't have an initialized connection, that means we have a flip
// connection waiting for us.
if (!connection_->is_initialized()) {
next_state_ = STATE_SPDY_SEND_REQUEST;
return OK;
}
LogTCPConnectedMetrics(*connection_);
// Set the reused_socket_ flag to indicate that we are using a keep-alive
// connection. This flag is used to handle errors that occur while we are
// trying to reuse a keep-alive connection.
reused_socket_ = connection_->is_reused();
if (reused_socket_) {
next_state_ = STATE_SEND_REQUEST;
} else {
// Now we have a TCP connected socket. Perform other connection setup as
// needed.
UpdateConnectionTypeHistograms(CONNECTION_HTTP, true);
if (proxy_mode_ == kSOCKSProxy)
next_state_ = STATE_SOCKS_CONNECT;
else if (using_ssl_ && proxy_mode_ == kDirectConnection) {
next_state_ = STATE_SSL_CONNECT;
} else {
next_state_ = STATE_SEND_REQUEST;
if (proxy_mode_ == kHTTPProxyUsingTunnel)
establishing_tunnel_ = true;
}
}
return OK;
}
int HttpNetworkTransaction::DoSOCKSConnect() {
DCHECK_EQ(kSOCKSProxy, proxy_mode_);
next_state_ = STATE_SOCKS_CONNECT_COMPLETE;
// Add a SOCKS connection on top of our existing transport socket.
ClientSocket* s = connection_->release_socket();
HostResolver::RequestInfo req_info(request_->url.HostNoBrackets(),
request_->url.EffectiveIntPort());
req_info.set_referrer(request_->referrer);
req_info.set_priority(request_->priority);
if (proxy_info_.proxy_server().scheme() == ProxyServer::SCHEME_SOCKS5)
s = new SOCKS5ClientSocket(s, req_info);
else
s = new SOCKSClientSocket(s, req_info, session_->host_resolver());
connection_->set_socket(s);
return connection_->socket()->Connect(&io_callback_, load_log_);
}
int HttpNetworkTransaction::DoSOCKSConnectComplete(int result) {
DCHECK_EQ(kSOCKSProxy, proxy_mode_);
if (result == OK) {
if (using_ssl_) {
next_state_ = STATE_SSL_CONNECT;
} else {
next_state_ = STATE_SEND_REQUEST;
}
} else {
result = ReconsiderProxyAfterError(result);
}
return result;
}
int HttpNetworkTransaction::DoSSLConnect() {
next_state_ = STATE_SSL_CONNECT_COMPLETE;
if (request_->load_flags & LOAD_VERIFY_EV_CERT)
ssl_config_.verify_ev_cert = true;
ssl_connect_start_time_ = base::TimeTicks::Now();
// Add a SSL socket on top of our existing transport socket.
ClientSocket* s = connection_->release_socket();
s = session_->socket_factory()->CreateSSLClientSocket(
s, request_->url.HostNoBrackets(), ssl_config_);
connection_->set_socket(s);
return connection_->socket()->Connect(&io_callback_, load_log_);
}
int HttpNetworkTransaction::DoSSLConnectComplete(int result) {
SSLClientSocket* ssl_socket =
reinterpret_cast<SSLClientSocket*>(connection_->socket());
SSLClientSocket::NextProtoStatus status =
SSLClientSocket::kNextProtoUnsupported;
std::string proto;
// GetNextProto will fail and and trigger a NOTREACHED if we pass in a socket
// that hasn't had SSL_ImportFD called on it. If we get a certificate error
// here, then we know that we called SSL_ImportFD.
if (result == OK || IsCertificateError(result))
status = ssl_socket->GetNextProto(&proto);
static const char kSpdyProto[] = "spdy";
const bool use_spdy = (status == SSLClientSocket::kNextProtoNegotiated &&
proto == kSpdyProto);
if (IsCertificateError(result)) {
if (use_spdy) {
// TODO(agl/willchan/wtc): We currently ignore certificate errors for
// spdy but we shouldn't. http://crbug.com/32020
result = OK;
} else {
result = HandleCertificateError(result);
}
}
if (result == OK) {
DCHECK(ssl_connect_start_time_ != base::TimeTicks());
base::TimeDelta connect_duration =
base::TimeTicks::Now() - ssl_connect_start_time_;
if (use_spdy) {
UMA_HISTOGRAM_CUSTOM_TIMES("Net.SpdyConnectionLatency",
connect_duration,
base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(10),
100);
UpdateConnectionTypeHistograms(CONNECTION_SPDY, true);
next_state_ = STATE_SPDY_SEND_REQUEST;
} else {
UMA_HISTOGRAM_CUSTOM_TIMES("Net.SSL_Connection_Latency",
connect_duration,
base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(10),
100);
next_state_ = STATE_SEND_REQUEST;
}
} else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) {
result = HandleCertificateRequest(result);
} else {
result = HandleSSLHandshakeError(result);
}
return result;
}
int HttpNetworkTransaction::DoSendRequest() {
next_state_ = STATE_SEND_REQUEST_COMPLETE;
UploadDataStream* request_body = NULL;
if (!establishing_tunnel_ && request_->upload_data)
request_body = new UploadDataStream(request_->upload_data);
// This is constructed lazily (instead of within our Start method), so that
// we have proxy info available.
if (request_headers_.empty()) {
// Figure out if we can/should add Proxy-Authentication & Authentication
// headers.
bool have_proxy_auth =
ShouldApplyProxyAuth() &&
(HaveAuth(HttpAuth::AUTH_PROXY) ||
SelectPreemptiveAuth(HttpAuth::AUTH_PROXY));
bool have_server_auth =
ShouldApplyServerAuth() &&
(HaveAuth(HttpAuth::AUTH_SERVER) ||
SelectPreemptiveAuth(HttpAuth::AUTH_SERVER));
std::string authorization_headers;
// TODO(wtc): If BuildAuthorizationHeader fails (returns an authorization
// header with no credentials), we should return an error to prevent
// entering an infinite auth restart loop. See http://crbug.com/21050.
if (have_proxy_auth)
authorization_headers.append(
BuildAuthorizationHeader(HttpAuth::AUTH_PROXY));
if (have_server_auth)
authorization_headers.append(
BuildAuthorizationHeader(HttpAuth::AUTH_SERVER));
if (establishing_tunnel_) {
BuildTunnelRequest(request_, authorization_headers, &request_headers_);
} else {
BuildRequestHeaders(request_, authorization_headers, request_body,
proxy_mode_ == kHTTPProxy, &request_headers_);
}
}
headers_valid_ = false;
http_stream_.reset(new HttpBasicStream(connection_.get(), load_log_));
return http_stream_->SendRequest(request_, request_headers_,
request_body, &response_, &io_callback_);
}
int HttpNetworkTransaction::DoSendRequestComplete(int result) {
if (result < 0)
return HandleIOError(result);
next_state_ = STATE_READ_HEADERS;
return OK;
}
int HttpNetworkTransaction::DoReadHeaders() {
next_state_ = STATE_READ_HEADERS_COMPLETE;
return http_stream_->ReadResponseHeaders(&io_callback_);
}
int HttpNetworkTransaction::HandleConnectionClosedBeforeEndOfHeaders() {
if (establishing_tunnel_) {
// The connection was closed before the tunnel could be established.
return ERR_TUNNEL_CONNECTION_FAILED;
}
if (!response_.headers) {
// The connection was closed before any data was sent. Likely an error
// rather than empty HTTP/0.9 response.
return ERR_EMPTY_RESPONSE;
}
return OK;
}
int HttpNetworkTransaction::DoReadHeadersComplete(int result) {
// We can get a certificate error or ERR_SSL_CLIENT_AUTH_CERT_NEEDED here
// due to SSL renegotiation.
if (using_ssl_) {
if (IsCertificateError(result)) {
// We don't handle a certificate error during SSL renegotiation, so we
// have to return an error that's not in the certificate error range
// (-2xx).
LOG(ERROR) << "Got a server certificate with error " << result
<< " during SSL renegotiation";
result = ERR_CERT_ERROR_IN_SSL_RENEGOTIATION;
} else if (result == ERR_SSL_CLIENT_AUTH_CERT_NEEDED) {
result = HandleCertificateRequest(result);
if (result == OK)
return result;
}
}
if (result < 0 && result != ERR_CONNECTION_CLOSED)
return HandleIOError(result);
if (result == ERR_CONNECTION_CLOSED && ShouldResendRequest(result)) {
ResetConnectionAndRequestForResend();
return OK;
}
// After we call RestartWithAuth a new response_time will be recorded, and
// we need to be cautious about incorrectly logging the duration across the
// authentication activity.
if (!logged_response_time) {
LogTransactionConnectedMetrics();
logged_response_time = true;
}
if (result == ERR_CONNECTION_CLOSED) {
int rv = HandleConnectionClosedBeforeEndOfHeaders();
if (rv != OK)
return rv;
// TODO(wtc): Traditionally this code has returned 0 when reading a closed
// socket. That is partially corrected in classes that we call, but
// callers need to be updated.
result = 0;
}
if (response_.headers->GetParsedHttpVersion() < HttpVersion(1, 0)) {
// Require the "HTTP/1.x" status line for SSL CONNECT.
if (establishing_tunnel_)
return ERR_TUNNEL_CONNECTION_FAILED;
// HTTP/0.9 doesn't support the PUT method, so lack of response headers
// indicates a buggy server. See:
// https://bugzilla.mozilla.org/show_bug.cgi?id=193921
if (request_->method == "PUT")
return ERR_METHOD_NOT_SUPPORTED;
}
if (establishing_tunnel_) {
switch (response_.headers->response_code()) {
case 200: // OK
if (http_stream_->IsMoreDataBuffered()) {
// The proxy sent extraneous data after the headers.
return ERR_TUNNEL_CONNECTION_FAILED;
}
next_state_ = STATE_SSL_CONNECT;
// Reset for the real request and response headers.
request_headers_.clear();
http_stream_.reset(new HttpBasicStream(connection_.get(), load_log_));
headers_valid_ = false;
establishing_tunnel_ = false;
return OK;
// We aren't able to CONNECT to the remote host through the proxy. We
// need to be very suspicious about the response because an active network
// attacker can force us into this state by masquerading as the proxy.
// The only safe thing to do here is to fail the connection because our
// client is expecting an SSL protected response.
// See http://crbug.com/7338.
case 407: // Proxy Authentication Required
// We need this status code to allow proxy authentication. Our
// authentication code is smart enough to avoid being tricked by an
// active network attacker.
break;
default:
// For all other status codes, we conservatively fail the CONNECT
// request.
// We lose something by doing this. We have seen proxy 403, 404, and
// 501 response bodies that contain a useful error message. For
// example, Squid uses a 404 response to report the DNS error: "The
// domain name does not exist."
LogBlockedTunnelResponse(response_.headers->response_code());
return ERR_TUNNEL_CONNECTION_FAILED;
}
}
// Check for an intermediate 100 Continue response. An origin server is
// allowed to send this response even if we didn't ask for it, so we just
// need to skip over it.
// We treat any other 1xx in this same way (although in practice getting
// a 1xx that isn't a 100 is rare).
if (response_.headers->response_code() / 100 == 1) {
response_.headers = new HttpResponseHeaders("");
next_state_ = STATE_READ_HEADERS;
return OK;
}
int rv = HandleAuthChallenge();
if (rv != OK)
return rv;
if (using_ssl_ && !establishing_tunnel_) {
SSLClientSocket* ssl_socket =
reinterpret_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLInfo(&response_.ssl_info);
}
headers_valid_ = true;
return OK;
}
int HttpNetworkTransaction::DoReadBody() {
DCHECK(read_buf_);
DCHECK_GT(read_buf_len_, 0);
DCHECK(connection_->is_initialized());
next_state_ = STATE_READ_BODY_COMPLETE;
return http_stream_->ReadResponseBody(read_buf_, read_buf_len_,
&io_callback_);
}
int HttpNetworkTransaction::DoReadBodyComplete(int result) {
// We are done with the Read call.
DCHECK(!establishing_tunnel_) <<
"We should never read a response body of a tunnel.";
bool done = false, keep_alive = false;
if (result < 0) {
// Error or closed connection while reading the socket.
done = true;
// TODO(wtc): Traditionally this code has returned 0 when reading a closed
// socket. That is partially corrected in classes that we call, but
// callers need to be updated.
if (result == ERR_CONNECTION_CLOSED)
result = 0;
} else if (http_stream_->IsResponseBodyComplete()) {
done = true;
keep_alive = GetResponseHeaders()->IsKeepAlive();
}
// Clean up connection_->if we are done.
if (done) {
LogTransactionMetrics();
if (!keep_alive)
connection_->socket()->Disconnect();
connection_->Reset();
// The next Read call will return 0 (EOF).
}
// Clear these to avoid leaving around old state.
read_buf_ = NULL;
read_buf_len_ = 0;
return result;
}
int HttpNetworkTransaction::DoDrainBodyForAuthRestart() {
// This method differs from DoReadBody only in the next_state_. So we just
// call DoReadBody and override the next_state_. Perhaps there is a more
// elegant way for these two methods to share code.
int rv = DoReadBody();
DCHECK(next_state_ == STATE_READ_BODY_COMPLETE);
next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART_COMPLETE;
return rv;
}
// TODO(wtc): This method and the DoReadBodyComplete method are almost
// the same. Figure out a good way for these two methods to share code.
int HttpNetworkTransaction::DoDrainBodyForAuthRestartComplete(int result) {
// keep_alive defaults to true because the very reason we're draining the
// response body is to reuse the connection for auth restart.
bool done = false, keep_alive = true;
if (result < 0) {
// Error or closed connection while reading the socket.
done = true;
keep_alive = false;
} else if (http_stream_->IsResponseBodyComplete()) {
done = true;
}
if (done) {
DidDrainBodyForAuthRestart(keep_alive);
} else {
// Keep draining.
next_state_ = STATE_DRAIN_BODY_FOR_AUTH_RESTART;
}
return OK;
}
int HttpNetworkTransaction::DoSpdySendRequest() {
next_state_ = STATE_SPDY_SEND_REQUEST_COMPLETE;
CHECK(!spdy_stream_.get());
// First we get a SPDY session. Theoretically, we've just negotiated one, but
// if one already exists, then screw it, use the existing one! Otherwise,
// use the existing TCP socket.
HostResolver::RequestInfo req_info(request_->url.HostNoBrackets(),
request_->url.EffectiveIntPort());
req_info.set_priority(request_->priority);
const scoped_refptr<FlipSessionPool> spdy_pool =
session_->flip_session_pool();
scoped_refptr<FlipSession> spdy_session;
if (spdy_pool->HasSession(req_info)) {
spdy_session = spdy_pool->Get(req_info, session_);
} else {
spdy_session = spdy_pool->GetFlipSessionFromSocket(
req_info, session_, connection_.release());
}
CHECK(spdy_session.get());
UploadDataStream* upload_data = request_->upload_data ?
new UploadDataStream(request_->upload_data) : NULL;
headers_valid_ = false;
spdy_stream_ = spdy_session->GetOrCreateStream(
*request_, upload_data, load_log_);
return spdy_stream_->SendRequest(upload_data, &response_, &io_callback_);
}
int HttpNetworkTransaction::DoSpdySendRequestComplete(int result) {
if (result < 0)
return result;
next_state_ = STATE_SPDY_READ_HEADERS;
return OK;
}
int HttpNetworkTransaction::DoSpdyReadHeaders() {
next_state_ = STATE_SPDY_READ_HEADERS_COMPLETE;
return spdy_stream_->ReadResponseHeaders(&io_callback_);
}
int HttpNetworkTransaction::DoSpdyReadHeadersComplete(int result) {
// TODO(willchan): Flesh out the support for HTTP authentication here.
if (result == OK)
headers_valid_ = true;
return result;
}
int HttpNetworkTransaction::DoSpdyReadBody() {
next_state_ = STATE_SPDY_READ_BODY_COMPLETE;
return spdy_stream_->ReadResponseBody(
read_buf_, read_buf_len_, &io_callback_);
}
int HttpNetworkTransaction::DoSpdyReadBodyComplete(int result) {
read_buf_ = NULL;
read_buf_len_ = 0;
if (result <= 0)
spdy_stream_ = NULL;
return result;
}
void HttpNetworkTransaction::LogTCPConnectedMetrics(
const ClientSocketHandle& handle) {
const base::TimeDelta time_to_obtain_connected_socket =
base::TimeTicks::Now() - handle.init_time();
static const bool use_late_binding_histogram =
!FieldTrial::MakeName("", "SocketLateBinding").empty();
if (handle.reuse_type() == ClientSocketHandle::UNUSED) {
UMA_HISTOGRAM_CUSTOM_TIMES(
"Net.HttpConnectionLatency",
time_to_obtain_connected_socket,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
}
UMA_HISTOGRAM_ENUMERATION("Net.TCPSocketType", handle.reuse_type(),
ClientSocketHandle::NUM_TYPES);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_ENUMERATION(
FieldTrial::MakeName("Net.TCPSocketType", "SocketLateBinding"),
handle.reuse_type(), ClientSocketHandle::NUM_TYPES);
}
UMA_HISTOGRAM_CLIPPED_TIMES(
"Net.TransportSocketRequestTime",
time_to_obtain_connected_socket,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_CUSTOM_TIMES(
FieldTrial::MakeName("Net.TransportSocketRequestTime",
"SocketLateBinding").data(),
time_to_obtain_connected_socket,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
}
switch (handle.reuse_type()) {
case ClientSocketHandle::UNUSED:
break;
case ClientSocketHandle::UNUSED_IDLE:
UMA_HISTOGRAM_CUSTOM_TIMES(
"Net.SocketIdleTimeBeforeNextUse_UnusedSocket",
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_CUSTOM_TIMES(
FieldTrial::MakeName("Net.SocketIdleTimeBeforeNextUse_UnusedSocket",
"SocketLateBinding").data(),
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
}
break;
case ClientSocketHandle::REUSED_IDLE:
UMA_HISTOGRAM_CUSTOM_TIMES(
"Net.SocketIdleTimeBeforeNextUse_ReusedSocket",
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_CUSTOM_TIMES(
FieldTrial::MakeName("Net.SocketIdleTimeBeforeNextUse_ReusedSocket",
"SocketLateBinding").data(),
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
}
break;
default:
NOTREACHED();
break;
}
}
void HttpNetworkTransaction::LogIOErrorMetrics(
const ClientSocketHandle& handle) {
static const bool use_late_binding_histogram =
!FieldTrial::MakeName("", "SocketLateBinding").empty();
UMA_HISTOGRAM_ENUMERATION("Net.IOError_SocketReuseType",
handle.reuse_type(), ClientSocketHandle::NUM_TYPES);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_ENUMERATION(
FieldTrial::MakeName("Net.IOError_SocketReuseType",
"SocketLateBinding"),
handle.reuse_type(), ClientSocketHandle::NUM_TYPES);
}
switch (handle.reuse_type()) {
case ClientSocketHandle::UNUSED:
break;
case ClientSocketHandle::UNUSED_IDLE:
UMA_HISTOGRAM_CUSTOM_TIMES(
"Net.SocketIdleTimeOnIOError2_UnusedSocket",
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_CUSTOM_TIMES(
FieldTrial::MakeName("Net.SocketIdleTimeOnIOError2_UnusedSocket",
"SocketLateBinding").data(),
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
}
break;
case ClientSocketHandle::REUSED_IDLE:
UMA_HISTOGRAM_CUSTOM_TIMES(
"Net.SocketIdleTimeOnIOError2_ReusedSocket",
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
if (use_late_binding_histogram) {
UMA_HISTOGRAM_CUSTOM_TIMES(
FieldTrial::MakeName("Net.SocketIdleTimeOnIOError2_ReusedSocket",
"SocketLateBinding").data(),
handle.idle_time(), base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(6), 100);
}
break;
default:
NOTREACHED();
break;
}
}
void HttpNetworkTransaction::LogTransactionConnectedMetrics() const {
base::TimeDelta total_duration = response_.response_time - start_time_;
UMA_HISTOGRAM_CLIPPED_TIMES(
"Net.Transaction_Connected_Under_10",
total_duration,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
static const bool use_late_binding_histogram =
!FieldTrial::MakeName("", "SocketLateBinding").empty();
if (use_late_binding_histogram) {
UMA_HISTOGRAM_CUSTOM_TIMES(
FieldTrial::MakeName("Net.Transaction_Connected_Under_10",
"SocketLateBinding").data(),
total_duration,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
}
if (!reused_socket_) {
UMA_HISTOGRAM_CLIPPED_TIMES(
"Net.Transaction_Connected_New",
total_duration,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
}
// Currently, non-zero priority requests are frame or sub-frame resource
// types. This will change when we also prioritize certain subresources like
// css, js, etc.
if (request_->priority) {
UMA_HISTOGRAM_CLIPPED_TIMES(
"Net.Priority_High_Latency",
total_duration,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
} else {
UMA_HISTOGRAM_CLIPPED_TIMES(
"Net.Priority_Low_Latency",
total_duration,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
}
}
void HttpNetworkTransaction::LogTransactionMetrics() const {
base::TimeDelta duration = base::Time::Now() -
response_.request_time;
if (60 < duration.InMinutes())
return;
base::TimeDelta total_duration = base::Time::Now() - start_time_;
UMA_HISTOGRAM_LONG_TIMES("Net.Transaction_Latency", duration);
UMA_HISTOGRAM_CLIPPED_TIMES("Net.Transaction_Latency_Under_10", duration,
base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(10),
100);
UMA_HISTOGRAM_CLIPPED_TIMES("Net.Transaction_Latency_Total_Under_10",
total_duration, base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(10), 100);
if (!reused_socket_) {
UMA_HISTOGRAM_CLIPPED_TIMES(
"Net.Transaction_Latency_Total_New_Connection_Under_10",
total_duration, base::TimeDelta::FromMilliseconds(1),
base::TimeDelta::FromMinutes(10), 100);
}
}
void HttpNetworkTransaction::LogBlockedTunnelResponse(
int response_code) const {
LOG(WARNING) << "Blocked proxy response with status " << response_code
<< " to CONNECT request for "
<< GetHostAndPort(request_->url) << ".";
}
int HttpNetworkTransaction::HandleCertificateError(int error) {
DCHECK(using_ssl_);
const int kCertFlags = LOAD_IGNORE_CERT_COMMON_NAME_INVALID |
LOAD_IGNORE_CERT_DATE_INVALID |
LOAD_IGNORE_CERT_AUTHORITY_INVALID |
LOAD_IGNORE_CERT_WRONG_USAGE;
if (request_->load_flags & kCertFlags) {
switch (error) {
case ERR_CERT_COMMON_NAME_INVALID:
if (request_->load_flags & LOAD_IGNORE_CERT_COMMON_NAME_INVALID)
error = OK;
break;
case ERR_CERT_DATE_INVALID:
if (request_->load_flags & LOAD_IGNORE_CERT_DATE_INVALID)
error = OK;
break;
case ERR_CERT_AUTHORITY_INVALID:
if (request_->load_flags & LOAD_IGNORE_CERT_AUTHORITY_INVALID)
error = OK;
break;
}
}
if (error != OK) {
SSLClientSocket* ssl_socket =
reinterpret_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLInfo(&response_.ssl_info);
// Add the bad certificate to the set of allowed certificates in the
// SSL info object. This data structure will be consulted after calling
// RestartIgnoringLastError(). And the user will be asked interactively
// before RestartIgnoringLastError() is ever called.
SSLConfig::CertAndStatus bad_cert;
bad_cert.cert = response_.ssl_info.cert;
bad_cert.cert_status = response_.ssl_info.cert_status;
ssl_config_.allowed_bad_certs.push_back(bad_cert);
}
return error;
}
int HttpNetworkTransaction::HandleCertificateRequest(int error) {
// Assert that the socket did not send a client certificate.
// Note: If we got a reused socket, it was created with some other
// transaction's ssl_config_, so we need to disable this assertion. We can
// get a certificate request on a reused socket when the server requested
// renegotiation (rehandshake).
// TODO(wtc): add a GetSSLParams method to SSLClientSocket so we can query
// the SSL parameters it was created with and get rid of the reused_socket_
// test.
DCHECK(reused_socket_ || !ssl_config_.send_client_cert);
response_.cert_request_info = new SSLCertRequestInfo;
SSLClientSocket* ssl_socket =
reinterpret_cast<SSLClientSocket*>(connection_->socket());
ssl_socket->GetSSLCertRequestInfo(response_.cert_request_info);
// Close the connection while the user is selecting a certificate to send
// to the server.
connection_->socket()->Disconnect();
connection_->Reset();
// If the user selected one of the certificate in client_certs for this
// server before, use it automatically.
X509Certificate* client_cert = session_->ssl_client_auth_cache()->
Lookup(GetHostAndPort(request_->url));
if (client_cert) {
const std::vector<scoped_refptr<X509Certificate> >& client_certs =
response_.cert_request_info->client_certs;
for (size_t i = 0; i < client_certs.size(); ++i) {
if (client_cert->fingerprint().Equals(client_certs[i]->fingerprint())) {
ssl_config_.client_cert = client_cert;
ssl_config_.send_client_cert = true;
next_state_ = STATE_INIT_CONNECTION;
// Reset the other member variables.
// Note: this is necessary only with SSL renegotiation.
ResetStateForRestart();
return OK;
}
}
}
return error;
}
int HttpNetworkTransaction::HandleSSLHandshakeError(int error) {
if (ssl_config_.send_client_cert &&
(error == ERR_SSL_PROTOCOL_ERROR ||
error == ERR_BAD_SSL_CLIENT_AUTH_CERT)) {
session_->ssl_client_auth_cache()->Remove(GetHostAndPort(request_->url));
}
switch (error) {
case ERR_SSL_PROTOCOL_ERROR:
case ERR_SSL_VERSION_OR_CIPHER_MISMATCH:
if (ssl_config_.tls1_enabled) {
// This could be a TLS-intolerant server or an SSL 3.0 server that
// chose a TLS-only cipher suite. Turn off TLS 1.0 and retry.
ssl_config_.tls1_enabled = false;
connection_->socket()->Disconnect();
connection_->Reset();
next_state_ = STATE_INIT_CONNECTION;
error = OK;
}
break;
}
return error;
}
// This method determines whether it is safe to resend the request after an
// IO error. It can only be called in response to request header or body
// write errors or response header read errors. It should not be used in
// other cases, such as a Connect error.
int HttpNetworkTransaction::HandleIOError(int error) {
switch (error) {
// If we try to reuse a connection that the server is in the process of
// closing, we may end up successfully writing out our request (or a
// portion of our request) only to find a connection error when we try to
// read from (or finish writing to) the socket.
case ERR_CONNECTION_RESET:
case ERR_CONNECTION_CLOSED:
case ERR_CONNECTION_ABORTED:
LogIOErrorMetrics(*connection_);
if (ShouldResendRequest(error)) {
ResetConnectionAndRequestForResend();
error = OK;
}
break;
}
return error;
}
void HttpNetworkTransaction::ResetStateForRestart() {
pending_auth_target_ = HttpAuth::AUTH_NONE;
read_buf_ = NULL;
read_buf_len_ = 0;
http_stream_.reset();
headers_valid_ = false;
request_headers_.clear();
response_ = HttpResponseInfo();
}
HttpResponseHeaders* HttpNetworkTransaction::GetResponseHeaders() const {
return response_.headers;
}
bool HttpNetworkTransaction::ShouldResendRequest(int error) const {
// NOTE: we resend a request only if we reused a keep-alive connection.
// This automatically prevents an infinite resend loop because we'll run
// out of the cached keep-alive connections eventually.
if (establishing_tunnel_ ||
!connection_->ShouldResendFailedRequest(error) ||
GetResponseHeaders()) { // We have received some response headers.
return false;
}
return true;
}
void HttpNetworkTransaction::ResetConnectionAndRequestForResend() {
connection_->socket()->Disconnect();
connection_->Reset();
// We need to clear request_headers_ because it contains the real request
// headers, but we may need to resend the CONNECT request first to recreate
// the SSL tunnel.
request_headers_.clear();
next_state_ = STATE_INIT_CONNECTION; // Resend the request.
}
int HttpNetworkTransaction::ReconsiderProxyAfterError(int error) {
DCHECK(!pac_request_);
// A failure to resolve the hostname or any error related to establishing a
// TCP connection could be grounds for trying a new proxy configuration.
//
// Why do this when a hostname cannot be resolved? Some URLs only make sense
// to proxy servers. The hostname in those URLs might fail to resolve if we
// are still using a non-proxy config. We need to check if a proxy config
// now exists that corresponds to a proxy server that could load the URL.
//
switch (error) {
case ERR_NAME_NOT_RESOLVED:
case ERR_INTERNET_DISCONNECTED:
case ERR_ADDRESS_UNREACHABLE:
case ERR_CONNECTION_CLOSED:
case ERR_CONNECTION_RESET:
case ERR_CONNECTION_REFUSED:
case ERR_CONNECTION_ABORTED:
case ERR_TIMED_OUT:
case ERR_TUNNEL_CONNECTION_FAILED:
break;
default:
return error;
}
if (request_->load_flags & LOAD_BYPASS_PROXY) {
return error;
}
int rv = session_->proxy_service()->ReconsiderProxyAfterError(
request_->url, &proxy_info_, &io_callback_, &pac_request_, load_log_);
if (rv == OK || rv == ERR_IO_PENDING) {
// If the error was during connection setup, there is no socket to
// disconnect.
if (connection_->socket())
connection_->socket()->Disconnect();
connection_->Reset();
next_state_ = STATE_RESOLVE_PROXY_COMPLETE;
} else {
// If ReconsiderProxyAfterError() failed synchronously, it means
// there was nothing left to fall-back to, so fail the transaction
// with the last connection error we got.
// TODO(eroman): This is a confusing contract, make it more obvious.
rv = error;
}
return rv;
}
bool HttpNetworkTransaction::ShouldApplyProxyAuth() const {
return (proxy_mode_ == kHTTPProxy) || establishing_tunnel_;
}
bool HttpNetworkTransaction::ShouldApplyServerAuth() const {
return !establishing_tunnel_ &&
!(request_->load_flags & LOAD_DO_NOT_SEND_AUTH_DATA);
}
std::string HttpNetworkTransaction::BuildAuthorizationHeader(
HttpAuth::Target target) const {
DCHECK(HaveAuth(target));
// Add a Authorization/Proxy-Authorization header line.
std::string credentials = auth_handler_[target]->GenerateCredentials(
auth_identity_[target].username,
auth_identity_[target].password,
request_,
&proxy_info_);
return HttpAuth::GetAuthorizationHeaderName(target) +
": " + credentials + "\r\n";
}
GURL HttpNetworkTransaction::AuthOrigin(HttpAuth::Target target) const {
return target == HttpAuth::AUTH_PROXY ?
GURL("http://" + proxy_info_.proxy_server().host_and_port()) :
request_->url.GetOrigin();
}
std::string HttpNetworkTransaction::AuthPath(HttpAuth::Target target)
const {
// Proxy authentication realms apply to all paths. So we will use
// empty string in place of an absolute path.
return target == HttpAuth::AUTH_PROXY ?
std::string() : request_->url.path();
}
// static
std::string HttpNetworkTransaction::AuthTargetString(
HttpAuth::Target target) {
return target == HttpAuth::AUTH_PROXY ? "proxy" : "server";
}
void HttpNetworkTransaction::InvalidateRejectedAuthFromCache(
HttpAuth::Target target,
const GURL& auth_origin) {
DCHECK(HaveAuth(target));
// TODO(eroman): this short-circuit can be relaxed. If the realm of
// the preemptively used auth entry matches the realm of the subsequent
// challenge, then we can invalidate the preemptively used entry.
// Otherwise as-is we may send the failed credentials one extra time.
if (auth_identity_[target].source == HttpAuth::IDENT_SRC_PATH_LOOKUP)
return;
// Clear the cache entry for the identity we just failed on.
// Note: we require the username/password to match before invalidating
// since the entry in the cache may be newer than what we used last time.
session_->auth_cache()->Remove(auth_origin,
auth_handler_[target]->realm(),
auth_identity_[target].username,
auth_identity_[target].password);
}
bool HttpNetworkTransaction::SelectPreemptiveAuth(HttpAuth::Target target) {
DCHECK(!HaveAuth(target));
// Don't do preemptive authorization if the URL contains a username/password,
// since we must first be challenged in order to use the URL's identity.
if (request_->url.has_username())
return false;
// SelectPreemptiveAuth() is on the critical path for each request, so it
// is expected to be fast. LookupByPath() is fast in the common case, since
// the number of http auth cache entries is expected to be very small.
// (For most users in fact, it will be 0.)
HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByPath(
AuthOrigin(target), AuthPath(target));
// We don't support preemptive authentication for connection-based
// authentication schemes because they can't reuse entry->handler().
// Hopefully we can remove this limitation in the future.
if (entry && !entry->handler()->is_connection_based()) {
auth_identity_[target].source = HttpAuth::IDENT_SRC_PATH_LOOKUP;
auth_identity_[target].invalid = false;
auth_identity_[target].username = entry->username();
auth_identity_[target].password = entry->password();
auth_handler_[target] = entry->handler();
return true;
}
return false;
}
bool HttpNetworkTransaction::SelectNextAuthIdentityToTry(
HttpAuth::Target target,
const GURL& auth_origin) {
DCHECK(auth_handler_[target]);
DCHECK(auth_identity_[target].invalid);
// Try to use the username/password encoded into the URL first.
if (target == HttpAuth::AUTH_SERVER && request_->url.has_username() &&
!embedded_identity_used_) {
auth_identity_[target].source = HttpAuth::IDENT_SRC_URL;
auth_identity_[target].invalid = false;
// Extract the username:password from the URL.
GetIdentityFromURL(request_->url,
&auth_identity_[target].username,
&auth_identity_[target].password);
embedded_identity_used_ = true;
// TODO(eroman): If the password is blank, should we also try combining
// with a password from the cache?
return true;
}
// Check the auth cache for a realm entry.
HttpAuthCache::Entry* entry = session_->auth_cache()->LookupByRealm(
auth_origin, auth_handler_[target]->realm());
if (entry) {
// Disallow re-using of identity if the scheme of the originating challenge
// does not match. This protects against the following situation:
// 1. Browser prompts user to sign into DIGEST realm="Foo".
// 2. Since the auth-scheme is not BASIC, the user is reasured that it
// will not be sent over the wire in clear text. So they use their
// most trusted password.
// 3. Next, the browser receives a challenge for BASIC realm="Foo". This
// is the same realm that we have a cached identity for. However if
// we use that identity, it would get sent over the wire in
// clear text (which isn't what the user agreed to when entering it).
if (entry->handler()->scheme() != auth_handler_[target]->scheme()) {
LOG(WARNING) << "The scheme of realm " << auth_handler_[target]->realm()
<< " has changed from " << entry->handler()->scheme()
<< " to " << auth_handler_[target]->scheme();
return false;
}
auth_identity_[target].source = HttpAuth::IDENT_SRC_REALM_LOOKUP;
auth_identity_[target].invalid = false;
auth_identity_[target].username = entry->username();
auth_identity_[target].password = entry->password();
return true;
}
return false;
}
std::string HttpNetworkTransaction::AuthChallengeLogMessage() const {
std::string msg;
std::string header_val;
void* iter = NULL;
scoped_refptr<HttpResponseHeaders> headers = GetResponseHeaders();
while (headers->EnumerateHeader(&iter, "proxy-authenticate", &header_val)) {
msg.append("\n Has header Proxy-Authenticate: ");
msg.append(header_val);
}
iter = NULL;
while (headers->EnumerateHeader(&iter, "www-authenticate", &header_val)) {
msg.append("\n Has header WWW-Authenticate: ");
msg.append(header_val);
}
// RFC 4559 requires that a proxy indicate its support of NTLM/Negotiate
// authentication with a "Proxy-Support: Session-Based-Authentication"
// response header.
iter = NULL;
while (headers->EnumerateHeader(&iter, "proxy-support", &header_val)) {
msg.append("\n Has header Proxy-Support: ");
msg.append(header_val);
}
return msg;
}
int HttpNetworkTransaction::HandleAuthChallenge() {
scoped_refptr<HttpResponseHeaders> headers = GetResponseHeaders();
DCHECK(headers);
int status = headers->response_code();
if (status != 401 && status != 407)
return OK;
HttpAuth::Target target = status == 407 ?
HttpAuth::AUTH_PROXY : HttpAuth::AUTH_SERVER;
GURL auth_origin = AuthOrigin(target);
LOG(INFO) << "The " << AuthTargetString(target) << " "
<< auth_origin << " requested auth"
<< AuthChallengeLogMessage();
if (target == HttpAuth::AUTH_PROXY && proxy_info_.is_direct())
return ERR_UNEXPECTED_PROXY_AUTH;
// The auth we tried just failed, hence it can't be valid. Remove it from
// the cache so it won't be used again.
// TODO(wtc): IsFinalRound is not the right condition. In a multi-round
// auth sequence, the server may fail the auth in round 1 if our first
// authorization header is broken. We should inspect response_.headers to
// determine if the server already failed the auth or wants us to continue.
// See http://crbug.com/21015.
if (HaveAuth(target) && auth_handler_[target]->IsFinalRound()) {
InvalidateRejectedAuthFromCache(target, auth_origin);
auth_handler_[target] = NULL;
auth_identity_[target] = HttpAuth::Identity();
}
auth_identity_[target].invalid = true;
if (target != HttpAuth::AUTH_SERVER ||
!(request_->load_flags & LOAD_DO_NOT_SEND_AUTH_DATA)) {
// Find the best authentication challenge that we support.
HttpAuth::ChooseBestChallenge(headers, target, auth_origin,
&auth_handler_[target]);
}
if (!auth_handler_[target]) {
if (establishing_tunnel_) {
LOG(ERROR) << "Can't perform auth to the " << AuthTargetString(target)
<< " " << auth_origin << " when establishing a tunnel"
<< AuthChallengeLogMessage();
// We are establishing a tunnel, we can't show the error page because an
// active network attacker could control its contents. Instead, we just
// fail to establish the tunnel.
DCHECK(target == HttpAuth::AUTH_PROXY);
return ERR_PROXY_AUTH_REQUESTED;
}
// We found no supported challenge -- let the transaction continue
// so we end up displaying the error page.
return OK;
}
if (auth_handler_[target]->NeedsIdentity()) {
// Pick a new auth identity to try, by looking to the URL and auth cache.
// If an identity to try is found, it is saved to auth_identity_[target].
SelectNextAuthIdentityToTry(target, auth_origin);
} else {
// Proceed with the existing identity or a null identity.
//
// TODO(wtc): Add a safeguard against infinite transaction restarts, if
// the server keeps returning "NTLM".
auth_identity_[target].invalid = false;
}
// Make a note that we are waiting for auth. This variable is inspected
// when the client calls RestartWithAuth() to pick up where we left off.
pending_auth_target_ = target;
if (auth_identity_[target].invalid) {
// We have exhausted all identity possibilities, all we can do now is
// pass the challenge information back to the client.
PopulateAuthChallenge(target, auth_origin);
}
return OK;
}
void HttpNetworkTransaction::PopulateAuthChallenge(HttpAuth::Target target,
const GURL& auth_origin) {
// Populates response_.auth_challenge with the authentication challenge info.
// This info is consumed by URLRequestHttpJob::GetAuthChallengeInfo().
AuthChallengeInfo* auth_info = new AuthChallengeInfo;
auth_info->is_proxy = target == HttpAuth::AUTH_PROXY;
auth_info->host_and_port = ASCIIToWide(GetHostAndPort(auth_origin));
auth_info->scheme = ASCIIToWide(auth_handler_[target]->scheme());
// TODO(eroman): decode realm according to RFC 2047.
auth_info->realm = ASCIIToWide(auth_handler_[target]->realm());
response_.auth_challenge = auth_info;
}
} // namespace net