/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
#include "tomcrypt.h"
/**
@file dsa_make_key.c
DSA implementation, generate a DSA key, Tom St Denis
*/
#ifdef MDSA
/**
Create a DSA key
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param group_size Size of the multiplicative group (octets)
@param modulus_size Size of the modulus (octets)
@param key [out] Where to store the created key
@return CRYPT_OK if successful, upon error this function will free all allocated memory
*/
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
{
void *tmp, *tmp2;
int err, res;
unsigned char *buf;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ltc_mp.name != NULL);
/* check prng */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* check size */
if (group_size >= MDSA_MAX_GROUP || group_size <= 15 ||
group_size >= modulus_size || (modulus_size - group_size) >= MDSA_DELTA) {
return CRYPT_INVALID_ARG;
}
/* allocate ram */
buf = XMALLOC(MDSA_DELTA);
if (buf == NULL) {
return CRYPT_MEM;
}
/* init mp_ints */
if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) {
XFREE(buf);
return err;
}
/* make our prime q */
if ((err = rand_prime(key->q, group_size, prng, wprng)) != CRYPT_OK) { goto error; }
/* double q */
if ((err = mp_add(key->q, key->q, tmp)) != CRYPT_OK) { goto error; }
/* now make a random string and multply it against q */
if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
err = CRYPT_ERROR_READPRNG;
goto error;
}
/* force magnitude */
buf[0] |= 0xC0;
/* force even */
buf[modulus_size - group_size - 1] &= ~1;
if ((err = mp_read_unsigned_bin(tmp2, buf, modulus_size - group_size)) != CRYPT_OK) { goto error; }
if ((err = mp_mul(key->q, tmp2, key->p)) != CRYPT_OK) { goto error; }
if ((err = mp_add_d(key->p, 1, key->p)) != CRYPT_OK) { goto error; }
/* now loop until p is prime */
for (;;) {
if ((err = mp_prime_is_prime(key->p, 8, &res)) != CRYPT_OK) { goto error; }
if (res == LTC_MP_YES) break;
/* add 2q to p and 2 to tmp2 */
if ((err = mp_add(tmp, key->p, key->p)) != CRYPT_OK) { goto error; }
if ((err = mp_add_d(tmp2, 2, tmp2)) != CRYPT_OK) { goto error; }
}
/* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
mp_set(key->g, 1);
do {
if ((err = mp_add_d(key->g, 1, key->g)) != CRYPT_OK) { goto error; }
if ((err = mp_exptmod(key->g, tmp2, key->p, tmp)) != CRYPT_OK) { goto error; }
} while (mp_cmp_d(tmp, 1) == LTC_MP_EQ);
/* at this point tmp generates a group of order q mod p */
mp_exch(tmp, key->g);
/* so now we have our DH structure, generator g, order q, modulus p
Now we need a random exponent [mod q] and it's power g^x mod p
*/
do {
if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
err = CRYPT_ERROR_READPRNG;
goto error;
}
if ((err = mp_read_unsigned_bin(key->x, buf, group_size)) != CRYPT_OK) { goto error; }
} while (mp_cmp_d(key->x, 1) != LTC_MP_GT);
if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { goto error; }
key->type = PK_PRIVATE;
key->qord = group_size;
#ifdef LTC_CLEAN_STACK
zeromem(buf, MDSA_DELTA);
#endif
err = CRYPT_OK;
goto done;
error:
mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL);
done:
mp_clear_multi(tmp, tmp2, NULL);
XFREE(buf);
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/dsa/dsa_make_key.c,v $ */
/* $Revision: 1.10 $ */
/* $Date: 2006/12/04 03:18:43 $ */