/**************************************************************************
Etherboot - BOOTP/TFTP Bootstrap Program
Schneider & Koch G16 NIC driver for Etherboot
heavily based on SK G16 driver from Linux 2.0.36
Changes to make it work with Etherboot by Georg Baum <Georg.Baum@gmx.de>
***************************************************************************/
/*-
* Copyright (C) 1994 by PJD Weichmann & SWS Bern, Switzerland
*
* This software may be used and distributed according to the terms
* of the GNU Public License, incorporated herein by reference.
*
* Module : sk_g16.c
*
* Version : $Revision: 1.4 $
*
* Author : Patrick J.D. Weichmann
*
* Date Created : 94/05/26
* Last Updated : $Date: 2002/01/02 21:56:40 $
*
* Description : Schneider & Koch G16 Ethernet Device Driver for
* Linux Kernel >= 1.1.22
* Update History :
*
-*/
/*
* The Schneider & Koch (SK) G16 Network device driver is based
* on the 'ni6510' driver from Michael Hipp which can be found at
* ftp://sunsite.unc.edu/pub/Linux/system/Network/drivers/nidrivers.tar.gz
*
* Sources: 1) ni6510.c by M. Hipp
* 2) depca.c by D.C. Davies
* 3) skeleton.c by D. Becker
* 4) Am7990 Local Area Network Controller for Ethernet (LANCE),
* AMD, Pub. #05698, June 1989
*
* Many Thanks for helping me to get things working to:
*
* A. Cox (A.Cox@swansea.ac.uk)
* M. Hipp (mhipp@student.uni-tuebingen.de)
* R. Bolz (Schneider & Koch, Germany)
*
* See README.sk_g16 for details about limitations and bugs for the
* current version.
*
* To Do:
* - Support of SK_G8 and other SK Network Cards.
* - Autoset memory mapped RAM. Check for free memory and then
* configure RAM correctly.
* - SK_close should really set card in to initial state.
* - Test if IRQ 3 is not switched off. Use autoirq() functionality.
* (as in /drivers/net/skeleton.c)
* - Implement Multicast addressing. At minimum something like
* in depca.c.
* - Redo the statistics part.
* - Try to find out if the board is in 8 Bit or 16 Bit slot.
* If in 8 Bit mode don't use IRQ 11.
* - (Try to make it slightly faster.)
*/
/* to get some global routines like printf */
#include "etherboot.h"
/* to get the interface to the body of the program */
#include "nic.h"
/* From linux/if_ether.h: */
#define ETH_ZLEN 60 /* Min. octets in frame sans FCS */
#include "sk_g16.h"
/*
* Schneider & Koch Card Definitions
* =================================
*/
#define SK_NAME "SK_G16"
/*
* SK_G16 Configuration
* --------------------
*/
/*
* Abbreviations
* -------------
*
* RAM - used for the 16KB shared memory
* Boot_ROM, ROM - are used for referencing the BootEPROM
*
* SK_ADDR is a symbolic constant used to configure
* the behaviour of the driver and the SK_G16.
*
* SK_ADDR defines the address where the RAM will be mapped into the real
* host memory.
* valid addresses are from 0xa0000 to 0xfc000 in 16Kbyte steps.
*/
#define SK_ADDR 0xcc000
/*
* In POS3 are bits A14-A19 of the address bus. These bits can be set
* to choose the RAM address. That's why we only can choose the RAM address
* in 16KB steps.
*/
#define POS_ADDR (rom_addr>>14) /* Do not change this line */
/*
* SK_G16 I/O PORT's + IRQ's + Boot_ROM locations
* ----------------------------------------------
*/
/*
* As nearly every card has also SK_G16 a specified I/O Port region and
* only a few possible IRQ's.
* In the Installation Guide from Schneider & Koch is listed a possible
* Interrupt IRQ2. IRQ2 is always IRQ9 in boards with two cascaded interrupt
* controllers. So we use in SK_IRQS IRQ9.
*/
/* Don't touch any of the following #defines. */
#define SK_IO_PORTS { 0x100, 0x180, 0x208, 0x220, 0x288, 0x320, 0x328, 0x390, 0 }
/*
* SK_G16 POS REGISTERS
* --------------------
*/
/*
* SK_G16 has a Programmable Option Select (POS) Register.
* The POS is composed of 8 separate registers (POS0-7) which
* are I/O mapped on an address set by the W1 switch.
*
*/
#define SK_POS_SIZE 8 /* 8 I/O Ports are used by SK_G16 */
#define SK_POS0 ioaddr /* Card-ID Low (R) */
#define SK_POS1 ioaddr+1 /* Card-ID High (R) */
#define SK_POS2 ioaddr+2 /* Card-Enable, Boot-ROM Disable (RW) */
#define SK_POS3 ioaddr+3 /* Base address of RAM */
#define SK_POS4 ioaddr+4 /* IRQ */
/* POS5 - POS7 are unused */
/*
* SK_G16 MAC PREFIX
* -----------------
*/
/*
* Scheider & Koch manufacturer code (00:00:a5).
* This must be checked, that we are sure it is a SK card.
*/
#define SK_MAC0 0x00
#define SK_MAC1 0x00
#define SK_MAC2 0x5a
/*
* SK_G16 ID
* ---------
*/
/*
* If POS0,POS1 contain the following ID, then we know
* at which I/O Port Address we are.
*/
#define SK_IDLOW 0xfd
#define SK_IDHIGH 0x6a
/*
* LANCE POS Bit definitions
* -------------------------
*/
#define SK_ROM_RAM_ON (POS2_CARD)
#define SK_ROM_RAM_OFF (POS2_EPROM)
#define SK_ROM_ON (inb(SK_POS2) & POS2_CARD)
#define SK_ROM_OFF (inb(SK_POS2) | POS2_EPROM)
#define SK_RAM_ON (inb(SK_POS2) | POS2_CARD)
#define SK_RAM_OFF (inb(SK_POS2) & POS2_EPROM)
#define POS2_CARD 0x0001 /* 1 = SK_G16 on 0 = off */
#define POS2_EPROM 0x0002 /* 1 = Boot EPROM off 0 = on */
/*
* SK_G16 Memory mapped Registers
* ------------------------------
*
*/
#define SK_IOREG (board->ioreg) /* LANCE data registers. */
#define SK_PORT (board->port) /* Control, Status register */
#define SK_IOCOM (board->iocom) /* I/O Command */
/*
* SK_G16 Status/Control Register bits
* -----------------------------------
*
* (C) Controlreg (S) Statusreg
*/
/*
* Register transfer: 0 = no transfer
* 1 = transferring data between LANCE and I/O reg
*/
#define SK_IORUN 0x20
/*
* LANCE interrupt: 0 = LANCE interrupt occurred
* 1 = no LANCE interrupt occurred
*/
#define SK_IRQ 0x10
#define SK_RESET 0x08 /* Reset SK_CARD: 0 = RESET 1 = normal */
#define SK_RW 0x02 /* 0 = write to 1 = read from */
#define SK_ADR 0x01 /* 0 = REG DataPort 1 = RAP Reg addr port */
#define SK_RREG SK_RW /* Transferdirection to read from lance */
#define SK_WREG 0 /* Transferdirection to write to lance */
#define SK_RAP SK_ADR /* Destination Register RAP */
#define SK_RDATA 0 /* Destination Register REG DataPort */
/*
* SK_G16 I/O Command
* ------------------
*/
/*
* Any bitcombination sets the internal I/O bit (transfer will start)
* when written to I/O Command
*/
#define SK_DOIO 0x80 /* Do Transfer */
/*
* LANCE RAP (Register Address Port).
* ---------------------------------
*/
/*
* The LANCE internal registers are selected through the RAP.
* The Registers are:
*
* CSR0 - Status and Control flags
* CSR1 - Low order bits of initialize block (bits 15:00)
* CSR2 - High order bits of initialize block (bits 07:00, 15:08 are reserved)
* CSR3 - Allows redefinition of the Bus Master Interface.
* This register must be set to 0x0002, which means BSWAP = 0,
* ACON = 1, BCON = 0;
*
*/
#define CSR0 0x00
#define CSR1 0x01
#define CSR2 0x02
#define CSR3 0x03
/*
* General Definitions
* ===================
*/
/*
* Set the number of Tx and Rx buffers, using Log_2(# buffers).
* We have 16KB RAM which can be accessed by the LANCE. In the
* memory are not only the buffers but also the ring descriptors and
* the initialize block.
* Don't change anything unless you really know what you do.
*/
#define LC_LOG_TX_BUFFERS 1 /* (2 == 2^^1) 2 Transmit buffers */
#define LC_LOG_RX_BUFFERS 2 /* (8 == 2^^3) 8 Receive buffers */
/* Descriptor ring sizes */
#define TMDNUM (1 << (LC_LOG_TX_BUFFERS)) /* 2 Transmit descriptor rings */
#define RMDNUM (1 << (LC_LOG_RX_BUFFERS)) /* 8 Receive Buffers */
/* Define Mask for setting RMD, TMD length in the LANCE init_block */
#define TMDNUMMASK (LC_LOG_TX_BUFFERS << 29)
#define RMDNUMMASK (LC_LOG_RX_BUFFERS << 29)
/*
* Data Buffer size is set to maximum packet length.
*/
#define PKT_BUF_SZ 1518
/*
* The number of low I/O ports used by the ethercard.
*/
#define ETHERCARD_TOTAL_SIZE SK_POS_SIZE
/*
* Portreserve is there to mark the Card I/O Port region as used.
* Check_region is to check if the region at ioaddr with the size "size"
* is free or not.
* Snarf_region allocates the I/O Port region.
*/
#ifndef HAVE_PORTRESERVE
#define check_region(ioaddr1, size) 0
#define request_region(ioaddr1, size,name) do ; while (0)
#endif
/*
* SK_DEBUG
*
* Here you can choose what level of debugging wanted.
*
* If SK_DEBUG and SK_DEBUG2 are undefined, then only the
* necessary messages will be printed.
*
* If SK_DEBUG is defined, there will be many debugging prints
* which can help to find some mistakes in configuration or even
* in the driver code.
*
* If SK_DEBUG2 is defined, many many messages will be printed
* which normally you don't need. I used this to check the interrupt
* routine.
*
* (If you define only SK_DEBUG2 then only the messages for
* checking interrupts will be printed!)
*
* Normal way of live is:
*
* For the whole thing get going let both symbolic constants
* undefined. If you face any problems and you know what's going
* on (you know something about the card and you can interpret some
* hex LANCE register output) then define SK_DEBUG
*
*/
#undef SK_DEBUG /* debugging */
#undef SK_DEBUG2 /* debugging with more verbose report */
#ifdef SK_DEBUG
#define PRINTF(x) printf x
#else
#define PRINTF(x) /**/
#endif
#ifdef SK_DEBUG2
#define PRINTF2(x) printf x
#else
#define PRINTF2(x) /**/
#endif
/*
* SK_G16 RAM
*
* The components are memory mapped and can be set in a region from
* 0x00000 through 0xfc000 in 16KB steps.
*
* The Network components are: dual ported RAM, Prom, I/O Reg, Status-,
* Controlregister and I/O Command.
*
* dual ported RAM: This is the only memory region which the LANCE chip
* has access to. From the Lance it is addressed from 0x0000 to
* 0x3fbf. The host accesses it normally.
*
* PROM: The PROM obtains the ETHERNET-MAC-Address. It is realised as a
* 8-Bit PROM, this means only the 16 even addresses are used of the
* 32 Byte Address region. Access to a odd address results in invalid
* data.
*
* LANCE I/O Reg: The I/O Reg is build of 4 single Registers, Low-Byte Write,
* Hi-Byte Write, Low-Byte Read, Hi-Byte Read.
* Transfer from or to the LANCE is always in 16Bit so Low and High
* registers are always relevant.
*
* The Data from the Readregister is not the data in the Writeregister!!
*
* Port: Status- and Controlregister.
* Two different registers which share the same address, Status is
* read-only, Control is write-only.
*
* I/O Command:
* Any bitcombination written in here starts the transmission between
* Host and LANCE.
*/
typedef struct
{
unsigned char ram[0x3fc0]; /* 16KB dual ported ram */
unsigned char rom[0x0020]; /* 32Byte PROM containing 6Byte MAC */
unsigned char res1[0x0010]; /* reserved */
unsigned volatile short ioreg;/* LANCE I/O Register */
unsigned volatile char port; /* Statusregister and Controlregister */
unsigned char iocom; /* I/O Command Register */
} SK_RAM;
/* struct */
/*
* This is the structure for the dual ported ram. We
* have exactly 16 320 Bytes. In here there must be:
*
* - Initialize Block (starting at a word boundary)
* - Receive and Transmit Descriptor Rings (quadword boundary)
* - Data Buffers (arbitrary boundary)
*
* This is because LANCE has on SK_G16 only access to the dual ported
* RAM and nowhere else.
*/
struct SK_ram
{
struct init_block ib;
struct tmd tmde[TMDNUM];
struct rmd rmde[RMDNUM];
char tmdbuf[TMDNUM][PKT_BUF_SZ];
char rmdbuf[RMDNUM][PKT_BUF_SZ];
};
/*
* Structure where all necessary information is for ring buffer
* management and statistics.
*/
struct priv
{
struct SK_ram *ram; /* dual ported ram structure */
struct rmd *rmdhead; /* start of receive ring descriptors */
struct tmd *tmdhead; /* start of transmit ring descriptors */
int rmdnum; /* actual used ring descriptor */
int tmdnum; /* actual transmit descriptor for transmitting data */
int tmdlast; /* last sent descriptor used for error handling, etc */
void *rmdbufs[RMDNUM]; /* pointer to the receive buffers */
void *tmdbufs[TMDNUM]; /* pointer to the transmit buffers */
};
/* global variable declaration */
/* static variables */
static SK_RAM *board; /* pointer to our memory mapped board components */
static unsigned short ioaddr; /* base io address */
static struct priv p_data;
/* Macros */
/* Function Prototypes */
/*
* Device Driver functions
* -----------------------
* See for short explanation of each function its definitions header.
*/
static int SK_probe1(struct nic *nic, short ioaddr1);
static void SK_reset(struct nic *nic);
static int SK_poll(struct nic *nic);
static void SK_transmit(
struct nic *nic,
const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *p); /* Packet */
static void SK_disable(struct nic *nic);
struct nic *SK_probe(struct nic *nic, unsigned short *probe_addrs);
/*
* LANCE Functions
* ---------------
*/
static int SK_lance_init(struct nic *nic, unsigned short mode);
static void SK_reset_board(void);
static void SK_set_RAP(int reg_number);
static int SK_read_reg(int reg_number);
static int SK_rread_reg(void);
static void SK_write_reg(int reg_number, int value);
/*
* Debugging functions
* -------------------
*/
static void SK_print_pos(struct nic *nic, char *text);
static void SK_print_ram(struct nic *nic);
/**************************************************************************
RESET - Reset adapter
***************************************************************************/
static void SK_reset(struct nic *nic)
{
/* put the card in its initial state */
SK_lance_init(nic, MODE_NORMAL);
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int SK_poll(struct nic *nic)
{
/* return true if there's an ethernet packet ready to read */
struct priv *p; /* SK_G16 private structure */
struct rmd *rmdp;
int csr0, rmdstat, packet_there;
PRINTF2(("## %s: At beginning of SK_poll(). CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0)));
p = nic->priv_data;
csr0 = SK_read_reg(CSR0); /* store register for checking */
/*
* Acknowledge all of the current interrupt sources, disable
* Interrupts (INEA = 0)
*/
SK_write_reg(CSR0, csr0 & CSR0_CLRALL);
if (csr0 & CSR0_ERR) /* LANCE Error */
{
printf("%s: error: %#hX", SK_NAME, csr0);
if (csr0 & CSR0_MISS) /* No place to store packet ? */
{
printf(", Packet dropped.");
}
putchar('\n');
}
rmdp = p->rmdhead + p->rmdnum;
packet_there = 0;
/* As long as we own the next entry, check status and send
* it up to higher layer
*/
while (!( (rmdstat = rmdp->u.s.status) & RX_OWN))
{
/*
* Start and end of packet must be set, because we use
* the ethernet maximum packet length (1518) as buffer size.
*
* Because our buffers are at maximum OFLO and BUFF errors are
* not to be concerned (see Data sheet)
*/
if ((rmdstat & (RX_STP | RX_ENP)) != (RX_STP | RX_ENP))
{
/* Start of a frame > 1518 Bytes ? */
if (rmdstat & RX_STP)
{
printf("%s: packet too long\n", SK_NAME);
}
/*
* All other packets will be ignored until a new frame with
* start (RX_STP) set follows.
*
* What we do is just give descriptor free for new incoming
* packets.
*/
rmdp->u.s.status = RX_OWN; /* Relinquish ownership to LANCE */
}
else if (rmdstat & RX_ERR) /* Receive Error ? */
{
printf("%s: RX error: %#hX\n", SK_NAME, (int) rmdstat);
rmdp->u.s.status = RX_OWN; /* Relinquish ownership to LANCE */
}
else /* We have a packet which can be queued for the upper layers */
{
int len = (rmdp->mlen & 0x0fff); /* extract message length from receive buffer */
/*
* Copy data out of our receive descriptor into nic->packet.
*
* (rmdp->u.buffer & 0x00ffffff) -> get address of buffer and
* ignore status fields)
*/
memcpy(nic->packet, (unsigned char *) (rmdp->u.buffer & 0x00ffffff), nic->packetlen = len);
packet_there = 1;
/*
* Packet is queued and marked for processing so we
* free our descriptor
*/
rmdp->u.s.status = RX_OWN;
p->rmdnum++;
p->rmdnum %= RMDNUM;
rmdp = p->rmdhead + p->rmdnum;
}
}
SK_write_reg(CSR0, CSR0_INEA); /* Enable Interrupts */
return (packet_there);
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void SK_transmit(
struct nic *nic,
const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *pack) /* Packet */
{
/* send the packet to destination */
struct priv *p; /* SK_G16 private structure */
struct tmd *tmdp;
short len;
int csr0, i, tmdstat;
PRINTF2(("## %s: At beginning of SK_transmit(). CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0)));
p = nic->priv_data;
tmdp = p->tmdhead + p->tmdnum; /* Which descriptor for transmitting */
/* Copy data into dual ported ram */
memcpy(&p->ram->tmdbuf[p->tmdnum][0], d, ETH_ALEN); /* dst */
memcpy(&p->ram->tmdbuf[p->tmdnum][ETH_ALEN], nic->node_addr, ETH_ALEN); /* src */
p->ram->tmdbuf[p->tmdnum][ETH_ALEN + ETH_ALEN] = t >> 8; /* type */
p->ram->tmdbuf[p->tmdnum][ETH_ALEN + ETH_ALEN + 1] = t; /* type */
memcpy(&p->ram->tmdbuf[p->tmdnum][ETH_HLEN], pack, s);
s += ETH_HLEN;
while (s < ETH_ZLEN) /* pad to min length */
p->ram->tmdbuf[p->tmdnum][s++] = 0;
p->ram->tmde[p->tmdnum].status2 = 0x0;
/* Evaluate Packet length */
len = ETH_ZLEN < s ? s : ETH_ZLEN;
/* Fill in Transmit Message Descriptor */
tmdp->blen = -len; /* set length to transmit */
/*
* Packet start and end is always set because we use the maximum
* packet length as buffer length.
* Relinquish ownership to LANCE
*/
tmdp->u.s.status = TX_OWN | TX_STP | TX_ENP;
/* Start Demand Transmission */
SK_write_reg(CSR0, CSR0_TDMD | CSR0_INEA);
csr0 = SK_read_reg(CSR0); /* store register for checking */
/*
* Acknowledge all of the current interrupt sources, disable
* Interrupts (INEA = 0)
*/
SK_write_reg(CSR0, csr0 & CSR0_CLRALL);
if (csr0 & CSR0_ERR) /* LANCE Error */
{
printf("%s: error: %#hX", SK_NAME, csr0);
if (csr0 & CSR0_MISS) /* No place to store packet ? */
{
printf(", Packet dropped.");
}
putchar('\n');
}
/* Set next buffer */
p->tmdlast++;
p->tmdlast &= TMDNUM-1;
tmdstat = tmdp->u.s.status & 0xff00; /* filter out status bits 15:08 */
/*
* We check status of transmitted packet.
* see LANCE data-sheet for error explanation
*/
if (tmdstat & TX_ERR) /* Error occurred */
{
printf("%s: TX error: %#hX %#hX\n", SK_NAME, (int) tmdstat,
(int) tmdp->status2);
if (tmdp->status2 & TX_TDR) /* TDR problems? */
{
printf("%s: tdr-problems \n", SK_NAME);
}
if (tmdp->status2 & TX_UFLO) /* Underflow error ? */
{
/*
* If UFLO error occurs it will turn transmitter of.
* So we must reinit LANCE
*/
SK_lance_init(nic, MODE_NORMAL);
}
tmdp->status2 = 0; /* Clear error flags */
}
SK_write_reg(CSR0, CSR0_INEA); /* Enable Interrupts */
/* Set pointer to next transmit buffer */
p->tmdnum++;
p->tmdnum &= TMDNUM-1;
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void SK_disable(struct nic *nic)
{
PRINTF(("## %s: At beginning of SK_disable(). CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0)));
PRINTF(("%s: Shutting %s down CSR0 %#hX\n", SK_NAME, SK_NAME,
(int) SK_read_reg(CSR0)));
SK_write_reg(CSR0, CSR0_STOP); /* STOP the LANCE */
}
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
struct nic *SK_probe(struct nic *nic, unsigned short *probe_addrs)
{
unsigned short *p;
static unsigned short io_addrs[] = SK_IO_PORTS;
/* if probe_addrs is 0, then routine can use a hardwired default */
putchar('\n');
nic->priv_data = &p_data;
if (probe_addrs == 0)
probe_addrs = io_addrs;
for (p = probe_addrs; (ioaddr = *p) != 0; ++p)
{
long offset1, offset0 = inb(ioaddr);
if ((offset0 == SK_IDLOW) &&
((offset1 = inb(ioaddr + 1)) == SK_IDHIGH))
if (SK_probe1(nic, ioaddr) >= 0)
break;
}
/* if board found */
if (ioaddr != 0)
{
/* point to NIC specific routines */
nic->reset = SK_reset;
nic->poll = SK_poll;
nic->transmit = SK_transmit;
nic->disable = SK_disable;
return nic;
}
/* else */
{
return 0;
}
}
int SK_probe1(struct nic *nic, short ioaddr1)
{
int i,j; /* Counters */
int sk_addr_flag = 0; /* SK ADDR correct? 1 - no, 0 - yes */
unsigned int rom_addr; /* used to store RAM address used for POS_ADDR */
struct priv *p; /* SK_G16 private structure */
if (SK_ADDR & 0x3fff || SK_ADDR < 0xa0000)
{
/*
* Now here we could use a routine which searches for a free
* place in the ram and set SK_ADDR if found. TODO.
*/
printf("%s: SK_ADDR %#hX is not valid. Check configuration.\n",
SK_NAME, SK_ADDR);
return -1;
}
rom_addr = SK_ADDR;
outb(SK_ROM_RAM_OFF, SK_POS2); /* Boot_ROM + RAM off */
outb(POS_ADDR, SK_POS3); /* Set RAM address */
outb(SK_ROM_RAM_ON, SK_POS2); /* RAM on, BOOT_ROM on */
#ifdef SK_DEBUG
SK_print_pos(nic, "POS registers after ROM, RAM config");
#endif
board = (SK_RAM *) rom_addr;
PRINTF(("adr[0]: %hX, adr[1]: %hX, adr[2]: %hX\n",
board->rom[0], board->rom[2], board->rom[4]));
/* Read in station address */
for (i = 0, j = 0; i < ETH_ALEN; i++, j+=2)
{
*(nic->node_addr+i) = board->rom[j];
}
/* Check for manufacturer code */
#ifdef SK_DEBUG
if (!(*(nic->node_addr+0) == SK_MAC0 &&
*(nic->node_addr+1) == SK_MAC1 &&
*(nic->node_addr+2) == SK_MAC2) )
{
PRINTF(("## %s: We did not find SK_G16 at RAM location.\n",
SK_NAME));
return -1; /* NO SK_G16 found */
}
#endif
p = nic->priv_data;
/* Initialize private structure */
p->ram = (struct SK_ram *) rom_addr; /* Set dual ported RAM addr */
p->tmdhead = &(p->ram)->tmde[0]; /* Set TMD head */
p->rmdhead = &(p->ram)->rmde[0]; /* Set RMD head */
printf("Schneider & Koch G16 at %#hX, mem at %#hX, HW addr: %!\n",
(unsigned int) ioaddr, (unsigned int) p->ram, nic->node_addr);
/* Initialize buffer pointers */
for (i = 0; i < TMDNUM; i++)
{
p->tmdbufs[i] = p->ram->tmdbuf[i];
}
for (i = 0; i < RMDNUM; i++)
{
p->rmdbufs[i] = p->ram->rmdbuf[i];
}
i = 0;
if (!(i = SK_lance_init(nic, MODE_NORMAL))) /* LANCE init OK? */
{
#ifdef SK_DEBUG
/*
* This debug block tries to stop LANCE,
* reinit LANCE with transmitter and receiver disabled,
* then stop again and reinit with NORMAL_MODE
*/
printf("## %s: After lance init. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0));
SK_write_reg(CSR0, CSR0_STOP);
printf("## %s: LANCE stopped. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0));
SK_lance_init(nic, MODE_DTX | MODE_DRX);
printf("## %s: Reinit with DTX + DRX off. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0));
SK_write_reg(CSR0, CSR0_STOP);
printf("## %s: LANCE stopped. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0));
SK_lance_init(nic, MODE_NORMAL);
printf("## %s: LANCE back to normal mode. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0));
SK_print_pos(nic, "POS regs before returning OK");
#endif /* SK_DEBUG */
}
else /* LANCE init failed */
{
PRINTF(("## %s: LANCE init failed: CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0)));
return -1;
}
#ifdef SK_DEBUG
SK_print_pos(nic, "End of SK_probe1");
SK_print_ram(nic);
#endif
return 0; /* Initialization done */
} /* End of SK_probe1() */
static int SK_lance_init(struct nic *nic, unsigned short mode)
{
int i;
struct priv *p = (struct priv *) nic->priv_data;
struct tmd *tmdp;
struct rmd *rmdp;
PRINTF(("## %s: At beginning of LANCE init. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0)));
/* Reset LANCE */
SK_reset_board();
/* Initialize TMD's with start values */
p->tmdnum = 0; /* First descriptor for transmitting */
p->tmdlast = 0; /* First descriptor for reading stats */
for (i = 0; i < TMDNUM; i++) /* Init all TMD's */
{
tmdp = p->tmdhead + i;
tmdp->u.buffer = (unsigned long) p->tmdbufs[i]; /* assign buffer */
/* Mark TMD as start and end of packet */
tmdp->u.s.status = TX_STP | TX_ENP;
}
/* Initialize RMD's with start values */
p->rmdnum = 0; /* First RMD which will be used */
for (i = 0; i < RMDNUM; i++) /* Init all RMD's */
{
rmdp = p->rmdhead + i;
rmdp->u.buffer = (unsigned long) p->rmdbufs[i]; /* assign buffer */
/*
* LANCE must be owner at beginning so that he can fill in
* receiving packets, set status and release RMD
*/
rmdp->u.s.status = RX_OWN;
rmdp->blen = -PKT_BUF_SZ; /* Buffer Size in a two's complement */
rmdp->mlen = 0; /* init message length */
}
/* Fill LANCE Initialize Block */
(p->ram)->ib.mode = mode; /* Set operation mode */
for (i = 0; i < ETH_ALEN; i++) /* Set physical address */
{
(p->ram)->ib.paddr[i] = *(nic->node_addr+i);
}
for (i = 0; i < 8; i++) /* Set multicast, logical address */
{
(p->ram)->ib.laddr[i] = 0; /* We do not use logical addressing */
}
/* Set ring descriptor pointers and set number of descriptors */
(p->ram)->ib.rdrp = (int) p->rmdhead | RMDNUMMASK;
(p->ram)->ib.tdrp = (int) p->tmdhead | TMDNUMMASK;
/* Prepare LANCE Control and Status Registers */
SK_write_reg(CSR3, CSR3_ACON); /* Ale Control !!!THIS MUST BE SET!!!! */
/*
* LANCE addresses the RAM from 0x0000 to 0x3fbf and has no access to
* PC Memory locations.
*
* In structure SK_ram is defined that the first thing in ram
* is the initialization block. So his address is for LANCE always
* 0x0000
*
* CSR1 contains low order bits 15:0 of initialization block address
* CSR2 is built of:
* 7:0 High order bits 23:16 of initialization block address
* 15:8 reserved, must be 0
*/
/* Set initialization block address (must be on word boundary) */
SK_write_reg(CSR1, 0); /* Set low order bits 15:0 */
SK_write_reg(CSR2, 0); /* Set high order bits 23:16 */
PRINTF(("## %s: After setting CSR1-3. CSR0: %#hX\n",
SK_NAME, SK_read_reg(CSR0)));
/* Initialize LANCE */
/*
* INIT = Initialize, when set, causes the LANCE to begin the
* initialization procedure and access the Init Block.
*/
SK_write_reg(CSR0, CSR0_INIT);
/* Wait until LANCE finished initialization */
SK_set_RAP(CSR0); /* Register Address Pointer to CSR0 */
for (i = 0; (i < 100) && !(SK_rread_reg() & CSR0_IDON); i++)
; /* Wait until init done or go ahead if problems (i>=100) */
if (i >= 100) /* Something is wrong ! */
{
printf("%s: can't init am7990, status: %#hX "
"init_block: %#hX\n",
SK_NAME, (int) SK_read_reg(CSR0),
(unsigned int) &(p->ram)->ib);
#ifdef SK_DEBUG
SK_print_pos(nic, "LANCE INIT failed");
#endif
return -1; /* LANCE init failed */
}
PRINTF(("## %s: init done after %d ticks\n", SK_NAME, i));
/* Clear Initialize done, enable Interrupts, start LANCE */
SK_write_reg(CSR0, CSR0_IDON | CSR0_INEA | CSR0_STRT);
PRINTF(("## %s: LANCE started. CSR0: %#hX\n", SK_NAME,
SK_read_reg(CSR0)));
return 0; /* LANCE is up and running */
} /* End of SK_lance_init() */
/* LANCE access functions
*
* ! CSR1-3 can only be accessed when in CSR0 the STOP bit is set !
*/
static void SK_reset_board(void)
{
int i;
PRINTF(("## %s: At beginning of SK_reset_board.\n", SK_NAME));
SK_PORT = 0x00; /* Reset active */
for (i = 0; i < 10 ; i++) /* Delay min 5ms */
;
SK_PORT = SK_RESET; /* Set back to normal operation */
} /* End of SK_reset_board() */
static void SK_set_RAP(int reg_number)
{
SK_IOREG = reg_number;
SK_PORT = SK_RESET | SK_RAP | SK_WREG;
SK_IOCOM = SK_DOIO;
while (SK_PORT & SK_IORUN)
;
} /* End of SK_set_RAP() */
static int SK_read_reg(int reg_number)
{
SK_set_RAP(reg_number);
SK_PORT = SK_RESET | SK_RDATA | SK_RREG;
SK_IOCOM = SK_DOIO;
while (SK_PORT & SK_IORUN)
;
return (SK_IOREG);
} /* End of SK_read_reg() */
static int SK_rread_reg(void)
{
SK_PORT = SK_RESET | SK_RDATA | SK_RREG;
SK_IOCOM = SK_DOIO;
while (SK_PORT & SK_IORUN)
;
return (SK_IOREG);
} /* End of SK_rread_reg() */
static void SK_write_reg(int reg_number, int value)
{
SK_set_RAP(reg_number);
SK_IOREG = value;
SK_PORT = SK_RESET | SK_RDATA | SK_WREG;
SK_IOCOM = SK_DOIO;
while (SK_PORT & SK_IORUN)
;
} /* End of SK_write_reg */
/*
* Debugging functions
* -------------------
*/
#ifdef SK_DEBUG
static void SK_print_pos(struct nic *nic, char *text)
{
unsigned char pos0 = inb(SK_POS0),
pos1 = inb(SK_POS1),
pos2 = inb(SK_POS2),
pos3 = inb(SK_POS3),
pos4 = inb(SK_POS4);
printf("## %s: %s.\n"
"## pos0=%#hX pos1=%#hX pos2=%#hX pos3=%#hX pos4=%#hX\n",
SK_NAME, text, pos0, pos1, pos2, (pos3<<14), pos4);
} /* End of SK_print_pos() */
static void SK_print_ram(struct nic *nic)
{
int i;
struct priv *p = (struct priv *) nic->priv_data;
printf("## %s: RAM Details.\n"
"## RAM at %#hX tmdhead: %#hX rmdhead: %#hX initblock: %#hX\n",
SK_NAME,
(unsigned int) p->ram,
(unsigned int) p->tmdhead,
(unsigned int) p->rmdhead,
(unsigned int) &(p->ram)->ib);
printf("## ");
for(i = 0; i < TMDNUM; i++)
{
if (!(i % 3)) /* Every third line do a newline */
{
printf("\n## ");
}
printf("tmdbufs%d: %#hX ", (i+1), (int) p->tmdbufs[i]);
}
printf("## ");
for(i = 0; i < RMDNUM; i++)
{
if (!(i % 3)) /* Every third line do a newline */
{
printf("\n## ");
}
printf("rmdbufs%d: %#hX ", (i+1), (int) p->rmdbufs[i]);
}
putchar('\n');
} /* End of SK_print_ram() */
#endif