//
// rbbisetb.cpp
//
/*
***************************************************************************
* Copyright (C) 2002-2008 International Business Machines Corporation *
* and others. All rights reserved. *
***************************************************************************
*/
//
// RBBISetBuilder Handles processing of Unicode Sets from RBBI rules
// (part of the rule building process.)
//
// Starting with the rules parse tree from the scanner,
//
// - Enumerate the set of UnicodeSets that are referenced
// by the RBBI rules.
// - compute a set of non-overlapping character ranges
// with all characters within a range belonging to the same
// set of input uniocde sets.
// - Derive a set of non-overlapping UnicodeSet (like things)
// that will correspond to columns in the state table for
// the RBBI execution engine. All characters within one
// of these sets belong to the same set of the original
// UnicodeSets from the user's rules.
// - construct the trie table that maps input characters
// to the index of the matching non-overlapping set of set from
// the previous step.
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include "unicode/uniset.h"
#include "utrie.h"
#include "uvector.h"
#include "uassert.h"
#include "cmemory.h"
#include "cstring.h"
#include "rbbisetb.h"
#include "rbbinode.h"
//------------------------------------------------------------------------
//
// getFoldedRBBIValue Call-back function used during building of Trie table.
// Folding value: just store the offset (16 bits)
// if there is any non-0 entry.
// (It'd really be nice if the Trie builder would provide a
// simple default, so this function could go away from here.)
//
//------------------------------------------------------------------------
/* folding value: just store the offset (16 bits) if there is any non-0 entry */
U_CDECL_BEGIN
static uint32_t U_CALLCONV
getFoldedRBBIValue(UNewTrie *trie, UChar32 start, int32_t offset) {
uint32_t value;
UChar32 limit;
UBool inBlockZero;
limit=start+0x400;
while(start<limit) {
value=utrie_get32(trie, start, &inBlockZero);
if(inBlockZero) {
start+=UTRIE_DATA_BLOCK_LENGTH;
} else if(value!=0) {
return (uint32_t)(offset|0x8000);
} else {
++start;
}
}
return 0;
}
U_CDECL_END
U_NAMESPACE_BEGIN
//------------------------------------------------------------------------
//
// Constructor
//
//------------------------------------------------------------------------
RBBISetBuilder::RBBISetBuilder(RBBIRuleBuilder *rb)
{
fRB = rb;
fStatus = rb->fStatus;
fRangeList = 0;
fTrie = 0;
fTrieSize = 0;
fGroupCount = 0;
fSawBOF = FALSE;
}
//------------------------------------------------------------------------
//
// Destructor
//
//------------------------------------------------------------------------
RBBISetBuilder::~RBBISetBuilder()
{
RangeDescriptor *nextRangeDesc;
// Walk through & delete the linked list of RangeDescriptors
for (nextRangeDesc = fRangeList; nextRangeDesc!=NULL;) {
RangeDescriptor *r = nextRangeDesc;
nextRangeDesc = r->fNext;
delete r;
}
utrie_close(fTrie);
}
//------------------------------------------------------------------------
//
// build Build the list of non-overlapping character ranges
// from the Unicode Sets.
//
//------------------------------------------------------------------------
void RBBISetBuilder::build() {
RBBINode *usetNode;
RangeDescriptor *rlRange;
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "usets")) {printSets();}
//
// Initialize the process by creating a single range encompassing all characters
// that is in no sets.
//
fRangeList = new RangeDescriptor(*fStatus); // will check for status here
if (fRangeList == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
fRangeList->fStartChar = 0;
fRangeList->fEndChar = 0x10ffff;
if (U_FAILURE(*fStatus)) {
return;
}
//
// Find the set of non-overlapping ranges of characters
//
int ni;
for (ni=0; ; ni++) { // Loop over each of the UnicodeSets encountered in the input rules
usetNode = (RBBINode *)this->fRB->fUSetNodes->elementAt(ni);
if (usetNode==NULL) {
break;
}
UnicodeSet *inputSet = usetNode->fInputSet;
int32_t inputSetRangeCount = inputSet->getRangeCount();
int inputSetRangeIndex = 0;
rlRange = fRangeList;
for (;;) {
if (inputSetRangeIndex >= inputSetRangeCount) {
break;
}
UChar32 inputSetRangeBegin = inputSet->getRangeStart(inputSetRangeIndex);
UChar32 inputSetRangeEnd = inputSet->getRangeEnd(inputSetRangeIndex);
// skip over ranges from the range list that are completely
// below the current range from the input unicode set.
while (rlRange->fEndChar < inputSetRangeBegin) {
rlRange = rlRange->fNext;
}
// If the start of the range from the range list is before with
// the start of the range from the unicode set, split the range list range
// in two, with one part being before (wholly outside of) the unicode set
// and the other containing the rest.
// Then continue the loop; the post-split current range will then be skipped
// over
if (rlRange->fStartChar < inputSetRangeBegin) {
rlRange->split(inputSetRangeBegin, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
continue;
}
// Same thing at the end of the ranges...
// If the end of the range from the range list doesn't coincide with
// the end of the range from the unicode set, split the range list
// range in two. The first part of the split range will be
// wholly inside the Unicode set.
if (rlRange->fEndChar > inputSetRangeEnd) {
rlRange->split(inputSetRangeEnd+1, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
}
// The current rlRange is now entirely within the UnicodeSet range.
// Add this unicode set to the list of sets for this rlRange
if (rlRange->fIncludesSets->indexOf(usetNode) == -1) {
rlRange->fIncludesSets->addElement(usetNode, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
}
// Advance over ranges that we are finished with.
if (inputSetRangeEnd == rlRange->fEndChar) {
inputSetRangeIndex++;
}
rlRange = rlRange->fNext;
}
}
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "range")) { printRanges();}
//
// Group the above ranges, with each group consisting of one or more
// ranges that are in exactly the same set of original UnicodeSets.
// The groups are numbered, and these group numbers are the set of
// input symbols recognized by the run-time state machine.
//
// Numbering: # 0 (state table column 0) is unused.
// # 1 is reserved - table column 1 is for end-of-input
// # 2 is reserved - table column 2 is for beginning-in-input
// # 3 is the first range list.
//
RangeDescriptor *rlSearchRange;
for (rlRange = fRangeList; rlRange!=0; rlRange=rlRange->fNext) {
for (rlSearchRange=fRangeList; rlSearchRange != rlRange; rlSearchRange=rlSearchRange->fNext) {
if (rlRange->fIncludesSets->equals(*rlSearchRange->fIncludesSets)) {
rlRange->fNum = rlSearchRange->fNum;
break;
}
}
if (rlRange->fNum == 0) {
fGroupCount ++;
rlRange->fNum = fGroupCount+2;
rlRange->setDictionaryFlag();
addValToSets(rlRange->fIncludesSets, fGroupCount+2);
}
}
// Handle input sets that contain the special string {eof}.
// Column 1 of the state table is reserved for EOF on input.
// Column 2 is reserved for before-the-start-input.
// (This column can be optimized away later if there are no rule
// references to {bof}.)
// Add this column value (1 or 2) to the equivalent expression
// subtree for each UnicodeSet that contains the string {eof}
// Because {bof} and {eof} are not a characters in the normal sense,
// they doesn't affect the computation of ranges or TRIE.
static const UChar eofUString[] = {0x65, 0x6f, 0x66, 0};
static const UChar bofUString[] = {0x62, 0x6f, 0x66, 0};
UnicodeString eofString(eofUString);
UnicodeString bofString(bofUString);
for (ni=0; ; ni++) { // Loop over each of the UnicodeSets encountered in the input rules
usetNode = (RBBINode *)this->fRB->fUSetNodes->elementAt(ni);
if (usetNode==NULL) {
break;
}
UnicodeSet *inputSet = usetNode->fInputSet;
if (inputSet->contains(eofString)) {
addValToSet(usetNode, 1);
}
if (inputSet->contains(bofString)) {
addValToSet(usetNode, 2);
fSawBOF = TRUE;
}
}
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rgroup")) {printRangeGroups();}
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "esets")) {printSets();}
//
// Build the Trie table for mapping UChar32 values to the corresponding
// range group number
//
fTrie = utrie_open(NULL, // Pre-existing trie to be filled in
NULL, // Data array (utrie will allocate one)
100000, // Max Data Length
0, // Initial value for all code points
0, // Lead surrogate unit value
TRUE); // Keep Latin 1 in separately
for (rlRange = fRangeList; rlRange!=0; rlRange=rlRange->fNext) {
utrie_setRange32(fTrie, rlRange->fStartChar, rlRange->fEndChar+1, rlRange->fNum, TRUE);
}
}
//-----------------------------------------------------------------------------------
//
// getTrieSize() Return the size that will be required to serialize the Trie.
//
//-----------------------------------------------------------------------------------
int32_t RBBISetBuilder::getTrieSize() /*const*/ {
fTrieSize = utrie_serialize(fTrie,
NULL, // Buffer
0, // Capacity
getFoldedRBBIValue,
TRUE, // Reduce to 16 bits
fStatus);
// RBBIDebugPrintf("Trie table size is %d\n", trieSize);
return fTrieSize;
}
//-----------------------------------------------------------------------------------
//
// serializeTrie() Put the serialized trie at the specified address.
// Trust the caller to have given us enough memory.
// getTrieSize() MUST be called first.
//
//-----------------------------------------------------------------------------------
void RBBISetBuilder::serializeTrie(uint8_t *where) {
utrie_serialize(fTrie,
where, // Buffer
fTrieSize, // Capacity
getFoldedRBBIValue,
TRUE, // Reduce to 16 bits
fStatus);
}
//------------------------------------------------------------------------
//
// addValToSets Add a runtime-mapped input value to each uset from a
// list of uset nodes. (val corresponds to a state table column.)
// For each of the original Unicode sets - which correspond
// directly to uset nodes - a logically equivalent expression
// is constructed in terms of the remapped runtime input
// symbol set. This function adds one runtime input symbol to
// a list of sets.
//
// The "logically equivalent expression" is the tree for an
// or-ing together of all of the symbols that go into the set.
//
//------------------------------------------------------------------------
void RBBISetBuilder::addValToSets(UVector *sets, uint32_t val) {
int32_t ix;
for (ix=0; ix<sets->size(); ix++) {
RBBINode *usetNode = (RBBINode *)sets->elementAt(ix);
addValToSet(usetNode, val);
}
}
void RBBISetBuilder::addValToSet(RBBINode *usetNode, uint32_t val) {
RBBINode *leafNode = new RBBINode(RBBINode::leafChar);
if (leafNode == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
leafNode->fVal = (unsigned short)val;
if (usetNode->fLeftChild == NULL) {
usetNode->fLeftChild = leafNode;
leafNode->fParent = usetNode;
} else {
// There are already input symbols present for this set.
// Set up an OR node, with the previous stuff as the left child
// and the new value as the right child.
RBBINode *orNode = new RBBINode(RBBINode::opOr);
if (orNode == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
orNode->fLeftChild = usetNode->fLeftChild;
orNode->fRightChild = leafNode;
orNode->fLeftChild->fParent = orNode;
orNode->fRightChild->fParent = orNode;
usetNode->fLeftChild = orNode;
orNode->fParent = usetNode;
}
}
//------------------------------------------------------------------------
//
// getNumCharCategories
//
//------------------------------------------------------------------------
int32_t RBBISetBuilder::getNumCharCategories() const {
return fGroupCount + 3;
}
//------------------------------------------------------------------------
//
// sawBOF
//
//------------------------------------------------------------------------
UBool RBBISetBuilder::sawBOF() const {
return fSawBOF;
}
//------------------------------------------------------------------------
//
// getFirstChar Given a runtime RBBI character category, find
// the first UChar32 that is in the set of chars
// in the category.
//------------------------------------------------------------------------
UChar32 RBBISetBuilder::getFirstChar(int32_t category) const {
RangeDescriptor *rlRange;
UChar32 retVal = (UChar32)-1;
for (rlRange = fRangeList; rlRange!=0; rlRange=rlRange->fNext) {
if (rlRange->fNum == category) {
retVal = rlRange->fStartChar;
break;
}
}
return retVal;
}
//------------------------------------------------------------------------
//
// printRanges A debugging function.
// dump out all of the range definitions.
//
//------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBISetBuilder::printRanges() {
RangeDescriptor *rlRange;
int i;
RBBIDebugPrintf("\n\n Nonoverlapping Ranges ...\n");
for (rlRange = fRangeList; rlRange!=0; rlRange=rlRange->fNext) {
RBBIDebugPrintf("%2i %4x-%4x ", rlRange->fNum, rlRange->fStartChar, rlRange->fEndChar);
for (i=0; i<rlRange->fIncludesSets->size(); i++) {
RBBINode *usetNode = (RBBINode *)rlRange->fIncludesSets->elementAt(i);
UnicodeString setName = UNICODE_STRING("anon", 4);
RBBINode *setRef = usetNode->fParent;
if (setRef != NULL) {
RBBINode *varRef = setRef->fParent;
if (varRef != NULL && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
RBBI_DEBUG_printUnicodeString(setName); RBBIDebugPrintf(" ");
}
RBBIDebugPrintf("\n");
}
}
#endif
//------------------------------------------------------------------------
//
// printRangeGroups A debugging function.
// dump out all of the range groups.
//
//------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBISetBuilder::printRangeGroups() {
RangeDescriptor *rlRange;
RangeDescriptor *tRange;
int i;
int lastPrintedGroupNum = 0;
RBBIDebugPrintf("\nRanges grouped by Unicode Set Membership...\n");
for (rlRange = fRangeList; rlRange!=0; rlRange=rlRange->fNext) {
int groupNum = rlRange->fNum & 0xbfff;
if (groupNum > lastPrintedGroupNum) {
lastPrintedGroupNum = groupNum;
RBBIDebugPrintf("%2i ", groupNum);
if (rlRange->fNum & 0x4000) { RBBIDebugPrintf(" <DICT> ");}
for (i=0; i<rlRange->fIncludesSets->size(); i++) {
RBBINode *usetNode = (RBBINode *)rlRange->fIncludesSets->elementAt(i);
UnicodeString setName = UNICODE_STRING("anon", 4);
RBBINode *setRef = usetNode->fParent;
if (setRef != NULL) {
RBBINode *varRef = setRef->fParent;
if (varRef != NULL && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
RBBI_DEBUG_printUnicodeString(setName); RBBIDebugPrintf(" ");
}
i = 0;
for (tRange = rlRange; tRange != 0; tRange = tRange->fNext) {
if (tRange->fNum == rlRange->fNum) {
if (i++ % 5 == 0) {
RBBIDebugPrintf("\n ");
}
RBBIDebugPrintf(" %05x-%05x", tRange->fStartChar, tRange->fEndChar);
}
}
RBBIDebugPrintf("\n");
}
}
RBBIDebugPrintf("\n");
}
#endif
//------------------------------------------------------------------------
//
// printSets A debugging function.
// dump out all of the set definitions.
//
//------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBISetBuilder::printSets() {
int i;
RBBIDebugPrintf("\n\nUnicode Sets List\n------------------\n");
for (i=0; ; i++) {
RBBINode *usetNode;
RBBINode *setRef;
RBBINode *varRef;
UnicodeString setName;
usetNode = (RBBINode *)fRB->fUSetNodes->elementAt(i);
if (usetNode == NULL) {
break;
}
RBBIDebugPrintf("%3d ", i);
setName = UNICODE_STRING("anonymous", 9);
setRef = usetNode->fParent;
if (setRef != NULL) {
varRef = setRef->fParent;
if (varRef != NULL && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
RBBI_DEBUG_printUnicodeString(setName);
RBBIDebugPrintf(" ");
RBBI_DEBUG_printUnicodeString(usetNode->fText);
RBBIDebugPrintf("\n");
if (usetNode->fLeftChild != NULL) {
usetNode->fLeftChild->printTree(TRUE);
}
}
RBBIDebugPrintf("\n");
}
#endif
//-------------------------------------------------------------------------------------
//
// RangeDescriptor copy constructor
//
//-------------------------------------------------------------------------------------
RangeDescriptor::RangeDescriptor(const RangeDescriptor &other, UErrorCode &status) {
int i;
this->fStartChar = other.fStartChar;
this->fEndChar = other.fEndChar;
this->fNum = other.fNum;
this->fNext = NULL;
UErrorCode oldstatus = status;
this->fIncludesSets = new UVector(status);
if (U_FAILURE(oldstatus)) {
status = oldstatus;
}
if (U_FAILURE(status)) {
return;
}
/* test for NULL */
if (this->fIncludesSets == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
for (i=0; i<other.fIncludesSets->size(); i++) {
this->fIncludesSets->addElement(other.fIncludesSets->elementAt(i), status);
}
}
//-------------------------------------------------------------------------------------
//
// RangeDesriptor default constructor
//
//-------------------------------------------------------------------------------------
RangeDescriptor::RangeDescriptor(UErrorCode &status) {
this->fStartChar = 0;
this->fEndChar = 0;
this->fNum = 0;
this->fNext = NULL;
UErrorCode oldstatus = status;
this->fIncludesSets = new UVector(status);
if (U_FAILURE(oldstatus)) {
status = oldstatus;
}
if (U_FAILURE(status)) {
return;
}
/* test for NULL */
if(this->fIncludesSets == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
//-------------------------------------------------------------------------------------
//
// RangeDesriptor Destructor
//
//-------------------------------------------------------------------------------------
RangeDescriptor::~RangeDescriptor() {
delete fIncludesSets;
fIncludesSets = NULL;
}
//-------------------------------------------------------------------------------------
//
// RangeDesriptor::split()
//
//-------------------------------------------------------------------------------------
void RangeDescriptor::split(UChar32 where, UErrorCode &status) {
U_ASSERT(where>fStartChar && where<=fEndChar);
RangeDescriptor *nr = new RangeDescriptor(*this, status);
if(nr == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (U_FAILURE(status)) {
delete nr;
return;
}
// RangeDescriptor copy constructor copies all fields.
// Only need to update those that are different after the split.
nr->fStartChar = where;
this->fEndChar = where-1;
nr->fNext = this->fNext;
this->fNext = nr;
}
//-------------------------------------------------------------------------------------
//
// RangeDescriptor::setDictionaryFlag
//
// Character Category Numbers that include characters from
// the original Unicode Set named "dictionary" have bit 14
// set to 1. The RBBI runtime engine uses this to trigger
// use of the word dictionary.
//
// This function looks through the Unicode Sets that it
// (the range) includes, and sets the bit in fNum when
// "dictionary" is among them.
//
// TODO: a faster way would be to find the set node for
// "dictionary" just once, rather than looking it
// up by name every time.
//
//-------------------------------------------------------------------------------------
void RangeDescriptor::setDictionaryFlag() {
int i;
for (i=0; i<this->fIncludesSets->size(); i++) {
RBBINode *usetNode = (RBBINode *)fIncludesSets->elementAt(i);
UnicodeString setName;
RBBINode *setRef = usetNode->fParent;
if (setRef != NULL) {
RBBINode *varRef = setRef->fParent;
if (varRef != NULL && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
if (setName.compare(UNICODE_STRING("dictionary", 10)) == 0) { // TODO: no string literals.
this->fNum |= 0x4000;
break;
}
}
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */