/*
*******************************************************************************
*
* Copyright (C) 2002-2010, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uprops.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002feb24
* created by: Markus W. Scherer
*
* Implementations for mostly non-core Unicode character properties
* stored in uprops.icu.
*
* With the APIs implemented here, almost all properties files and
* their associated implementation files are used from this file,
* including those for normalization and case mappings.
*/
#include "unicode/utypes.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "unicode/ustring.h"
#include "cstring.h"
#include "normalizer2impl.h"
#include "ucln_cmn.h"
#include "umutex.h"
#include "unormimp.h"
#include "ubidi_props.h"
#include "uprops.h"
#include "ucase.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
U_NAMESPACE_USE
/* cleanup ------------------------------------------------------------------ */
static const UBiDiProps *gBdp=NULL;
static UBool U_CALLCONV uprops_cleanup(void) {
gBdp=NULL;
return TRUE;
}
/* bidi/shaping properties API ---------------------------------------------- */
/* get the UBiDiProps singleton, or else its dummy, once and for all */
static const UBiDiProps *
getBiDiProps() {
/*
* This lazy intialization with double-checked locking (without mutex protection for
* the initial check) is transiently unsafe under certain circumstances.
* Check the readme and use u_init() if necessary.
*/
/* the initial check is performed by the GET_BIDI_PROPS() macro */
const UBiDiProps *bdp;
UErrorCode errorCode=U_ZERO_ERROR;
bdp=ubidi_getSingleton(&errorCode);
#if !UBIDI_HARDCODE_DATA
if(U_FAILURE(errorCode)) {
errorCode=U_ZERO_ERROR;
bdp=ubidi_getDummy(&errorCode);
if(U_FAILURE(errorCode)) {
return NULL;
}
}
#endif
umtx_lock(NULL);
if(gBdp==NULL) {
gBdp=bdp;
ucln_common_registerCleanup(UCLN_COMMON_UPROPS, uprops_cleanup);
}
umtx_unlock(NULL);
return gBdp;
}
/* see comment for GET_CASE_PROPS() */
#define GET_BIDI_PROPS() (gBdp!=NULL ? gBdp : getBiDiProps())
/* general properties API functions ----------------------------------------- */
static const struct {
int32_t column;
uint32_t mask;
} binProps[UCHAR_BINARY_LIMIT]={
/*
* column and mask values for binary properties from u_getUnicodeProperties().
* Must be in order of corresponding UProperty,
* and there must be exactly one entry per binary UProperty.
*
* Properties with mask 0 are handled in code.
* For them, column is the UPropertySource value.
*/
{ 1, U_MASK(UPROPS_ALPHABETIC) },
{ 1, U_MASK(UPROPS_ASCII_HEX_DIGIT) },
{ UPROPS_SRC_BIDI, 0 }, /* UCHAR_BIDI_CONTROL */
{ UPROPS_SRC_BIDI, 0 }, /* UCHAR_BIDI_MIRRORED */
{ 1, U_MASK(UPROPS_DASH) },
{ 1, U_MASK(UPROPS_DEFAULT_IGNORABLE_CODE_POINT) },
{ 1, U_MASK(UPROPS_DEPRECATED) },
{ 1, U_MASK(UPROPS_DIACRITIC) },
{ 1, U_MASK(UPROPS_EXTENDER) },
{ UPROPS_SRC_NFC, 0 }, /* UCHAR_FULL_COMPOSITION_EXCLUSION */
{ 1, U_MASK(UPROPS_GRAPHEME_BASE) },
{ 1, U_MASK(UPROPS_GRAPHEME_EXTEND) },
{ 1, U_MASK(UPROPS_GRAPHEME_LINK) },
{ 1, U_MASK(UPROPS_HEX_DIGIT) },
{ 1, U_MASK(UPROPS_HYPHEN) },
{ 1, U_MASK(UPROPS_ID_CONTINUE) },
{ 1, U_MASK(UPROPS_ID_START) },
{ 1, U_MASK(UPROPS_IDEOGRAPHIC) },
{ 1, U_MASK(UPROPS_IDS_BINARY_OPERATOR) },
{ 1, U_MASK(UPROPS_IDS_TRINARY_OPERATOR) },
{ UPROPS_SRC_BIDI, 0 }, /* UCHAR_JOIN_CONTROL */
{ 1, U_MASK(UPROPS_LOGICAL_ORDER_EXCEPTION) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_LOWERCASE */
{ 1, U_MASK(UPROPS_MATH) },
{ 1, U_MASK(UPROPS_NONCHARACTER_CODE_POINT) },
{ 1, U_MASK(UPROPS_QUOTATION_MARK) },
{ 1, U_MASK(UPROPS_RADICAL) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_SOFT_DOTTED */
{ 1, U_MASK(UPROPS_TERMINAL_PUNCTUATION) },
{ 1, U_MASK(UPROPS_UNIFIED_IDEOGRAPH) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_UPPERCASE */
{ 1, U_MASK(UPROPS_WHITE_SPACE) },
{ 1, U_MASK(UPROPS_XID_CONTINUE) },
{ 1, U_MASK(UPROPS_XID_START) },
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CASE_SENSITIVE */
{ 1, U_MASK(UPROPS_S_TERM) },
{ 1, U_MASK(UPROPS_VARIATION_SELECTOR) },
{ UPROPS_SRC_NFC, 0 }, /* UCHAR_NFD_INERT */
{ UPROPS_SRC_NFKC, 0 }, /* UCHAR_NFKD_INERT */
{ UPROPS_SRC_NFC, 0 }, /* UCHAR_NFC_INERT */
{ UPROPS_SRC_NFKC, 0 }, /* UCHAR_NFKC_INERT */
{ UPROPS_SRC_NORM, 0 }, /* UCHAR_SEGMENT_STARTER */
{ 1, U_MASK(UPROPS_PATTERN_SYNTAX) },
{ 1, U_MASK(UPROPS_PATTERN_WHITE_SPACE) },
{ UPROPS_SRC_CHAR_AND_PROPSVEC, 0 }, /* UCHAR_POSIX_ALNUM */
{ UPROPS_SRC_CHAR, 0 }, /* UCHAR_POSIX_BLANK */
{ UPROPS_SRC_CHAR, 0 }, /* UCHAR_POSIX_GRAPH */
{ UPROPS_SRC_CHAR, 0 }, /* UCHAR_POSIX_PRINT */
{ UPROPS_SRC_CHAR, 0 }, /* UCHAR_POSIX_XDIGIT */
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CASED */
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CASE_IGNORABLE */
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CHANGES_WHEN_LOWERCASED */
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CHANGES_WHEN_UPPERCASED */
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CHANGES_WHEN_TITLECASED */
{ UPROPS_SRC_CASE_AND_NORM, 0 }, /* UCHAR_CHANGES_WHEN_CASEFOLDED */
{ UPROPS_SRC_CASE, 0 }, /* UCHAR_CHANGES_WHEN_CASEMAPPED */
{ UPROPS_SRC_NFKC_CF, 0 } /* UCHAR_CHANGES_WHEN_NFKC_CASEFOLDED */
};
U_CAPI UBool U_EXPORT2
u_hasBinaryProperty(UChar32 c, UProperty which) {
/* c is range-checked in the functions that are called from here */
if(which<UCHAR_BINARY_START || UCHAR_BINARY_LIMIT<=which) {
/* not a known binary property */
} else {
uint32_t mask=binProps[which].mask;
int32_t column=binProps[which].column;
if(mask!=0) {
/* systematic, directly stored properties */
return (u_getUnicodeProperties(c, column)&mask)!=0;
} else {
if(column==UPROPS_SRC_CASE) {
return ucase_hasBinaryProperty(c, which);
} else if(column==UPROPS_SRC_NORM) {
#if !UCONFIG_NO_NORMALIZATION
/* normalization properties from unorm.icu */
switch(which) {
case UCHAR_SEGMENT_STARTER:
return unorm_isCanonSafeStart(c);
default:
break;
}
#endif
} else if(column==UPROPS_SRC_NFC) {
#if !UCONFIG_NO_NORMALIZATION
UErrorCode errorCode=U_ZERO_ERROR;
switch(which) {
case UCHAR_FULL_COMPOSITION_EXCLUSION: {
// By definition, Full_Composition_Exclusion is the same as NFC_QC=No.
const Normalizer2Impl *impl=Normalizer2Factory::getNFCImpl(errorCode);
return U_SUCCESS(errorCode) && impl->isCompNo(impl->getNorm16(c));
break;
}
default: {
// UCHAR_NF[CD]_INERT properties
const Normalizer2 *norm2=Normalizer2Factory::getInstance(
(UNormalizationMode)(which-UCHAR_NFD_INERT+UNORM_NFD), errorCode);
return U_SUCCESS(errorCode) && norm2->isInert(c);
}
}
#endif
} else if(column==UPROPS_SRC_NFKC) {
#if !UCONFIG_NO_NORMALIZATION
// UCHAR_NFK[CD]_INERT properties
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2 *norm2=Normalizer2Factory::getInstance(
(UNormalizationMode)(which-UCHAR_NFD_INERT+UNORM_NFD), errorCode);
return U_SUCCESS(errorCode) && norm2->isInert(c);
#endif
} else if(column==UPROPS_SRC_NFKC_CF) {
// currently only for UCHAR_CHANGES_WHEN_NFKC_CASEFOLDED
#if !UCONFIG_NO_NORMALIZATION
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2Impl *kcf=Normalizer2Factory::getNFKC_CFImpl(errorCode);
if(U_SUCCESS(errorCode)) {
UnicodeString src(c);
UnicodeString dest;
{
// The ReorderingBuffer must be in a block because its destructor
// needs to release dest's buffer before we look at its contents.
ReorderingBuffer buffer(*kcf, dest);
// Small destCapacity for NFKC_CF(c).
if(buffer.init(5, errorCode)) {
const UChar *srcArray=src.getBuffer();
kcf->compose(srcArray, srcArray+src.length(), FALSE,
TRUE, buffer, errorCode);
}
}
return U_SUCCESS(errorCode) && dest!=src;
}
#endif
} else if(column==UPROPS_SRC_BIDI) {
/* bidi/shaping properties */
const UBiDiProps *bdp=GET_BIDI_PROPS();
if(bdp!=NULL) {
switch(which) {
case UCHAR_BIDI_MIRRORED:
return ubidi_isMirrored(bdp, c);
case UCHAR_BIDI_CONTROL:
return ubidi_isBidiControl(bdp, c);
case UCHAR_JOIN_CONTROL:
return ubidi_isJoinControl(bdp, c);
default:
break;
}
}
/* else return FALSE below */
} else if(column==UPROPS_SRC_CHAR) {
switch(which) {
case UCHAR_POSIX_BLANK:
return u_isblank(c);
case UCHAR_POSIX_GRAPH:
return u_isgraphPOSIX(c);
case UCHAR_POSIX_PRINT:
return u_isprintPOSIX(c);
case UCHAR_POSIX_XDIGIT:
return u_isxdigit(c);
default:
break;
}
} else if(column==UPROPS_SRC_CHAR_AND_PROPSVEC) {
switch(which) {
case UCHAR_POSIX_ALNUM:
return u_isalnumPOSIX(c);
default:
break;
}
} else if(column==UPROPS_SRC_CASE_AND_NORM) {
#if !UCONFIG_NO_NORMALIZATION
UChar nfdBuffer[4];
const UChar *nfd;
int32_t nfdLength;
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode);
if(U_FAILURE(errorCode)) {
return FALSE;
}
switch(which) {
case UCHAR_CHANGES_WHEN_CASEFOLDED:
nfd=nfcImpl->getDecomposition(c, nfdBuffer, nfdLength);
if(nfd!=NULL) {
/* c has a decomposition */
if(nfdLength==1) {
c=nfd[0]; /* single BMP code point */
} else if(nfdLength<=U16_MAX_LENGTH) {
int32_t i=0;
U16_NEXT(nfd, i, nfdLength, c);
if(i==nfdLength) {
/* single supplementary code point */
} else {
c=U_SENTINEL;
}
} else {
c=U_SENTINEL;
}
} else if(c<0) {
return FALSE; /* protect against bad input */
}
errorCode=U_ZERO_ERROR;
if(c>=0) {
/* single code point */
const UCaseProps *csp=ucase_getSingleton(&errorCode);
const UChar *resultString;
return (UBool)(ucase_toFullFolding(csp, c, &resultString, U_FOLD_CASE_DEFAULT)>=0);
} else {
/* guess some large but stack-friendly capacity */
UChar dest[2*UCASE_MAX_STRING_LENGTH];
int32_t destLength;
destLength=u_strFoldCase(dest, LENGTHOF(dest), nfd, nfdLength, U_FOLD_CASE_DEFAULT, &errorCode);
return (UBool)(U_SUCCESS(errorCode) && 0!=u_strCompare(nfd, nfdLength, dest, destLength, FALSE));
}
default:
break;
}
#endif
}
}
}
return FALSE;
}
#if !UCONFIG_NO_NORMALIZATION
U_CAPI uint8_t U_EXPORT2
u_getCombiningClass(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
const Normalizer2Impl *impl=Normalizer2Factory::getNFCImpl(errorCode);
if(U_SUCCESS(errorCode)) {
return impl->getCC(impl->getNorm16(c));
} else {
return 0;
}
}
static uint16_t
getFCD16(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
const UTrie2 *trie=Normalizer2Factory::getFCDTrie(errorCode);
if(U_SUCCESS(errorCode)) {
return UTRIE2_GET16(trie, c);
} else {
return 0;
}
}
#endif
/*
* Map some of the Grapheme Cluster Break values to Hangul Syllable Types.
* Hangul_Syllable_Type is fully redundant with a subset of Grapheme_Cluster_Break.
*/
static const UHangulSyllableType gcbToHst[]={
U_HST_NOT_APPLICABLE, /* U_GCB_OTHER */
U_HST_NOT_APPLICABLE, /* U_GCB_CONTROL */
U_HST_NOT_APPLICABLE, /* U_GCB_CR */
U_HST_NOT_APPLICABLE, /* U_GCB_EXTEND */
U_HST_LEADING_JAMO, /* U_GCB_L */
U_HST_NOT_APPLICABLE, /* U_GCB_LF */
U_HST_LV_SYLLABLE, /* U_GCB_LV */
U_HST_LVT_SYLLABLE, /* U_GCB_LVT */
U_HST_TRAILING_JAMO, /* U_GCB_T */
U_HST_VOWEL_JAMO /* U_GCB_V */
/*
* Omit GCB values beyond what we need for hst.
* The code below checks for the array length.
*/
};
U_CAPI int32_t U_EXPORT2
u_getIntPropertyValue(UChar32 c, UProperty which) {
UErrorCode errorCode;
if(which<UCHAR_BINARY_START) {
return 0; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return (int32_t)u_hasBinaryProperty(c, which);
} else if(which<UCHAR_INT_START) {
return 0; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)u_charDirection(c);
case UCHAR_BLOCK:
return (int32_t)ublock_getCode(c);
#if !UCONFIG_NO_NORMALIZATION
case UCHAR_CANONICAL_COMBINING_CLASS:
return u_getCombiningClass(c);
#endif
case UCHAR_DECOMPOSITION_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_DT_MASK);
case UCHAR_EAST_ASIAN_WIDTH:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)u_charType(c);
case UCHAR_JOINING_GROUP:
return ubidi_getJoiningGroup(GET_BIDI_PROPS(), c);
case UCHAR_JOINING_TYPE:
return ubidi_getJoiningType(GET_BIDI_PROPS(), c);
case UCHAR_LINE_BREAK:
return (int32_t)(u_getUnicodeProperties(c, UPROPS_LB_VWORD)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
case UCHAR_NUMERIC_TYPE: {
int32_t ntv=(int32_t)GET_NUMERIC_TYPE_VALUE(u_getUnicodeProperties(c, -1));
return UPROPS_NTV_GET_TYPE(ntv);
}
case UCHAR_SCRIPT:
errorCode=U_ZERO_ERROR;
return (int32_t)uscript_getScript(c, &errorCode);
case UCHAR_HANGUL_SYLLABLE_TYPE: {
/* see comments on gcbToHst[] above */
int32_t gcb=(int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_GCB_MASK)>>UPROPS_GCB_SHIFT;
if(gcb<LENGTHOF(gcbToHst)) {
return gcbToHst[gcb];
} else {
return U_HST_NOT_APPLICABLE;
}
}
#if !UCONFIG_NO_NORMALIZATION
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return (int32_t)unorm_getQuickCheck(c, (UNormalizationMode)(which-UCHAR_NFD_QUICK_CHECK+UNORM_NFD));
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
return getFCD16(c)>>8;
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return getFCD16(c)&0xff;
#endif
case UCHAR_GRAPHEME_CLUSTER_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_GCB_MASK)>>UPROPS_GCB_SHIFT;
case UCHAR_SENTENCE_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_SB_MASK)>>UPROPS_SB_SHIFT;
case UCHAR_WORD_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_WB_MASK)>>UPROPS_WB_SHIFT;
default:
return 0; /* undefined */
}
} else if(which==UCHAR_GENERAL_CATEGORY_MASK) {
return U_MASK(u_charType(c));
} else {
return 0; /* undefined */
}
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMinValue(UProperty which) {
return 0; /* all binary/enum/int properties have a minimum value of 0 */
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMaxValue(UProperty which) {
if(which<UCHAR_BINARY_START) {
return -1; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return 1; /* maximum TRUE for all binary properties */
} else if(which<UCHAR_INT_START) {
return -1; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
case UCHAR_JOINING_GROUP:
case UCHAR_JOINING_TYPE:
return ubidi_getMaxValue(GET_BIDI_PROPS(), which);
case UCHAR_BLOCK:
return (uprv_getMaxValues(0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT;
case UCHAR_CANONICAL_COMBINING_CLASS:
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */
case UCHAR_DECOMPOSITION_TYPE:
return uprv_getMaxValues(2)&UPROPS_DT_MASK;
case UCHAR_EAST_ASIAN_WIDTH:
return (uprv_getMaxValues(0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)U_CHAR_CATEGORY_COUNT-1;
case UCHAR_LINE_BREAK:
return (uprv_getMaxValues(UPROPS_LB_VWORD)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
case UCHAR_NUMERIC_TYPE:
return (int32_t)U_NT_COUNT-1;
case UCHAR_SCRIPT:
return uprv_getMaxValues(0)&UPROPS_SCRIPT_MASK;
case UCHAR_HANGUL_SYLLABLE_TYPE:
return (int32_t)U_HST_COUNT-1;
#if !UCONFIG_NO_NORMALIZATION
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
return (int32_t)UNORM_YES; /* these are never "maybe", only "no" or "yes" */
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return (int32_t)UNORM_MAYBE;
#endif
case UCHAR_GRAPHEME_CLUSTER_BREAK:
return (uprv_getMaxValues(2)&UPROPS_GCB_MASK)>>UPROPS_GCB_SHIFT;
case UCHAR_SENTENCE_BREAK:
return (uprv_getMaxValues(2)&UPROPS_SB_MASK)>>UPROPS_SB_SHIFT;
case UCHAR_WORD_BREAK:
return (uprv_getMaxValues(2)&UPROPS_WB_MASK)>>UPROPS_WB_SHIFT;
default:
return -1; /* undefined */
}
} else {
return -1; /* undefined */
}
}
/*
* TODO: Simplify, similar to binProps[].
* Use an array of column/source, mask, shift values to drive returning simple
* properties and their sources.
*
* TODO: Split the single propsvec into one per column, and have
* upropsvec_addPropertyStarts() pass a trie value function that gets the
* desired column's values.
*/
U_CFUNC UPropertySource U_EXPORT2
uprops_getSource(UProperty which) {
if(which<UCHAR_BINARY_START) {
return UPROPS_SRC_NONE; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
if(binProps[which].mask!=0) {
return UPROPS_SRC_PROPSVEC;
} else {
return (UPropertySource)binProps[which].column;
}
} else if(which<UCHAR_INT_START) {
return UPROPS_SRC_NONE; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_GENERAL_CATEGORY:
case UCHAR_NUMERIC_TYPE:
return UPROPS_SRC_CHAR;
case UCHAR_CANONICAL_COMBINING_CLASS:
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return UPROPS_SRC_NFC;
case UCHAR_NFKD_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return UPROPS_SRC_NFKC;
case UCHAR_BIDI_CLASS:
case UCHAR_JOINING_GROUP:
case UCHAR_JOINING_TYPE:
return UPROPS_SRC_BIDI;
default:
return UPROPS_SRC_PROPSVEC;
}
} else if(which<UCHAR_STRING_START) {
switch(which) {
case UCHAR_GENERAL_CATEGORY_MASK:
case UCHAR_NUMERIC_VALUE:
return UPROPS_SRC_CHAR;
default:
return UPROPS_SRC_NONE;
}
} else if(which<UCHAR_STRING_LIMIT) {
switch(which) {
case UCHAR_AGE:
return UPROPS_SRC_PROPSVEC;
case UCHAR_BIDI_MIRRORING_GLYPH:
return UPROPS_SRC_BIDI;
case UCHAR_CASE_FOLDING:
case UCHAR_LOWERCASE_MAPPING:
case UCHAR_SIMPLE_CASE_FOLDING:
case UCHAR_SIMPLE_LOWERCASE_MAPPING:
case UCHAR_SIMPLE_TITLECASE_MAPPING:
case UCHAR_SIMPLE_UPPERCASE_MAPPING:
case UCHAR_TITLECASE_MAPPING:
case UCHAR_UPPERCASE_MAPPING:
return UPROPS_SRC_CASE;
case UCHAR_ISO_COMMENT:
case UCHAR_NAME:
case UCHAR_UNICODE_1_NAME:
return UPROPS_SRC_NAMES;
default:
return UPROPS_SRC_NONE;
}
} else {
return UPROPS_SRC_NONE; /* undefined */
}
}
#if !UCONFIG_NO_NORMALIZATION
U_CAPI int32_t U_EXPORT2
u_getFC_NFKC_Closure(UChar32 c, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
// Compute the FC_NFKC_Closure on the fly:
// We have the API for complete coverage of Unicode properties, although
// this value by itself is not useful via API.
// (What could be useful is a custom normalization table that combines
// case folding and NFKC.)
// For the derivation, see Unicode's DerivedNormalizationProps.txt.
const Normalizer2 *nfkc=Normalizer2Factory::getNFKCInstance(*pErrorCode);
const UCaseProps *csp=ucase_getSingleton(pErrorCode);
if(U_FAILURE(*pErrorCode)) {
return 0;
}
// first: b = NFKC(Fold(a))
UnicodeString folded1String;
const UChar *folded1;
int32_t folded1Length=ucase_toFullFolding(csp, c, &folded1, U_FOLD_CASE_DEFAULT);
if(folded1Length<0) {
const Normalizer2Impl *nfkcImpl=Normalizer2Factory::getImpl(nfkc);
if(nfkcImpl->getCompQuickCheck(nfkcImpl->getNorm16(c))!=UNORM_NO) {
return u_terminateUChars(dest, destCapacity, 0, pErrorCode); // c does not change at all under CaseFolding+NFKC
}
folded1String.setTo(c);
} else {
if(folded1Length>UCASE_MAX_STRING_LENGTH) {
folded1String.setTo(folded1Length);
} else {
folded1String.setTo(FALSE, folded1, folded1Length);
}
}
UnicodeString kc1=nfkc->normalize(folded1String, *pErrorCode);
// second: c = NFKC(Fold(b))
UnicodeString folded2String(kc1);
UnicodeString kc2=nfkc->normalize(folded2String.foldCase(), *pErrorCode);
// if (c != b) add the mapping from a to c
if(U_FAILURE(*pErrorCode) || kc1==kc2) {
return u_terminateUChars(dest, destCapacity, 0, pErrorCode);
} else {
return kc2.extract(dest, destCapacity, *pErrorCode);
}
}
#endif
/*----------------------------------------------------------------
* Inclusions list
*----------------------------------------------------------------*/
/*
* Return a set of characters for property enumeration.
* The set implicitly contains 0x110000 as well, which is one more than the highest
* Unicode code point.
*
* This set is used as an ordered list - its code points are ordered, and
* consecutive code points (in Unicode code point order) in the set define a range.
* For each two consecutive characters (start, limit) in the set,
* all of the UCD/normalization and related properties for
* all code points start..limit-1 are all the same,
* except for character names and ISO comments.
*
* All Unicode code points U+0000..U+10ffff are covered by these ranges.
* The ranges define a partition of the Unicode code space.
* ICU uses the inclusions set to enumerate properties for generating
* UnicodeSets containing all code points that have a certain property value.
*
* The Inclusion List is generated from the UCD. It is generated
* by enumerating the data tries, and code points for hardcoded properties
* are added as well.
*
* --------------------------------------------------------------------------
*
* The following are ideas for getting properties-unique code point ranges,
* with possible optimizations beyond the current implementation.
* These optimizations would require more code and be more fragile.
* The current implementation generates one single list (set) for all properties.
*
* To enumerate properties efficiently, one needs to know ranges of
* repetitive values, so that the value of only each start code point
* can be applied to the whole range.
* This information is in principle available in the uprops.icu/unorm.icu data.
*
* There are two obstacles:
*
* 1. Some properties are computed from multiple data structures,
* making it necessary to get repetitive ranges by intersecting
* ranges from multiple tries.
*
* 2. It is not economical to write code for getting repetitive ranges
* that are precise for each of some 50 properties.
*
* Compromise ideas:
*
* - Get ranges per trie, not per individual property.
* Each range contains the same values for a whole group of properties.
* This would generate currently five range sets, two for uprops.icu tries
* and three for unorm.icu tries.
*
* - Combine sets of ranges for multiple tries to get sufficient sets
* for properties, e.g., the uprops.icu main and auxiliary tries
* for all non-normalization properties.
*
* Ideas for representing ranges and combining them:
*
* - A UnicodeSet could hold just the start code points of ranges.
* Multiple sets are easily combined by or-ing them together.
*
* - Alternatively, a UnicodeSet could hold each even-numbered range.
* All ranges could be enumerated by using each start code point
* (for the even-numbered ranges) as well as each limit (end+1) code point
* (for the odd-numbered ranges).
* It should be possible to combine two such sets by xor-ing them,
* but no more than two.
*
* The second way to represent ranges may(?!) yield smaller UnicodeSet arrays,
* but the first one is certainly simpler and applicable for combining more than
* two range sets.
*
* It is possible to combine all range sets for all uprops/unorm tries into one
* set that can be used for all properties.
* As an optimization, there could be less-combined range sets for certain
* groups of properties.
* The relationship of which less-combined range set to use for which property
* depends on the implementation of the properties and must be hardcoded
* - somewhat error-prone and higher maintenance but can be tested easily
* by building property sets "the simple way" in test code.
*
* ---
*
* Do not use a UnicodeSet pattern because that causes infinite recursion;
* UnicodeSet depends on the inclusions set.
*
* ---
*
* uprv_getInclusions() is commented out starting 2004-sep-13 because
* uniset_props.cpp now calls the uxyz_addPropertyStarts() directly,
* and only for the relevant property source.
*/
#if 0
U_CAPI void U_EXPORT2
uprv_getInclusions(const USetAdder *sa, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
}
#if !UCONFIG_NO_NORMALIZATION
unorm_addPropertyStarts(sa, pErrorCode);
#endif
uchar_addPropertyStarts(sa, pErrorCode);
ucase_addPropertyStarts(ucase_getSingleton(pErrorCode), sa, pErrorCode);
ubidi_addPropertyStarts(ubidi_getSingleton(pErrorCode), sa, pErrorCode);
}
#endif