/********************************************************************
* COPYRIGHT:
* Copyright (c) 1996-2010, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/* Test CalendarAstronomer for C++ */
#include "unicode/utypes.h"
#include "string.h"
#include "unicode/locid.h"
#if !UCONFIG_NO_FORMATTING
#include "astro.h"
#include "astrotst.h"
#include "gregoimp.h" // for Math
#include "unicode/simpletz.h"
static const double DAY_MS = 24.*60.*60.*1000.;
#define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
AstroTest::AstroTest(): astro(NULL), gc(NULL) {
}
void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ )
{
if (exec) logln("TestSuite AstroTest");
switch (index) {
// CASE(0,FooTest);
CASE(0,TestSolarLongitude);
CASE(1,TestLunarPosition);
CASE(2,TestCoordinates);
CASE(3,TestCoverage);
CASE(4,TestSunriseTimes);
CASE(5,TestBasics);
CASE(6,TestMoonAge);
default: name = ""; break;
}
}
#undef CASE
#define ASSERT_OK(x) if(U_FAILURE(x)) { dataerrln("%s:%d: %s\n", __FILE__, __LINE__, u_errorName(x)); return; }
void AstroTest::initAstro(UErrorCode &status) {
if(U_FAILURE(status)) return;
if((astro != NULL) || (gc != NULL)) {
dataerrln("Err: initAstro() called twice!");
closeAstro(status);
if(U_SUCCESS(status)) {
status = U_INTERNAL_PROGRAM_ERROR;
}
}
if(U_FAILURE(status)) return;
astro = new CalendarAstronomer();
gc = Calendar::createInstance(TimeZone::getGMT()->clone(), status);
}
void AstroTest::closeAstro(UErrorCode &/*status*/) {
if(astro != NULL) {
delete astro;
astro = NULL;
}
if(gc != NULL) {
delete gc;
gc = NULL;
}
}
void AstroTest::TestSolarLongitude(void) {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
struct {
int32_t d[5]; double f ;
} tests[] = {
{ { 1980, 7, 27, 0, 00 }, 124.114347 },
{ { 1988, 7, 27, 00, 00 }, 124.187732 }
};
logln("");
for (uint32_t i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) {
gc->clear();
gc->set(tests[i].d[0], tests[i].d[1]-1, tests[i].d[2], tests[i].d[3], tests[i].d[4]);
astro->setDate(gc->getTime(status));
double longitude = astro->getSunLongitude();
//longitude = 0;
CalendarAstronomer::Equatorial result;
astro->getSunPosition(result);
logln((UnicodeString)"Sun position is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude );
}
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestLunarPosition(void) {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
static const double tests[][7] = {
{ 1979, 2, 26, 16, 00, 0, 0 }
};
logln("");
for (int32_t i = 0; i < (int32_t)(sizeof(tests)/sizeof(tests[0])); i++) {
gc->clear();
gc->set((int32_t)tests[i][0], (int32_t)tests[i][1]-1, (int32_t)tests[i][2], (int32_t)tests[i][3], (int32_t)tests[i][4]);
astro->setDate(gc->getTime(status));
const CalendarAstronomer::Equatorial& result = astro->getMoonPosition();
logln((UnicodeString)"Moon position is " + result.toString() + (UnicodeString)"; " /* + result->toHmsString()*/);
}
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestCoordinates(void) {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
CalendarAstronomer::Equatorial result;
astro->eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
logln((UnicodeString)"result is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ );
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestCoverage(void) {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
GregorianCalendar *cal = new GregorianCalendar(1958, UCAL_AUGUST, 15,status);
UDate then = cal->getTime(status);
CalendarAstronomer *myastro = new CalendarAstronomer(then);
ASSERT_OK(status);
//Latitude: 34 degrees 05' North
//Longitude: 118 degrees 22' West
double laLat = 34 + 5./60, laLong = 360 - (118 + 22./60);
CalendarAstronomer *myastro2 = new CalendarAstronomer(laLong, laLat);
double eclLat = laLat * CalendarAstronomer::PI / 360;
double eclLong = laLong * CalendarAstronomer::PI / 360;
CalendarAstronomer::Ecliptic ecl(eclLat, eclLong);
CalendarAstronomer::Equatorial eq;
CalendarAstronomer::Horizon hor;
logln("ecliptic: " + ecl.toString());
CalendarAstronomer *myastro3 = new CalendarAstronomer();
myastro3->setJulianDay((4713 + 2000) * 365.25);
CalendarAstronomer *astronomers[] = {
myastro, myastro2, myastro3, myastro2 // check cache
};
for (uint32_t i = 0; i < sizeof(astronomers)/sizeof(astronomers[0]); ++i) {
CalendarAstronomer *anAstro = astronomers[i];
//logln("astro: " + astro);
logln((UnicodeString)" date: " + anAstro->getTime());
logln((UnicodeString)" cent: " + anAstro->getJulianCentury());
logln((UnicodeString)" gw sidereal: " + anAstro->getGreenwichSidereal());
logln((UnicodeString)" loc sidereal: " + anAstro->getLocalSidereal());
logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,ecl)).toString());
logln((UnicodeString)" equ long: " + (anAstro->eclipticToEquatorial(eq, eclLong)).toString());
logln((UnicodeString)" horiz: " + (anAstro->eclipticToHorizon(hor, eclLong)).toString());
logln((UnicodeString)" sunrise: " + (anAstro->getSunRiseSet(TRUE)));
logln((UnicodeString)" sunset: " + (anAstro->getSunRiseSet(FALSE)));
logln((UnicodeString)" moon phase: " + anAstro->getMoonPhase());
logln((UnicodeString)" moonrise: " + (anAstro->getMoonRiseSet(TRUE)));
logln((UnicodeString)" moonset: " + (anAstro->getMoonRiseSet(FALSE)));
logln((UnicodeString)" prev summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), FALSE)));
logln((UnicodeString)" next summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), TRUE)));
logln((UnicodeString)" prev full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), FALSE)));
logln((UnicodeString)" next full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), TRUE)));
}
delete myastro2;
delete myastro3;
delete myastro;
delete cal;
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestSunriseTimes(void) {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
// logln("Sunrise/Sunset times for San Jose, California, USA");
// CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
// TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
// We'll use a table generated by the UNSO website as our reference
// From: http://aa.usno.navy.mil/
//-Location: W079 25, N43 40
//-Rise and Set for the Sun for 2001
//-Zone: 4h West of Greenwich
int32_t USNO[] = {
6,59, 19,45,
6,57, 19,46,
6,56, 19,47,
6,54, 19,48,
6,52, 19,49,
6,50, 19,51,
6,48, 19,52,
6,47, 19,53,
6,45, 19,54,
6,43, 19,55,
6,42, 19,57,
6,40, 19,58,
6,38, 19,59,
6,36, 20, 0,
6,35, 20, 1,
6,33, 20, 3,
6,31, 20, 4,
6,30, 20, 5,
6,28, 20, 6,
6,27, 20, 7,
6,25, 20, 8,
6,23, 20,10,
6,22, 20,11,
6,20, 20,12,
6,19, 20,13,
6,17, 20,14,
6,16, 20,16,
6,14, 20,17,
6,13, 20,18,
6,11, 20,19,
};
logln("Sunrise/Sunset times for Toronto, Canada");
// long = 79 25", lat = 43 40"
CalendarAstronomer *astro3 = new CalendarAstronomer(-(79+25/60), 43+40/60);
// As of ICU4J 2.8 the ICU4J time zones implement pass-through
// to the underlying JDK. Because of variation in the
// underlying JDKs, we have to use a fixed-offset
// SimpleTimeZone to get consistent behavior between JDKs.
// The offset we want is [-18000000, 3600000] (raw, dst).
// [aliu 10/15/03]
// TimeZone tz = TimeZone.getTimeZone("America/Montreal");
TimeZone *tz = new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
GregorianCalendar *cal = new GregorianCalendar(tz->clone(), Locale::getUS(), status);
GregorianCalendar *cal2 = new GregorianCalendar(tz->clone(), Locale::getUS(), status);
cal->clear();
cal->set(UCAL_YEAR, 2001);
cal->set(UCAL_MONTH, UCAL_APRIL);
cal->set(UCAL_DAY_OF_MONTH, 1);
cal->set(UCAL_HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
DateFormat *df_t = DateFormat::createTimeInstance(DateFormat::MEDIUM,Locale::getUS());
DateFormat *df_d = DateFormat::createDateInstance(DateFormat::MEDIUM,Locale::getUS());
DateFormat *df_dt = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
if(!df_t || !df_d || !df_dt) {
dataerrln("couldn't create dateformats.");
return;
}
df_t->adoptTimeZone(tz->clone());
df_d->adoptTimeZone(tz->clone());
df_dt->adoptTimeZone(tz->clone());
for (int32_t i=0; i < 30; i++) {
logln("setDate\n");
astro3->setDate(cal->getTime(status));
logln("getRiseSet(TRUE)\n");
UDate sunrise = astro3->getSunRiseSet(TRUE);
logln("getRiseSet(FALSE)\n");
UDate sunset = astro3->getSunRiseSet(FALSE);
logln("end of getRiseSet\n");
cal2->setTime(cal->getTime(status), status);
cal2->set(UCAL_SECOND, 0);
cal2->set(UCAL_MILLISECOND, 0);
cal2->set(UCAL_HOUR_OF_DAY, USNO[4*i+0]);
cal2->set(UCAL_MINUTE, USNO[4*i+1]);
UDate exprise = cal2->getTime(status);
cal2->set(UCAL_HOUR_OF_DAY, USNO[4*i+2]);
cal2->set(UCAL_MINUTE, USNO[4*i+3]);
UDate expset = cal2->getTime(status);
// Compute delta of what we got to the USNO data, in seconds
int32_t deltarise = (int32_t)uprv_fabs((sunrise - exprise) / 1000);
int32_t deltaset = (int32_t)uprv_fabs((sunset - expset) / 1000);
// Allow a deviation of 0..MAX_DEV seconds
// It would be nice to get down to 60 seconds, but at this
// point that appears to be impossible without a redo of the
// algorithm using something more advanced than Duffett-Smith.
int32_t MAX_DEV = 180;
UnicodeString s1, s2, s3, s4, s5;
if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
if (deltarise > MAX_DEV) {
errln("FAIL: (rise) " + df_d->format(cal->getTime(status),s1) +
", Sunrise: " + df_dt->format(sunrise, s2) +
" (USNO " + df_t->format(exprise,s3) +
" d=" + deltarise + "s)");
} else {
logln(df_d->format(cal->getTime(status),s1) +
", Sunrise: " + df_dt->format(sunrise,s2) +
" (USNO " + df_t->format(exprise,s3) + ")");
}
s1.remove(); s2.remove(); s3.remove(); s4.remove(); s5.remove();
if (deltaset > MAX_DEV) {
errln("FAIL: (set) " + df_d->format(cal->getTime(status),s1) +
", Sunset: " + df_dt->format(sunset,s2) +
" (USNO " + df_t->format(expset,s3) +
" d=" + deltaset + "s)");
} else {
logln(df_d->format(cal->getTime(status),s1) +
", Sunset: " + df_dt->format(sunset,s2) +
" (USNO " + df_t->format(expset,s3) + ")");
}
} else {
logln(df_d->format(cal->getTime(status),s1) +
", Sunrise: " + df_dt->format(sunrise,s2) +
" (USNO " + df_t->format(exprise,s3) + ")" +
", Sunset: " + df_dt->format(sunset,s4) +
" (USNO " + df_t->format(expset,s5) + ")");
}
cal->add(UCAL_DATE, 1, status);
}
// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
// cal.clear();
// cal.set(cal.YEAR, 1986);
// cal.set(cal.MONTH, cal.MARCH);
// cal.set(cal.DATE, 10);
// cal.set(cal.YEAR, 1988);
// cal.set(cal.MONTH, cal.JULY);
// cal.set(cal.DATE, 27);
// a.setDate(cal.getTime());
// long r = a.getSunRiseSet2(true);
delete astro3;
delete tz;
delete cal;
delete cal2;
delete df_t;
delete df_d;
delete df_dt;
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestBasics(void) {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
if (U_FAILURE(status)) {
dataerrln("Got error: %s", u_errorName(status));
return;
}
// Check that our JD computation is the same as the book's (p. 88)
GregorianCalendar *cal3 = new GregorianCalendar(TimeZone::getGMT()->clone(), Locale::getUS(), status);
DateFormat *d3 = DateFormat::createDateTimeInstance(DateFormat::MEDIUM,DateFormat::MEDIUM,Locale::getUS());
d3->setTimeZone(*TimeZone::getGMT());
cal3->clear();
cal3->set(UCAL_YEAR, 1980);
cal3->set(UCAL_MONTH, UCAL_JULY);
cal3->set(UCAL_DATE, 2);
logln("cal3[a]=%.1lf, d=%d\n", cal3->getTime(status), cal3->get(UCAL_JULIAN_DAY,status));
{
UnicodeString s;
logln(UnicodeString("cal3[a] = ") + d3->format(cal3->getTime(status),s));
}
cal3->clear();
cal3->set(UCAL_YEAR, 1980);
cal3->set(UCAL_MONTH, UCAL_JULY);
cal3->set(UCAL_DATE, 27);
logln("cal3=%.1lf, d=%d\n", cal3->getTime(status), cal3->get(UCAL_JULIAN_DAY,status));
ASSERT_OK(status);
{
UnicodeString s;
logln(UnicodeString("cal3 = ") + d3->format(cal3->getTime(status),s));
}
astro->setTime(cal3->getTime(status));
double jd = astro->getJulianDay() - 2447891.5;
double exp = -3444.;
if (jd == exp) {
UnicodeString s;
logln(d3->format(cal3->getTime(status),s) + " => " + jd);
} else {
UnicodeString s;
errln("FAIL: " + d3->format(cal3->getTime(status), s) + " => " + jd +
", expected " + exp);
}
// cal3.clear();
// cal3.set(cal3.YEAR, 1990);
// cal3.set(cal3.MONTH, Calendar.JANUARY);
// cal3.set(cal3.DATE, 1);
// cal3.add(cal3.DATE, -1);
// astro.setDate(cal3.getTime());
// astro.foo();
delete cal3;
delete d3;
ASSERT_OK(status);
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestMoonAge(void){
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
// more testcases are around the date 05/20/2012
//ticket#3785 UDate ud0 = 1337557623000.0;
static const double testcase[][10] = {{2012, 5, 20 , 16 , 48, 59},
{2012, 5, 20 , 16 , 47, 34},
{2012, 5, 21, 00, 00, 00},
{2012, 5, 20, 14, 55, 59},
{2012, 5, 21, 7, 40, 40},
{2023, 9, 25, 10,00, 00},
{2008, 7, 7, 15, 00, 33},
{1832, 9, 24, 2, 33, 41 },
{2016, 1, 31, 23, 59, 59},
{2099, 5, 20, 14, 55, 59}
};
// Moon phase angle - Got from http://www.moonsystem.to/checkupe.htm
static const double angle[] = {356.8493418421329, 356.8386760059673, 0.09625415252237701, 355.9986960782416, 3.5714026601303317, 124.26906744384183, 59.80247650195558,
357.54163205513123, 268.41779281511094, 4.82340276581624};
static const double precision = CalendarAstronomer::PI/32;
for (int32_t i = 0; i < (int32_t)(sizeof(testcase)/sizeof(testcase[0])); i++) {
gc->clear();
logln((UnicodeString)"CASE["+i+"]: Year "+(int32_t)testcase[i][0]+" Month "+(int32_t)testcase[i][1]+" Day "+
(int32_t)testcase[i][2]+" Hour "+(int32_t)testcase[i][3]+" Minutes "+(int32_t)testcase[i][4]+
" Seconds "+(int32_t)testcase[i][5]);
gc->set((int32_t)testcase[i][0], (int32_t)testcase[i][1]-1, (int32_t)testcase[i][2], (int32_t)testcase[i][3], (int32_t)testcase[i][4], (int32_t)testcase[i][5]);
astro->setDate(gc->getTime(status));
double expectedAge = (angle[i]*CalendarAstronomer::PI)/180;
double got = astro->getMoonAge();
//logln(testString);
if(!(got>expectedAge-precision && got<expectedAge+precision)){
errln((UnicodeString)"FAIL: expected " + expectedAge +
" got " + got);
}else{
logln((UnicodeString)"PASS: expected " + expectedAge +
" got " + got);
}
}
closeAstro(status);
ASSERT_OK(status);
}
// TODO: try finding next new moon after 07/28/1984 16:00 GMT
#endif