/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
/*
* See private.h for the more commonly used macro versions.
*/
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
#define saturate(x) \
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
word gsm_add P2((a,b), word a, word b)
{
longword sum = (longword)a + (longword)b;
return saturate(sum);
}
word gsm_sub P2((a,b), word a, word b)
{
longword diff = (longword)a - (longword)b;
return saturate(diff);
}
word gsm_mult P2((a,b), word a, word b)
{
if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
else return SASR( (longword)a * (longword)b, 15 );
}
word gsm_mult_r P2((a,b), word a, word b)
{
if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
else {
longword prod = (longword)a * (longword)b + 16384;
prod >>= 15;
return prod & 0xFFFF;
}
}
word gsm_abs P1((a), word a)
{
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}
longword gsm_L_mult P2((a,b),word a, word b)
{
assert( a != MIN_WORD || b != MIN_WORD );
return ((longword)a * (longword)b) << 1;
}
longword gsm_L_add P2((a,b), longword a, longword b)
{
if (a < 0) {
if (b >= 0) return a + b;
else {
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
}
}
else if (b <= 0) return a + b;
else {
ulongword A = (ulongword)a + (ulongword)b;
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
}
}
longword gsm_L_sub P2((a,b), longword a, longword b)
{
if (a >= 0) {
if (b >= 0) return a - b;
else {
/* a>=0, b<0 */
ulongword A = (ulongword)a + -(b + 1);
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
}
}
else if (b <= 0) return a - b;
else {
/* a<0, b>0 */
ulongword A = (ulongword)-(a + 1) + b;
return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
}
}
static unsigned char const bitoff[ 256 ] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
word gsm_norm P1((a), longword a )
/*
* the number of left shifts needed to normalize the 32 bit
* variable L_var1 for positive values on the interval
*
* with minimum of
* minimum of 1073741824 (01000000000000000000000000000000) and
* maximum of 2147483647 (01111111111111111111111111111111)
*
*
* and for negative values on the interval with
* minimum of -2147483648 (-10000000000000000000000000000000) and
* maximum of -1073741824 ( -1000000000000000000000000000000).
*
* in order to normalize the result, the following
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
*
* (That's 'ffs', only from the left, not the right..)
*/
{
assert(a != 0);
if (a < 0) {
if (a <= -1073741824) return 0;
a = ~a;
}
return a & 0xffff0000
? ( a & 0xff000000
? -1 + bitoff[ 0xFF & (a >> 24) ]
: 7 + bitoff[ 0xFF & (a >> 16) ] )
: ( a & 0xff00
? 15 + bitoff[ 0xFF & (a >> 8) ]
: 23 + bitoff[ 0xFF & a ] );
}
longword gsm_L_asl P2((a,n), longword a, int n)
{
if (n >= 32) return 0;
if (n <= -32) return -(a < 0);
if (n < 0) return gsm_L_asr(a, -n);
return a << n;
}
word gsm_asl P2((a,n), word a, int n)
{
if (n >= 16) return 0;
if (n <= -16) return -(a < 0);
if (n < 0) return gsm_asr(a, -n);
return a << n;
}
longword gsm_L_asr P2((a,n), longword a, int n)
{
if (n >= 32) return -(a < 0);
if (n <= -32) return 0;
if (n < 0) return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0) return a >> n;
else return -(longword)( -(ulongword)a >> n );
# endif
}
word gsm_asr P2((a,n), word a, int n)
{
if (n >= 16) return -(a < 0);
if (n <= -16) return 0;
if (n < 0) return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0) return a >> n;
else return -(word)( -(uword)a >> n );
# endif
}
/*
* (From p. 46, end of section 4.2.5)
*
* NOTE: The following lines gives [sic] one correct implementation
* of the div(num, denum) arithmetic operation. Compute div
* which is the integer division of num by denum: with denum
* >= num > 0
*/
word gsm_div P2((num,denum), word num, word denum)
{
longword L_num = num;
longword L_denum = denum;
word div = 0;
int k = 15;
/* The parameter num sometimes becomes zero.
* Although this is explicitly guarded against in 4.2.5,
* we assume that the result should then be zero as well.
*/
/* assert(num != 0); */
assert(num >= 0 && denum >= num);
if (num == 0)
return 0;
while (k--) {
div <<= 1;
L_num <<= 1;
if (L_num >= L_denum) {
L_num -= L_denum;
div++;
}
}
return div;
}