/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "math.h"
#include "limits.h"
#include "block.h"
#include "onyx_int.h"
#include "variance.h"
#include "encodeintra.h"
#include "setupintrarecon.h"
#include "mcomp.h"
#include "vpx_scale/vpxscale.h"
#include "encodemb.h"
#include "extend.h"
#include "systemdependent.h"
#include "vpx_scale/yv12extend.h"
#include "vpx_mem/vpx_mem.h"
#include "swapyv12buffer.h"
#include <stdio.h>
#include "rdopt.h"
#include "quant_common.h"
#include "encodemv.h"
//#define OUTPUT_FPF 1
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
extern void vp8_build_block_offsets(MACROBLOCK *x);
extern void vp8_setup_block_ptrs(MACROBLOCK *x);
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv);
extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
//#define GFQ_ADJUSTMENT (40 + ((15*Q)/10))
//#define GFQ_ADJUSTMENT (80 + ((15*Q)/10))
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
#define IIFACTOR 1.4
#define IIKFACTOR1 1.40
#define IIKFACTOR2 1.5
#define RMAX 14.0
#define GF_RMAX 48.0 // 128.0
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3};
static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3};
void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps);
int vp8_encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred)
{
int i;
int intra_pred_var = 0;
(void) cpi;
if (use_dc_pred)
{
x->e_mbd.mode_info_context->mbmi.mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x);
}
else
{
for (i = 0; i < 16; i++)
{
BLOCKD *b = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
vp8_encode_intra4x4block(IF_RTCD(&cpi->rtcd), x, be, b, B_DC_PRED);
}
}
intra_pred_var = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff);
return intra_pred_var;
}
// Resets the first pass file to the given position using a relative seek from the current position
static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
{
cpi->stats_in = Position;
}
static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
{
if (cpi->stats_in >= cpi->stats_in_end)
return EOF;
*next_frame = *cpi->stats_in;
return 1;
}
// Calculate a modified Error used in distributing bits between easier and harder frames
static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
double av_err = cpi->total_stats->ssim_weighted_pred_err;
double this_err = this_frame->ssim_weighted_pred_err;
double modified_err;
//double relative_next_iiratio;
//double next_iiratio;
//double sum_iiratio;
//int i;
//FIRSTPASS_STATS next_frame;
//FIRSTPASS_STATS *start_pos;
/*start_pos = cpi->stats_in;
sum_iiratio = 0.0;
i = 0;
while ( (i < 1) && vp8_input_stats(cpi,&next_frame) != EOF )
{
next_iiratio = next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
next_iiratio = ( next_iiratio < 1.0 ) ? 1.0 : (next_iiratio > 20.0) ? 20.0 : next_iiratio;
sum_iiratio += next_iiratio;
i++;
}
if ( i > 0 )
{
relative_next_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK(cpi->avg_iiratio * (double)i);
}
else
{
relative_next_iiratio = 1.0;
}
reset_fpf_position(cpi, start_pos);*/
if (this_err > av_err)
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
else
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
/*
relative_next_iiratio = pow(relative_next_iiratio,0.25);
modified_err = modified_err * relative_next_iiratio;
*/
return modified_err;
}
double vp8_simple_weight(YV12_BUFFER_CONFIG *source)
{
int i, j;
unsigned char *src = source->y_buffer;
unsigned char value;
double sum_weights = 0.0;
double Weight;
// Loop throught the Y plane raw examining levels and creating a weight for the image
for (i = 0; i < source->y_height; i++)
{
for (j = 0; j < source->y_width; j++)
{
value = src[j];
if (value >= 64)
Weight = 1.0;
else if (value > 32)
Weight = (value - 32.0f) / 32.0f;
else
Weight = 0.02;
sum_weights += Weight;
}
src += source->y_stride;
}
sum_weights /= (source->y_height * source->y_width);
return sum_weights;
}
// This function returns the current per frame maximum bitrate target
int frame_max_bits(VP8_COMP *cpi)
{
// Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
int max_bits;
// For CBR we need to also consider buffer fullness.
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
// If our buffer is below the optimum level
if (buffer_fullness_ratio < 1.0)
{
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
max_bits = (int)(max_bits * buffer_fullness_ratio);
if (max_bits < min_max_bits)
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
}
}
// VBR
else
{
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
max_bits = (int)(((double)cpi->bits_left / (cpi->total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
}
// Trap case where we are out of bits
if (max_bits < 0)
max_bits = 0;
return max_bits;
}
extern size_t vp8_firstpass_stats_sz(unsigned int mb_count)
{
/* Calculate the size of a stats packet, which is dependent on the frame
* resolution. The FIRSTPASS_STATS struct has a single element array,
* motion_map, which is virtually expanded to have one element per
* macroblock.
*/
size_t stats_sz;
FIRSTPASS_STATS stats;
stats_sz = sizeof(FIRSTPASS_STATS) + mb_count;
stats_sz = (stats_sz + 7) & ~7;
return stats_sz;
}
void vp8_output_stats(const VP8_COMP *cpi,
struct vpx_codec_pkt_list *pktlist,
FIRSTPASS_STATS *stats)
{
struct vpx_codec_cx_pkt pkt;
pkt.kind = VPX_CODEC_STATS_PKT;
pkt.data.twopass_stats.buf = stats;
pkt.data.twopass_stats.sz = vp8_firstpass_stats_sz(cpi->common.MBs);
vpx_codec_pkt_list_add(pktlist, &pkt);
// TEMP debug code
#if OUTPUT_FPF
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.0f\n",
stats->frame,
stats->intra_error,
stats->coded_error,
stats->ssim_weighted_pred_err,
stats->pcnt_inter,
stats->pcnt_motion,
stats->pcnt_second_ref,
stats->MVr,
stats->mvr_abs,
stats->MVc,
stats->mvc_abs,
stats->MVrv,
stats->MVcv,
stats->mv_in_out_count,
stats->count);
fclose(fpfile);
fpfile = fopen("fpmotionmap.stt", "a");
if(fwrite(cpi->fp_motion_map, 1, cpi->common.MBs, fpfile));
fclose(fpfile);
}
#endif
}
int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
{
size_t stats_sz = vp8_firstpass_stats_sz(cpi->common.MBs);
if (cpi->stats_in >= cpi->stats_in_end)
return EOF;
*fps = *cpi->stats_in;
cpi->stats_in = (void*)((char *)cpi->stats_in + stats_sz);
return 1;
}
void vp8_zero_stats(FIRSTPASS_STATS *section)
{
section->frame = 0.0;
section->intra_error = 0.0;
section->coded_error = 0.0;
section->ssim_weighted_pred_err = 0.0;
section->pcnt_inter = 0.0;
section->pcnt_motion = 0.0;
section->pcnt_second_ref = 0.0;
section->MVr = 0.0;
section->mvr_abs = 0.0;
section->MVc = 0.0;
section->mvc_abs = 0.0;
section->MVrv = 0.0;
section->MVcv = 0.0;
section->mv_in_out_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
}
void vp8_accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
{
section->frame += frame->frame;
section->intra_error += frame->intra_error;
section->coded_error += frame->coded_error;
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
section->pcnt_inter += frame->pcnt_inter;
section->pcnt_motion += frame->pcnt_motion;
section->pcnt_second_ref += frame->pcnt_second_ref;
section->MVr += frame->MVr;
section->mvr_abs += frame->mvr_abs;
section->MVc += frame->MVc;
section->mvc_abs += frame->mvc_abs;
section->MVrv += frame->MVrv;
section->MVcv += frame->MVcv;
section->mv_in_out_count += frame->mv_in_out_count;
section->count += frame->count;
section->duration += frame->duration;
}
void vp8_avg_stats(FIRSTPASS_STATS *section)
{
if (section->count < 1.0)
return;
section->intra_error /= section->count;
section->coded_error /= section->count;
section->ssim_weighted_pred_err /= section->count;
section->pcnt_inter /= section->count;
section->pcnt_second_ref /= section->count;
section->pcnt_motion /= section->count;
section->MVr /= section->count;
section->mvr_abs /= section->count;
section->MVc /= section->count;
section->mvc_abs /= section->count;
section->MVrv /= section->count;
section->MVcv /= section->count;
section->mv_in_out_count /= section->count;
section->duration /= section->count;
}
unsigned char *vp8_fpmm_get_pos(VP8_COMP *cpi)
{
return cpi->fp_motion_map_stats;
}
void vp8_fpmm_reset_pos(VP8_COMP *cpi, unsigned char *target_pos)
{
int Offset;
cpi->fp_motion_map_stats = target_pos;
}
void vp8_advance_fpmm(VP8_COMP *cpi, int count)
{
cpi->fp_motion_map_stats = (void*)((char*)cpi->fp_motion_map_stats +
count * vp8_firstpass_stats_sz(cpi->common.MBs));
}
void vp8_input_fpmm(VP8_COMP *cpi)
{
unsigned char *fpmm = cpi->fp_motion_map;
int MBs = cpi->common.MBs;
int max_frames = cpi->active_arnr_frames;
int i;
for (i=0; i<max_frames; i++)
{
char *motion_map = (char*)cpi->fp_motion_map_stats
+ sizeof(FIRSTPASS_STATS);
memcpy(fpmm, motion_map, MBs);
fpmm += MBs;
vp8_advance_fpmm(cpi, 1);
}
// Flag the use of weights in the temporal filter
cpi->use_weighted_temporal_filter = 1;
}
void vp8_init_first_pass(VP8_COMP *cpi)
{
vp8_zero_stats(cpi->total_stats);
// TEMP debug code
#ifdef OUTPUT_FPF
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "w");
fclose(fpfile);
fpfile = fopen("fpmotionmap.stt", "wb");
fclose(fpfile);
}
#endif
}
void vp8_end_first_pass(VP8_COMP *cpi)
{
vp8_output_stats(cpi, cpi->output_pkt_list, cpi->total_stats);
}
void vp8_zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset )
{
MACROBLOCKD * const xd = & x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
unsigned char *src_ptr = (*(b->base_src) + b->src);
int src_stride = b->src_stride;
unsigned char *ref_ptr;
int ref_stride=d->pre_stride;
// Set up pointers for this macro block recon buffer
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre );
VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
}
void vp8_first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, MV *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset )
{
MACROBLOCKD *const xd = & x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
int num00;
MV tmp_mv = {0, 0};
int tmp_err;
int step_param = 3; //3; // Dont search over full range for first pass
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3;
int n;
vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
int new_mv_mode_penalty = 256;
// override the default variance function to use MSE
v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16);
// Set up pointers for this macro block recon buffer
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
// Initial step/diamond search centred on best mv
tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost);
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err)
{
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.row;
best_mv->col = tmp_mv.col;
}
// Further step/diamond searches as necessary
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param + n, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost);
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err)
{
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.row;
best_mv->col = tmp_mv.col;
}
}
}
}
void vp8_first_pass(VP8_COMP *cpi)
{
int mb_row, mb_col;
MACROBLOCK *const x = & cpi->mb;
VP8_COMMON *const cm = & cpi->common;
MACROBLOCKD *const xd = & x->e_mbd;
int col_blocks = 4 * cm->mb_cols;
int recon_yoffset, recon_uvoffset;
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
int recon_y_stride = lst_yv12->y_stride;
int recon_uv_stride = lst_yv12->uv_stride;
int intra_error = 0;
int coded_error = 0;
int sum_mvr = 0, sum_mvc = 0;
int sum_mvr_abs = 0, sum_mvc_abs = 0;
int sum_mvrs = 0, sum_mvcs = 0;
int mvcount = 0;
int intercount = 0;
int second_ref_count = 0;
int intrapenalty = 256;
int sum_in_vectors = 0;
MV best_ref_mv = {0, 0};
MV zero_ref_mv = {0, 0};
unsigned char *fp_motion_map_ptr = cpi->fp_motion_map;
vp8_clear_system_state(); //__asm emms;
x->src = * cpi->Source;
xd->pre = *lst_yv12;
xd->dst = *new_yv12;
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
vp8_build_block_offsets(x);
vp8_setup_block_dptrs(&x->e_mbd);
vp8_setup_block_ptrs(x);
// set up frame new frame for intra coded blocks
vp8_setup_intra_recon(new_yv12);
vp8cx_frame_init_quantizer(cpi);
// Initialise the MV cost table to the defaults
//if( cm->current_video_frame == 0)
//if ( 0 )
{
int flag[2] = {1, 1};
vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
}
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
MV best_ref_mv = {0, 0};
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
int this_error;
int zero_error;
int zz_to_best_ratio;
int gf_motion_error = INT_MAX;
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
// do intra 16x16 prediction
this_error = vp8_encode_intra(cpi, x, use_dc_pred);
// "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
// We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
// When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
this_error += intrapenalty;
// Cumulative intra error total
intra_error += this_error;
// Indicate default assumption of intra in the motion map
*fp_motion_map_ptr = 0;
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
// Other than for the first frame do a motion search
if (cm->current_video_frame > 0)
{
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MV tmp_mv = {0, 0};
int tmp_err;
int motion_error = INT_MAX;
// Simple 0,0 motion with no mv overhead
vp8_zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset );
d->bmi.mv.as_mv.row = 0;
d->bmi.mv.as_mv.col = 0;
// Save (0,0) error for later use
zero_error = motion_error;
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search
vp8_first_pass_motion_search(cpi, x, &best_ref_mv,
&d->bmi.mv.as_mv, lst_yv12,
&motion_error, recon_yoffset);
// If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
if ((best_ref_mv.col != 0) || (best_ref_mv.row != 0))
{
tmp_err = INT_MAX;
vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv,
lst_yv12, &tmp_err, recon_yoffset);
if ( tmp_err < motion_error )
{
motion_error = tmp_err;
d->bmi.mv.as_mv.row = tmp_mv.row;
d->bmi.mv.as_mv.col = tmp_mv.col;
}
}
// Experimental search in a second reference frame ((0,0) based only)
if (cm->current_video_frame > 1)
{
vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset);
if ((gf_motion_error < motion_error) && (gf_motion_error < this_error))
{
second_ref_count++;
//motion_error = gf_motion_error;
//d->bmi.mv.as_mv.row = tmp_mv.row;
//d->bmi.mv.as_mv.col = tmp_mv.col;
}
/*else
{
xd->pre.y_buffer = cm->last_frame.y_buffer + recon_yoffset;
xd->pre.u_buffer = cm->last_frame.u_buffer + recon_uvoffset;
xd->pre.v_buffer = cm->last_frame.v_buffer + recon_uvoffset;
}*/
// Reset to last frame as reference buffer
xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
}
if (motion_error <= this_error)
{
d->bmi.mv.as_mv.row <<= 3;
d->bmi.mv.as_mv.col <<= 3;
this_error = motion_error;
vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv.as_mv);
vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
sum_mvr += d->bmi.mv.as_mv.row;
sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
sum_mvc += d->bmi.mv.as_mv.col;
sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
intercount++;
best_ref_mv.row = d->bmi.mv.as_mv.row;
best_ref_mv.col = d->bmi.mv.as_mv.col;
//best_ref_mv.row = 0;
//best_ref_mv.col = 0;
// Was the vector non-zero
if (d->bmi.mv.as_mv.row || d->bmi.mv.as_mv.col)
{
mvcount++;
// Does the Row vector point inwards or outwards
if (mb_row < cm->mb_rows / 2)
{
if (d->bmi.mv.as_mv.row > 0)
sum_in_vectors--;
else if (d->bmi.mv.as_mv.row < 0)
sum_in_vectors++;
}
else if (mb_row > cm->mb_rows / 2)
{
if (d->bmi.mv.as_mv.row > 0)
sum_in_vectors++;
else if (d->bmi.mv.as_mv.row < 0)
sum_in_vectors--;
}
// Does the Row vector point inwards or outwards
if (mb_col < cm->mb_cols / 2)
{
if (d->bmi.mv.as_mv.col > 0)
sum_in_vectors--;
else if (d->bmi.mv.as_mv.col < 0)
sum_in_vectors++;
}
else if (mb_col > cm->mb_cols / 2)
{
if (d->bmi.mv.as_mv.col > 0)
sum_in_vectors++;
else if (d->bmi.mv.as_mv.col < 0)
sum_in_vectors--;
}
// Compute how close (0,0) predictor is to best
// predictor in terms of their prediction error
zz_to_best_ratio = (10*zero_error + this_error/2)
/ (this_error+!this_error);
if ((zero_error < 50000) &&
(zz_to_best_ratio <= 11) )
*fp_motion_map_ptr = 1;
else
*fp_motion_map_ptr = 0;
}
else
{
// 0,0 mv was best
if( zero_error<50000 )
*fp_motion_map_ptr = 2;
else
*fp_motion_map_ptr = 1;
}
}
else
{
// Intra was best
best_ref_mv.row = 0;
best_ref_mv.col = 0;
}
}
coded_error += this_error;
// adjust to the next column of macroblocks
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
// Update the motion map
fp_motion_map_ptr++;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
//extend the recon for intra prediction
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
vp8_clear_system_state(); //__asm emms;
}
vp8_clear_system_state(); //__asm emms;
{
double weight = 0.0;
FIRSTPASS_STATS fps;
fps.frame = cm->current_video_frame ;
fps.intra_error = intra_error >> 8;
fps.coded_error = coded_error >> 8;
weight = vp8_simple_weight(cpi->Source);
if (weight < 0.1)
weight = 0.1;
fps.ssim_weighted_pred_err = fps.coded_error * weight;
fps.pcnt_inter = 0.0;
fps.pcnt_motion = 0.0;
fps.MVr = 0.0;
fps.mvr_abs = 0.0;
fps.MVc = 0.0;
fps.mvc_abs = 0.0;
fps.MVrv = 0.0;
fps.MVcv = 0.0;
fps.mv_in_out_count = 0.0;
fps.count = 1.0;
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
if (mvcount > 0)
{
fps.MVr = (double)sum_mvr / (double)mvcount;
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
fps.MVc = (double)sum_mvc / (double)mvcount;
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
}
// TODO: handle the case when duration is set to 0, or something less
// than the full time between subsequent cpi->source_time_stamp s .
fps.duration = cpi->source_end_time_stamp - cpi->source_time_stamp;
// don't want to do outputstats with a stack variable!
memcpy(cpi->this_frame_stats,
&fps,
sizeof(FIRSTPASS_STATS));
memcpy((char*)cpi->this_frame_stats + sizeof(FIRSTPASS_STATS),
cpi->fp_motion_map,
sizeof(cpi->fp_motion_map[0]) * cpi->common.MBs);
vp8_output_stats(cpi, cpi->output_pkt_list, cpi->this_frame_stats);
vp8_accumulate_stats(cpi->total_stats, &fps);
}
// Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met
if ((cm->current_video_frame > 0) &&
(cpi->this_frame_stats->pcnt_inter > 0.20) &&
((cpi->this_frame_stats->intra_error / cpi->this_frame_stats->coded_error) > 2.0))
{
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
}
// swap frame pointers so last frame refers to the frame we just compressed
vp8_swap_yv12_buffer(lst_yv12, new_yv12);
vp8_yv12_extend_frame_borders(lst_yv12);
// Special case for the first frame. Copy into the GF buffer as a second reference.
if (cm->current_video_frame == 0)
{
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
}
// use this to see what the first pass reconstruction looks like
if (0)
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
if (cm->current_video_frame == 0)
recon_file = fopen(filename, "wb");
else
recon_file = fopen(filename, "ab");
if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
fclose(recon_file);
}
cm->current_video_frame++;
}
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
#define BASE_ERRPERMB 150
static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb;
double err_per_mb = section_err / num_mbs;
double correction_factor;
double corr_high;
double speed_correction = 1.0;
double rolling_ratio;
double pow_highq = 0.90;
double pow_lowq = 0.40;
if (section_target_bandwitdh <= 0)
return MAXQ;
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
if ((cpi->rolling_target_bits > 0.0) && (cpi->active_worst_quality < cpi->worst_quality))
{
//double adjustment_rate = 0.985 + (0.00005 * cpi->active_worst_quality);
double adjustment_rate = 0.99;
rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits;
//if ( cpi->est_max_qcorrection_factor > rolling_ratio )
if (rolling_ratio < 0.95)
//cpi->est_max_qcorrection_factor *= adjustment_rate;
cpi->est_max_qcorrection_factor -= 0.005;
//else if ( cpi->est_max_qcorrection_factor < rolling_ratio )
else if (rolling_ratio > 1.05)
cpi->est_max_qcorrection_factor += 0.005;
//cpi->est_max_qcorrection_factor /= adjustment_rate;
cpi->est_max_qcorrection_factor = (cpi->est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->est_max_qcorrection_factor;
}
// Corrections for higher compression speed settings (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
// Try and pick a Q that should be high enough to encode the content at the given rate.
for (Q = 0; Q < MAXQ; Q++)
{
int bits_per_mb_at_this_q;
if (Q < 50)
{
correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
}
else
correction_factor = corr_high;
bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * cpi->section_max_qfactor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
//bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
return Q;
}
static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb;
double err_per_mb = section_err / num_mbs;
double correction_factor;
double corr_high;
double speed_correction = 1.0;
double pow_highq = 0.90;
double pow_lowq = 0.40;
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
// Corrections for higher compression speed settings (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
// Try and pick a Q that can encode the content at the given rate.
for (Q = 0; Q < MAXQ; Q++)
{
int bits_per_mb_at_this_q;
if (Q < 50)
{
correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
}
else
correction_factor = corr_high;
bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
return Q;
}
// Estimate a worst case Q for a KF group
static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width, double group_iiratio)
{
int Q;
int num_mbs = ((Height * Width) / (16 * 16));
int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
int bits_per_mb_at_this_q;
double err_per_mb = section_err / num_mbs;
double err_correction_factor;
double corr_high;
double speed_correction = 1.0;
double current_spend_ratio = 1.0;
double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
double iiratio_correction_factor = 1.0;
double combined_correction_factor;
// Trap special case where the target is <= 0
if (target_norm_bits_per_mb <= 0)
return MAXQ * 2;
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
// This is clamped to the range 0.1 to 10.0
if (cpi->long_rolling_target_bits <= 0)
current_spend_ratio = 10.0;
else
{
current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits;
current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio;
}
// Calculate a correction factor based on the quality of prediction in the sequence as indicated by intra_inter error score ratio (IIRatio)
// The idea here is to favour subsampling in the hardest sections vs the easyest.
iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
if (iiratio_correction_factor < 0.5)
iiratio_correction_factor = 0.5;
// Corrections for higher compression speed settings (reduced compression expected)
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
{
if (cpi->oxcf.cpu_used <= 5)
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
else
speed_correction = 1.25;
}
// Combine the various factors calculated above
combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio;
// Correction factor used for Q values >= 20
corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq);
corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high;
// Try and pick a Q that should be high enough to encode the content at the given rate.
for (Q = 0; Q < MAXQ; Q++)
{
// Q values < 20 treated as a special case
if (Q < 20)
{
err_correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01));
err_correction_factor = (err_correction_factor < 0.05) ? 0.05 : (err_correction_factor > 5.0) ? 5.0 : err_correction_factor;
}
else
err_correction_factor = corr_high;
bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * combined_correction_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q]);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
}
// If we could not hit the target even at Max Q then estimate what Q would have bee required
while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2)))
{
bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
Q++;
}
if (0)
{
FILE *f = fopen("estkf_q.stt", "a");
fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q,
target_norm_bits_per_mb, err_per_mb, err_correction_factor,
current_spend_ratio, group_iiratio, iiratio_correction_factor,
(double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q);
fclose(f);
}
return Q;
}
extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate);
void vp8_init_second_pass(VP8_COMP *cpi)
{
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS *start_pos;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
vp8_zero_stats(cpi->total_stats);
if (!cpi->stats_in_end)
return;
*cpi->total_stats = *cpi->stats_in_end;
cpi->total_error_left = cpi->total_stats->ssim_weighted_pred_err;
cpi->total_intra_error_left = cpi->total_stats->intra_error;
cpi->total_coded_error_left = cpi->total_stats->coded_error;
cpi->start_tot_err_left = cpi->total_error_left;
//cpi->bits_left = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
//cpi->bits_left -= (long long)(cpi->total_stats->count * two_pass_min_rate / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
// each frame can have a different duration, as the frame rate in the source
// isn't guaranteed to be constant. The frame rate prior to the first frame
// encoded in the second pass is a guess. However the sum duration is not.
// Its calculated based on the actual durations of all frames from the first
// pass.
vp8_new_frame_rate(cpi, 10000000.0 * cpi->total_stats->count / cpi->total_stats->duration);
cpi->output_frame_rate = cpi->oxcf.frame_rate;
cpi->bits_left = (long long)(cpi->total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
cpi->bits_left -= (long long)(cpi->total_stats->duration * two_pass_min_rate / 10000000.0);
vp8_avg_stats(cpi->total_stats);
// Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
{
double sum_iiratio = 0.0;
double IIRatio;
start_pos = cpi->stats_in; // Note starting "file" position
while (vp8_input_stats(cpi, &this_frame) != EOF)
{
IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
sum_iiratio += IIRatio;
}
cpi->avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->total_stats->count);
// Reset file position
reset_fpf_position(cpi, start_pos);
}
// Scan the first pass file and calculate a modified total error based upon the bias/power function
// used to allocate bits
{
start_pos = cpi->stats_in; // Note starting "file" position
cpi->modified_total_error_left = 0.0;
while (vp8_input_stats(cpi, &this_frame) != EOF)
{
cpi->modified_total_error_left += calculate_modified_err(cpi, &this_frame);
}
reset_fpf_position(cpi, start_pos); // Reset file position
}
cpi->fp_motion_map_stats = (unsigned char *)cpi->stats_in;
}
void vp8_end_second_pass(VP8_COMP *cpi)
{
}
// Analyse and define a gf/arf group .
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS *start_pos;
int i;
int y_width = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_width;
int y_height = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_height;
int image_size = y_width * y_height;
double boost_score = 0.0;
double old_boost_score = 0.0;
double gf_group_err = 0.0;
double gf_first_frame_err = 0.0;
double mod_frame_err = 0.0;
double mv_accumulator_rabs = 0.0;
double mv_accumulator_cabs = 0.0;
double mv_ratio_accumulator = 0.0;
double decay_accumulator = 1.0;
double boost_factor = IIFACTOR;
double loop_decay_rate = 1.00; // Starting decay rate
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
double mod_err_per_mb_accumulator = 0.0;
int max_bits = frame_max_bits(cpi); // Max for a single frame
unsigned char *fpmm_pos;
cpi->gf_group_bits = 0;
cpi->gf_decay_rate = 0;
vp8_clear_system_state(); //__asm emms;
fpmm_pos = vp8_fpmm_get_pos(cpi);
start_pos = cpi->stats_in;
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
// Preload the stats for the next frame.
mod_frame_err = calculate_modified_err(cpi, this_frame);
// Note the error of the frame at the start of the group (this will be the GF frame error if we code a normal gf
gf_first_frame_err = mod_frame_err;
// Special treatment if the current frame is a key frame (which is also a gf).
// If it is then its error score (and hence bit allocation) need to be subtracted out
// from the calculation for the GF group
if (cpi->common.frame_type == KEY_FRAME)
gf_group_err -= gf_first_frame_err;
// Scan forward to try and work out how many frames the next gf group should contain and
// what level of boost is appropriate for the GF or ARF that will be coded with the group
i = 0;
while (((i < cpi->max_gf_interval) || ((cpi->frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->frames_to_key))
{
double r;
double this_frame_mvr_ratio;
double this_frame_mvc_ratio;
double motion_decay;
double motion_pct = next_frame.pcnt_motion;
i++; // Increment the loop counter
// Accumulate error score of frames in this gf group
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
mod_err_per_mb_accumulator += mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs);
if (EOF == vp8_input_stats(cpi, &next_frame))
break;
// Accumulate motion stats.
mv_accumulator_rabs += fabs(next_frame.mvr_abs * motion_pct);
mv_accumulator_cabs += fabs(next_frame.mvc_abs * motion_pct);
//Accumulate Motion In/Out of frame stats
this_frame_mv_in_out = next_frame.mv_in_out_count * next_frame.pcnt_motion;
mv_in_out_accumulator += next_frame.mv_in_out_count * next_frame.pcnt_motion;
abs_mv_in_out_accumulator += fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion);
// If there is a significant amount of motion
if (motion_pct > 0.05)
{
this_frame_mvr_ratio = fabs(next_frame.mvr_abs) /
DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVr));
this_frame_mvc_ratio = fabs(next_frame.mvc_abs) /
DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVc));
mv_ratio_accumulator +=
(this_frame_mvr_ratio < next_frame.mvr_abs)
? (this_frame_mvr_ratio * motion_pct)
: next_frame.mvr_abs * motion_pct;
mv_ratio_accumulator +=
(this_frame_mvc_ratio < next_frame.mvc_abs)
? (this_frame_mvc_ratio * motion_pct)
: next_frame.mvc_abs * motion_pct;
}
else
{
mv_ratio_accumulator += 0.0;
this_frame_mvr_ratio = 1.0;
this_frame_mvc_ratio = 1.0;
}
// Underlying boost factor is based on inter intra error ratio
r = (boost_factor * (next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)));
// Increase boost for frames where new data coming into frame (eg zoom out)
// Slightly reduce boost if there is a net balance of motion out of the frame (zoom in)
// The range for this_frame_mv_in_out is -1.0 to +1.0
if (this_frame_mv_in_out > 0.0)
r += r * (this_frame_mv_in_out * 2.0);
else
r += r * (this_frame_mv_in_out / 2.0); // In extreme case boost is halved
if (r > GF_RMAX)
r = GF_RMAX;
// Adjust loop decay rate
//if ( next_frame.pcnt_inter < loop_decay_rate )
loop_decay_rate = next_frame.pcnt_inter;
// High % motion -> somewhat higher decay rate
motion_decay = (1.0 - (motion_pct / 20.0));
if (motion_decay < loop_decay_rate)
loop_decay_rate = motion_decay;
// Adjustment to decay rate based on speed of motion
{
double this_mv_rabs;
double this_mv_cabs;
double distance_factor;
this_mv_rabs = fabs(next_frame.mvr_abs * motion_pct);
this_mv_cabs = fabs(next_frame.mvc_abs * motion_pct);
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
(this_mv_cabs * this_mv_cabs)) / 250.0;
distance_factor = ((distance_factor > 1.0)
? 0.0 : (1.0 - distance_factor));
if (distance_factor < loop_decay_rate)
loop_decay_rate = distance_factor;
}
// Cumulative effect of decay
decay_accumulator = decay_accumulator * loop_decay_rate;
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
//decay_accumulator = ( loop_decay_rate < decay_accumulator ) ? loop_decay_rate : decay_accumulator;
boost_score += (decay_accumulator * r);
// Break out conditions.
if ( /* i>4 || */
(
(i > MIN_GF_INTERVAL) && // Dont break out with a very short interval
((cpi->frames_to_key - i) >= MIN_GF_INTERVAL) && // Dont break out very close to a key frame
((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
((mv_ratio_accumulator > 100.0) ||
(abs_mv_in_out_accumulator > 3.0) ||
(mv_in_out_accumulator < -2.0) ||
((boost_score - old_boost_score) < 2.0)
)
)
)
{
boost_score = old_boost_score;
break;
}
vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
old_boost_score = boost_score;
}
cpi->gf_decay_rate = (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
// When using CBR apply additional buffer related upper limits
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
double max_boost;
// For cbr apply buffer related limits
if (cpi->drop_frames_allowed)
{
int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100);
if (cpi->buffer_level > df_buffer_level)
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
else
max_boost = 0.0;
}
else if (cpi->buffer_level > 0)
{
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
}
else
{
max_boost = 0.0;
}
if (boost_score > max_boost)
boost_score = max_boost;
}
cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
// Should we use the alternate refernce frame
if (cpi->oxcf.play_alternate &&
cpi->oxcf.lag_in_frames &&
(i >= MIN_GF_INTERVAL) &&
(i <= (cpi->frames_to_key - MIN_GF_INTERVAL)) && // dont use ARF very near next kf
(((next_frame.pcnt_inter > 0.75) &&
((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) &&
//(cpi->gfu_boost>150) &&
(cpi->gfu_boost > 100) &&
//(cpi->gfu_boost>AF_THRESH2) &&
//((cpi->gfu_boost/i)>AF_THRESH) &&
//(decay_accumulator > 0.5) &&
(cpi->gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))
)
)
)
{
int Boost;
int allocation_chunks;
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int tmp_q;
int arf_frame_bits = 0;
int group_bits;
// Estimate the bits to be allocated to the group as a whole
if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0))
group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left));
else
group_bits = 0;
// Boost for arf frame
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
Boost += (cpi->baseline_gf_interval * 50);
allocation_chunks = (i * 100) + Boost;
// Normalize Altboost and allocations chunck down to prevent overflow
while (Boost > 1000)
{
Boost /= 2;
allocation_chunks /= 2;
}
// Calculate the number of bits to be spent on the arf based on the boost number
arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks));
// Estimate if there are enough bits available to make worthwhile use of an arf.
tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits, cpi->common.Height, cpi->common.Width);
// Only use an arf if it is likely we will be able to code it at a lower Q than the surrounding frames.
if (tmp_q < cpi->worst_quality)
{
int half_gf_int;
int frames_after_arf;
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
cpi->source_alt_ref_pending = TRUE;
// For alt ref frames the error score for the end frame of the group (the alt ref frame) should not contribute to the group total and hence
// the number of bit allocated to the group. Rather it forms part of the next group (it is the GF at the start of the next group)
gf_group_err -= mod_frame_err;
// Set the interval till the next gf or arf. For ARFs this is the number of frames to be coded before the future frame that is coded as an ARF.
// The future frame itself is part of the next group
cpi->baseline_gf_interval = i - 1;
// Define the arnr filter width for this group of frames:
// We only filter frames that lie within a distance of half
// the GF interval from the ARF frame. We also have to trap
// cases where the filter extends beyond the end of clip.
// Note: this_frame->frame has been updated in the loop
// so it now points at the ARF frame.
half_gf_int = cpi->baseline_gf_interval >> 1;
frames_after_arf = cpi->total_stats->count - this_frame->frame - 1;
switch (cpi->oxcf.arnr_type)
{
case 1: // Backward filter
frames_fwd = 0;
if (frames_bwd > half_gf_int)
frames_bwd = half_gf_int;
break;
case 2: // Forward filter
if (frames_fwd > half_gf_int)
frames_fwd = half_gf_int;
if (frames_fwd > frames_after_arf)
frames_fwd = frames_after_arf;
frames_bwd = 0;
break;
case 3: // Centered filter
default:
frames_fwd >>= 1;
if (frames_fwd > frames_after_arf)
frames_fwd = frames_after_arf;
if (frames_fwd > half_gf_int)
frames_fwd = half_gf_int;
frames_bwd = frames_fwd;
// For even length filter there is one more frame backward
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
if (frames_bwd < half_gf_int)
frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
break;
}
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
{
// Advance to & read in the motion map for those frames
// to be considered for filtering based on the position
// of the ARF
vp8_fpmm_reset_pos(cpi, cpi->fp_motion_map_stats_save);
// Position at the 'earliest' frame to be filtered
vp8_advance_fpmm(cpi,
cpi->baseline_gf_interval - frames_bwd);
// Read / create a motion map for the region of interest
vp8_input_fpmm(cpi);
}
}
else
{
cpi->source_alt_ref_pending = FALSE;
cpi->baseline_gf_interval = i;
}
}
else
{
cpi->source_alt_ref_pending = FALSE;
cpi->baseline_gf_interval = i;
}
// Conventional GF
if (!cpi->source_alt_ref_pending)
{
// Dont allow conventional gf too near the next kf
if ((cpi->frames_to_key - cpi->baseline_gf_interval) < MIN_GF_INTERVAL)
{
while (cpi->baseline_gf_interval < cpi->frames_to_key)
{
if (EOF == vp8_input_stats(cpi, this_frame))
break;
cpi->baseline_gf_interval++;
if (cpi->baseline_gf_interval < cpi->frames_to_key)
gf_group_err += calculate_modified_err(cpi, this_frame);
}
}
}
// Now decide how many bits should be allocated to the GF group as a proportion of those remaining in the kf group.
// The final key frame group in the clip is treated as a special case where cpi->kf_group_bits is tied to cpi->bits_left.
// This is also important for short clips where there may only be one key frame.
if (cpi->frames_to_key >= (int)(cpi->total_stats->count - cpi->common.current_video_frame))
{
cpi->kf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;
}
// Calculate the bits to be allocated to the group as a whole
if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0))
cpi->gf_group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left));
else
cpi->gf_group_bits = 0;
cpi->gf_group_bits = (cpi->gf_group_bits < 0) ? 0 : (cpi->gf_group_bits > cpi->kf_group_bits) ? cpi->kf_group_bits : cpi->gf_group_bits;
// Clip cpi->gf_group_bits based on user supplied data rate variability limit (cpi->oxcf.two_pass_vbrmax_section)
if (cpi->gf_group_bits > max_bits * cpi->baseline_gf_interval)
cpi->gf_group_bits = max_bits * cpi->baseline_gf_interval;
// Reset the file position
reset_fpf_position(cpi, start_pos);
// Assign bits to the arf or gf.
{
int Boost;
int frames_in_section;
int allocation_chunks;
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
// For ARF frames
if (cpi->source_alt_ref_pending)
{
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
//Boost += (cpi->baseline_gf_interval * 25);
Boost += (cpi->baseline_gf_interval * 50);
// Set max and minimum boost and hence minimum allocation
if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
Boost = ((cpi->baseline_gf_interval + 1) * 200);
else if (Boost < 125)
Boost = 125;
frames_in_section = cpi->baseline_gf_interval + 1;
allocation_chunks = (frames_in_section * 100) + Boost;
}
// Else for standard golden frames
else
{
// boost based on inter / intra ratio of subsequent frames
Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
// Set max and minimum boost and hence minimum allocation
if (Boost > (cpi->baseline_gf_interval * 150))
Boost = (cpi->baseline_gf_interval * 150);
else if (Boost < 125)
Boost = 125;
frames_in_section = cpi->baseline_gf_interval;
allocation_chunks = (frames_in_section * 100) + (Boost - 100);
}
// Normalize Altboost and allocations chunck down to prevent overflow
while (Boost > 1000)
{
Boost /= 2;
allocation_chunks /= 2;
}
// Calculate the number of bits to be spent on the gf or arf based on the boost number
cpi->gf_bits = (int)((double)Boost * (cpi->gf_group_bits / (double)allocation_chunks));
// If the frame that is to be boosted is simpler than the average for
// the gf/arf group then use an alternative calculation
// based on the error score of the frame itself
if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
{
double alt_gf_grp_bits;
int alt_gf_bits;
alt_gf_grp_bits =
(double)cpi->kf_group_bits *
(mod_frame_err * (double)cpi->baseline_gf_interval) /
DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left);
alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits /
(double)allocation_chunks));
if (cpi->gf_bits > alt_gf_bits)
{
cpi->gf_bits = alt_gf_bits;
}
}
// Else if it is harder than other frames in the group make sure it at
// least receives an allocation in keeping with its relative error
// score, otherwise it may be worse off than an "un-boosted" frame
else
{
int alt_gf_bits =
(int)((double)cpi->kf_group_bits *
mod_frame_err /
DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left));
if (alt_gf_bits > cpi->gf_bits)
{
cpi->gf_bits = alt_gf_bits;
}
}
// Apply an additional limit for CBR
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
if (cpi->gf_bits > (cpi->buffer_level >> 1))
cpi->gf_bits = cpi->buffer_level >> 1;
}
// Dont allow a negative value for gf_bits
if (cpi->gf_bits < 0)
cpi->gf_bits = 0;
// Adjust KF group bits and error remainin
cpi->kf_group_error_left -= gf_group_err;
cpi->kf_group_bits -= cpi->gf_group_bits;
if (cpi->kf_group_bits < 0)
cpi->kf_group_bits = 0;
// Note the error score left in the remaining frames of the group.
// For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened)
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
cpi->gf_group_error_left = gf_group_err - gf_first_frame_err;
else
cpi->gf_group_error_left = gf_group_err;
cpi->gf_group_bits -= cpi->gf_bits;
if (cpi->gf_group_bits < 0)
cpi->gf_group_bits = 0;
// Set aside some bits for a mid gf sequence boost
if ((cpi->gfu_boost > 150) && (cpi->baseline_gf_interval > 5))
{
int pct_extra = (cpi->gfu_boost - 100) / 50;
pct_extra = (pct_extra > 10) ? 10 : pct_extra;
cpi->mid_gf_extra_bits = (cpi->gf_group_bits * pct_extra) / 100;
cpi->gf_group_bits -= cpi->mid_gf_extra_bits;
}
else
cpi->mid_gf_extra_bits = 0;
cpi->gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
}
if (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) // Normal GF and not a KF
{
cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for this frame
}
// Adjustment to estimate_max_q based on a measure of complexity of the section
if (cpi->common.frame_type != KEY_FRAME)
{
FIRSTPASS_STATS sectionstats;
double Ratio;
vp8_zero_stats(§ionstats);
reset_fpf_position(cpi, start_pos);
for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
{
vp8_input_stats(cpi, &next_frame);
vp8_accumulate_stats(§ionstats, &next_frame);
}
vp8_avg_stats(§ionstats);
if (sectionstats.pcnt_motion < .17)
cpi->section_is_low_motion = 1;
else
cpi->section_is_low_motion = 0;
if (sectionstats.mvc_abs + sectionstats.mvr_abs > 45)
cpi->section_is_fast_motion = 1;
else
cpi->section_is_fast_motion = 0;
cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
//if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
//{
cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
if (cpi->section_max_qfactor < 0.80)
cpi->section_max_qfactor = 0.80;
//}
//else
// cpi->section_max_qfactor = 1.0;
reset_fpf_position(cpi, start_pos);
}
// Reset the First pass motion map file position
vp8_fpmm_reset_pos(cpi, fpmm_pos);
}
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
int target_frame_size; // gf_group_error_left
double modified_err;
double err_fraction; // What portion of the remaining GF group error is used by this frame
int max_bits = frame_max_bits(cpi); // Max for a single frame
// The final few frames have special treatment
if (cpi->frames_till_gf_update_due >= (int)(cpi->total_stats->count - cpi->common.current_video_frame))
{
cpi->gf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;;
}
// Calculate modified prediction error used in bit allocation
modified_err = calculate_modified_err(cpi, this_frame);
if (cpi->gf_group_error_left > 0)
err_fraction = modified_err / cpi->gf_group_error_left; // What portion of the remaining GF group error is used by this frame
else
err_fraction = 0.0;
target_frame_size = (int)((double)cpi->gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
// Clip to target size to 0 - max_bits (or cpi->gf_group_bits) at the top end.
if (target_frame_size < 0)
target_frame_size = 0;
else
{
if (target_frame_size > max_bits)
target_frame_size = max_bits;
if (target_frame_size > cpi->gf_group_bits)
target_frame_size = cpi->gf_group_bits;
}
cpi->gf_group_error_left -= modified_err; // Adjust error remaining
cpi->gf_group_bits -= target_frame_size; // Adjust bits remaining
if (cpi->gf_group_bits < 0)
cpi->gf_group_bits = 0;
target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
// Special case for the frame that lies half way between two gfs
if (cpi->common.frames_since_golden == cpi->baseline_gf_interval / 2)
target_frame_size += cpi->mid_gf_extra_bits;
cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
}
void vp8_second_pass(VP8_COMP *cpi)
{
int tmp_q;
int frames_left = (int)(cpi->total_stats->count - cpi->common.current_video_frame);
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS this_frame_copy;
VP8_COMMON *cm = &cpi->common;
double this_frame_error;
double this_frame_intra_error;
double this_frame_coded_error;
FIRSTPASS_STATS *start_pos;
if (!cpi->stats_in)
{
return ;
}
vp8_clear_system_state();
if (EOF == vp8_input_stats(cpi, &this_frame))
return;
vpx_memset(cpi->fp_motion_map, 0,
cpi->oxcf.arnr_max_frames*cpi->common.MBs);
cpi->fp_motion_map_stats_save = vp8_fpmm_get_pos(cpi);
// Step over this frame's first pass motion map
vp8_advance_fpmm(cpi, 1);
this_frame_error = this_frame.ssim_weighted_pred_err;
this_frame_intra_error = this_frame.intra_error;
this_frame_coded_error = this_frame.coded_error;
// Store information regarding level of motion etc for use mode decisions.
cpi->motion_speed = (int)(fabs(this_frame.MVr) + fabs(this_frame.MVc));
cpi->motion_var = (int)(fabs(this_frame.MVrv) + fabs(this_frame.MVcv));
cpi->inter_lvl = (int)(this_frame.pcnt_inter * 100);
cpi->intra_lvl = (int)((1.0 - this_frame.pcnt_inter) * 100);
cpi->motion_lvl = (int)(this_frame.pcnt_motion * 100);
start_pos = cpi->stats_in;
// keyframe and section processing !
if (cpi->frames_to_key == 0)
{
// Define next KF group and assign bits to it
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
vp8_find_next_key_frame(cpi, &this_frame_copy);
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
// This is temporary code till we decide what should really happen in this case.
if (cpi->oxcf.error_resilient_mode)
{
cpi->gf_group_bits = cpi->kf_group_bits;
cpi->gf_group_error_left = cpi->kf_group_error_left;
cpi->baseline_gf_interval = cpi->frames_to_key;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
cpi->source_alt_ref_pending = FALSE;
}
}
// Is this a GF / ARF (Note that a KF is always also a GF)
if (cpi->frames_till_gf_update_due == 0)
{
// Define next gf group and assign bits to it
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
define_gf_group(cpi, &this_frame_copy);
// If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
// If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
// If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
{
// Assign a standard frames worth of bits from those allocated to the GF group
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
// If appropriate (we are switching into ARF active but it was not previously active) apply a boost for the gf at the start of the group.
//if ( !cpi->source_alt_ref_active && (cpi->gfu_boost > 150) )
if (FALSE)
{
int extra_bits;
int pct_extra = (cpi->gfu_boost - 100) / 50;
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
extra_bits = (cpi->gf_group_bits * pct_extra) / 100;
cpi->gf_group_bits -= extra_bits;
cpi->per_frame_bandwidth += extra_bits;
}
}
}
// Otherwise this is an ordinary frame
else
{
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
// This is temporary code till we decide what should really happen in this case.
if (cpi->oxcf.error_resilient_mode)
{
cpi->frames_till_gf_update_due = cpi->frames_to_key;
if (cpi->common.frame_type != KEY_FRAME)
{
// Assign bits from those allocated to the GF group
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
}
}
else
{
// Assign bits from those allocated to the GF group
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
}
}
// Keep a globally available copy of this and the next frame's iiratio.
cpi->this_iiratio = this_frame_intra_error /
DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
{
FIRSTPASS_STATS next_frame;
if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
{
cpi->next_iiratio = next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
}
}
// Set nominal per second bandwidth for this frame
cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
if (cpi->target_bandwidth < 0)
cpi->target_bandwidth = 0;
if (cpi->common.current_video_frame == 0)
{
// guess at 2nd pass q
cpi->est_max_qcorrection_factor = 1.0;
tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width);
if (tmp_q < cpi->worst_quality)
{
cpi->active_worst_quality = tmp_q;
cpi->ni_av_qi = tmp_q;
}
else
{
cpi->active_worst_quality = cpi->worst_quality;
cpi->ni_av_qi = cpi->worst_quality;
}
}
else
{
if (frames_left < 1)
frames_left = 1;
tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width);
// Move active_worst_quality but in a damped way
if (tmp_q > cpi->active_worst_quality)
cpi->active_worst_quality ++;
else if (tmp_q < cpi->active_worst_quality)
cpi->active_worst_quality --;
cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
// Clamp to user set limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
else if (cpi->active_worst_quality < cpi->best_quality)
cpi->active_worst_quality = cpi->best_quality;
}
cpi->frames_to_key --;
cpi->total_error_left -= this_frame_error;
cpi->total_intra_error_left -= this_frame_intra_error;
cpi->total_coded_error_left -= this_frame_coded_error;
}
static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
{
BOOL is_viable_kf = FALSE;
// Does the frame satisfy the primary criteria of a key frame
// If so, then examine how well it predicts subsequent frames
if ((this_frame->pcnt_second_ref < 0.10) &&
(next_frame->pcnt_second_ref < 0.10) &&
((this_frame->pcnt_inter < 0.05) ||
(
(this_frame->pcnt_inter < .25) &&
((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
(fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
)
)
)
)
{
int i;
FIRSTPASS_STATS *start_pos;
FIRSTPASS_STATS local_next_frame;
double boost_score = 0.0;
double old_boost_score = 0.0;
double decay_accumulator = 1.0;
double next_iiratio;
vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
// Note the starting file position so we can reset to it
start_pos = cpi->stats_in;
// Examine how well the key frame predicts subsequent frames
for (i = 0 ; i < 16; i++)
{
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;
if (next_iiratio > RMAX)
next_iiratio = RMAX;
// Cumulative effect of decay in prediction quality
if (local_next_frame.pcnt_inter > 0.85)
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
else
decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
//decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
// Keep a running total
boost_score += (decay_accumulator * next_iiratio);
// Test various breakout clauses
if ((local_next_frame.pcnt_inter < 0.05) ||
(next_iiratio < 1.5) ||
((local_next_frame.pcnt_inter < 0.20) && (next_iiratio < 3.0)) ||
((boost_score - old_boost_score) < 0.5) ||
(local_next_frame.intra_error < 200)
)
{
break;
}
old_boost_score = boost_score;
// Get the next frame details
if (EOF == vp8_input_stats(cpi, &local_next_frame))
break;
}
// If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
if (boost_score > 5.0 && (i > 3))
is_viable_kf = TRUE;
else
{
// Reset the file position
reset_fpf_position(cpi, start_pos);
is_viable_kf = FALSE;
}
}
return is_viable_kf;
}
void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
{
int i;
FIRSTPASS_STATS last_frame;
FIRSTPASS_STATS first_frame;
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS *start_position;
double decay_accumulator = 0;
double boost_score = 0;
double old_boost_score = 0.0;
double loop_decay_rate;
double kf_mod_err = 0.0;
double kf_group_err = 0.0;
double kf_group_intra_err = 0.0;
double kf_group_coded_err = 0.0;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
vp8_clear_system_state(); //__asm emms;
start_position = cpi->stats_in;
cpi->common.frame_type = KEY_FRAME;
// Clear the alt ref active flag as this can never be active on a key frame
cpi->source_alt_ref_active = FALSE;
// Kf is always a gf so clear frames till next gf counter
cpi->frames_till_gf_update_due = 0;
cpi->frames_to_key = 1;
// Take a copy of the initial frame details
vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
cpi->kf_group_bits = 0; // Total bits avaialable to kf group
cpi->kf_group_error_left = 0; // Group modified error score.
kf_mod_err = calculate_modified_err(cpi, this_frame);
// find the next keyframe
while (cpi->stats_in < cpi->stats_in_end)
{
// Accumulate kf group error
kf_group_err += calculate_modified_err(cpi, this_frame);
// These figures keep intra and coded error counts for all frames including key frames in the group.
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
kf_group_intra_err += this_frame->intra_error;
kf_group_coded_err += this_frame->coded_error;
// load a the next frame's stats
vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
vp8_input_stats(cpi, this_frame);
// Provided that we are not at the end of the file...
if (cpi->oxcf.auto_key
&& lookup_next_frame_stats(cpi, &next_frame) != EOF)
{
if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame))
break;
// Step on to the next frame
cpi->frames_to_key ++;
// If we don't have a real key frame within the next two
// forcekeyframeevery intervals then break out of the loop.
if (cpi->frames_to_key >= 2 *(int)cpi->key_frame_frequency)
break;
} else
cpi->frames_to_key ++;
}
// If there is a max kf interval set by the user we must obey it.
// We already breakout of the loop above at 2x max.
// This code centers the extra kf if the actual natural
// interval is between 1x and 2x
if (cpi->oxcf.auto_key
&& cpi->frames_to_key > (int)cpi->key_frame_frequency )
{
cpi->frames_to_key /= 2;
// Estimate corrected kf group error
kf_group_err /= 2.0;
kf_group_intra_err /= 2.0;
kf_group_coded_err /= 2.0;
}
// Special case for the last frame of the file
if (cpi->stats_in >= cpi->stats_in_end)
{
// Accumulate kf group error
kf_group_err += calculate_modified_err(cpi, this_frame);
// These figures keep intra and coded error counts for all frames including key frames in the group.
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
kf_group_intra_err += this_frame->intra_error;
kf_group_coded_err += this_frame->coded_error;
}
// Calculate the number of bits that should be assigned to the kf group.
if ((cpi->bits_left > 0) && ((int)cpi->modified_total_error_left > 0))
{
// Max for a single normal frame (not key frame)
int max_bits = frame_max_bits(cpi);
// Maximum bits for the kf group
long long max_grp_bits;
// Default allocation based on bits left and relative
// complexity of the section
cpi->kf_group_bits = (long long)( cpi->bits_left *
( kf_group_err /
cpi->modified_total_error_left ));
// Clip based on maximum per frame rate defined by the user.
max_grp_bits = (long long)max_bits * (long long)cpi->frames_to_key;
if (cpi->kf_group_bits > max_grp_bits)
cpi->kf_group_bits = max_grp_bits;
// Additional special case for CBR if buffer is getting full.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
int opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
int buffer_lvl = cpi->buffer_level;
// If the buffer is near or above the optimal and this kf group is
// not being allocated much then increase the allocation a bit.
if (buffer_lvl >= opt_buffer_lvl)
{
int high_water_mark = (opt_buffer_lvl +
cpi->oxcf.maximum_buffer_size) >> 1;
long long av_group_bits;
// Av bits per frame * number of frames
av_group_bits = (long long)cpi->av_per_frame_bandwidth *
(long long)cpi->frames_to_key;
// We are at or above the maximum.
if (cpi->buffer_level >= high_water_mark)
{
long long min_group_bits;
min_group_bits = av_group_bits +
(long long)(buffer_lvl -
high_water_mark);
if (cpi->kf_group_bits < min_group_bits)
cpi->kf_group_bits = min_group_bits;
}
// We are above optimal but below the maximum
else if (cpi->kf_group_bits < av_group_bits)
{
long long bits_below_av = av_group_bits -
cpi->kf_group_bits;
cpi->kf_group_bits +=
(long long)((double)bits_below_av *
(double)(buffer_lvl - opt_buffer_lvl) /
(double)(high_water_mark - opt_buffer_lvl));
}
}
}
}
else
cpi->kf_group_bits = 0;
// Reset the first pass file position
reset_fpf_position(cpi, start_position);
// determine how big to make this keyframe based on how well the subsequent frames use inter blocks
decay_accumulator = 1.0;
boost_score = 0.0;
loop_decay_rate = 1.00; // Starting decay rate
for (i = 0 ; i < cpi->frames_to_key ; i++)
{
double r;
double motion_decay;
double motion_pct = next_frame.pcnt_motion;
if (EOF == vp8_input_stats(cpi, &next_frame))
break;
r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)) ;
if (r > RMAX)
r = RMAX;
// Adjust loop decay rate
//if ( next_frame.pcnt_inter < loop_decay_rate )
loop_decay_rate = next_frame.pcnt_inter;
// High % motion -> somewhat higher decay rate
motion_decay = (1.0 - (motion_pct / 20.0));
if (motion_decay < loop_decay_rate)
loop_decay_rate = motion_decay;
// Adjustment to decay rate based on speed of motion
{
double this_mv_rabs;
double this_mv_cabs;
double distance_factor;
this_mv_rabs = fabs(next_frame.mvr_abs * motion_pct);
this_mv_cabs = fabs(next_frame.mvc_abs * motion_pct);
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
(this_mv_cabs * this_mv_cabs)) / 250.0;
distance_factor = ((distance_factor > 1.0)
? 0.0 : (1.0 - distance_factor));
if (distance_factor < loop_decay_rate)
loop_decay_rate = distance_factor;
}
decay_accumulator = decay_accumulator * loop_decay_rate;
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
boost_score += (decay_accumulator * r);
if ((i > MIN_GF_INTERVAL) &&
((boost_score - old_boost_score) < 1.0))
{
break;
}
old_boost_score = boost_score;
}
if (1)
{
FIRSTPASS_STATS sectionstats;
double Ratio;
vp8_zero_stats(§ionstats);
reset_fpf_position(cpi, start_position);
for (i = 0 ; i < cpi->frames_to_key ; i++)
{
vp8_input_stats(cpi, &next_frame);
vp8_accumulate_stats(§ionstats, &next_frame);
}
vp8_avg_stats(§ionstats);
if (sectionstats.pcnt_motion < .17)
cpi->section_is_low_motion = 1;
else
cpi->section_is_low_motion = 0;
if (sectionstats.mvc_abs + sectionstats.mvr_abs > 45)
cpi->section_is_fast_motion = 1;
else
cpi->section_is_fast_motion = 0;
cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
// if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
//{
cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
if (cpi->section_max_qfactor < 0.80)
cpi->section_max_qfactor = 0.80;
//}
//else
// cpi->section_max_qfactor = 1.0;
}
// When using CBR apply additional buffer fullness related upper limits
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
double max_boost;
if (cpi->drop_frames_allowed)
{
int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100);
if (cpi->buffer_level > df_buffer_level)
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
else
max_boost = 0.0;
}
else if (cpi->buffer_level > 0)
{
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
}
else
{
max_boost = 0.0;
}
if (boost_score > max_boost)
boost_score = max_boost;
}
// Reset the first pass file position
reset_fpf_position(cpi, start_position);
// Work out how many bits to allocate for the key frame itself
if (1)
{
int kf_boost = boost_score;
int allocation_chunks;
int Counter = cpi->frames_to_key;
int alt_kf_bits;
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
// Min boost based on kf interval
#if 0
while ((kf_boost < 48) && (Counter > 0))
{
Counter -= 2;
kf_boost ++;
}
#endif
if (kf_boost < 48)
{
kf_boost += ((Counter + 1) >> 1);
if (kf_boost > 48) kf_boost = 48;
}
// bigger frame sizes need larger kf boosts, smaller frames smaller boosts...
if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240))
kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240))
kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
kf_boost = (int)((double)kf_boost * 100.0) >> 4; // Scale 16 to 100
// Adjustment to boost based on recent average q
kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100;
if (kf_boost < 250) // Min KF boost
kf_boost = 250;
// We do three calculations for kf size.
// The first is based on the error score for the whole kf group.
// The second (optionaly) on the key frames own error if this is smaller than the average for the group.
// The final one insures that the frame receives at least the allocation it would have received based on its own error score vs the error score remaining
allocation_chunks = ((cpi->frames_to_key - 1) * 100) + kf_boost; // cpi->frames_to_key-1 because key frame itself is taken care of by kf_boost
// Normalize Altboost and allocations chunck down to prevent overflow
while (kf_boost > 1000)
{
kf_boost /= 2;
allocation_chunks /= 2;
}
cpi->kf_group_bits = (cpi->kf_group_bits < 0) ? 0 : cpi->kf_group_bits;
// Calculate the number of bits to be spent on the key frame
cpi->kf_bits = (int)((double)kf_boost * ((double)cpi->kf_group_bits / (double)allocation_chunks));
// Apply an additional limit for CBR
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
if (cpi->kf_bits > ((3 * cpi->buffer_level) >> 2))
cpi->kf_bits = (3 * cpi->buffer_level) >> 2;
}
// If the key frame is actually easier than the average for the
// kf group (which does sometimes happen... eg a blank intro frame)
// Then use an alternate calculation based on the kf error score
// which should give a smaller key frame.
if (kf_mod_err < kf_group_err / cpi->frames_to_key)
{
double alt_kf_grp_bits =
((double)cpi->bits_left *
(kf_mod_err * (double)cpi->frames_to_key) /
DOUBLE_DIVIDE_CHECK(cpi->modified_total_error_left));
alt_kf_bits = (int)((double)kf_boost *
(alt_kf_grp_bits / (double)allocation_chunks));
if (cpi->kf_bits > alt_kf_bits)
{
cpi->kf_bits = alt_kf_bits;
}
}
// Else if it is much harder than other frames in the group make sure
// it at least receives an allocation in keeping with its relative
// error score
else
{
alt_kf_bits =
(int)((double)cpi->bits_left *
(kf_mod_err /
DOUBLE_DIVIDE_CHECK(cpi->modified_total_error_left)));
if (alt_kf_bits > cpi->kf_bits)
{
cpi->kf_bits = alt_kf_bits;
}
}
cpi->kf_group_bits -= cpi->kf_bits;
cpi->kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance
cpi->per_frame_bandwidth = cpi->kf_bits; // Peer frame bit target for this frame
cpi->target_bandwidth = cpi->kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate
}
// Note the total error score of the kf group minus the key frame itself
cpi->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
// Adjust the count of total modified error left.
// The count of bits left is adjusted elsewhere based on real coded frame sizes
cpi->modified_total_error_left -= kf_group_err;
if (cpi->oxcf.allow_spatial_resampling)
{
int resample_trigger = FALSE;
int last_kf_resampled = FALSE;
int kf_q;
int scale_val = 0;
int hr, hs, vr, vs;
int new_width = cpi->oxcf.Width;
int new_height = cpi->oxcf.Height;
int projected_buffer_level = cpi->buffer_level;
int tmp_q;
double projected_bits_perframe;
double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error);
double err_per_frame = kf_group_err / cpi->frames_to_key;
double bits_per_frame;
double av_bits_per_frame;
double effective_size_ratio;
if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height))
last_kf_resampled = TRUE;
// Set back to unscaled by defaults
cpi->common.horiz_scale = NORMAL;
cpi->common.vert_scale = NORMAL;
// Calculate Average bits per frame.
//av_bits_per_frame = cpi->bits_left/(double)(cpi->total_stats->count - cpi->common.current_video_frame);
av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate);
//if ( av_bits_per_frame < 0.0 )
// av_bits_per_frame = 0.0
// CBR... Use the clip average as the target for deciding resample
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
bits_per_frame = av_bits_per_frame;
}
// In VBR we want to avoid downsampling in easy section unless we are under extreme pressure
// So use the larger of target bitrate for this sectoion or average bitrate for sequence
else
{
bits_per_frame = cpi->kf_group_bits / cpi->frames_to_key; // This accounts for how hard the section is...
if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits
bits_per_frame = av_bits_per_frame;
}
// bits_per_frame should comply with our minimum
if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100))
bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
// Work out if spatial resampling is necessary
kf_q = estimate_kf_group_q(cpi, err_per_frame, bits_per_frame, new_height, new_width, group_iiratio);
// If we project a required Q higher than the maximum allowed Q then make a guess at the actual size of frames in this section
projected_bits_perframe = bits_per_frame;
tmp_q = kf_q;
while (tmp_q > cpi->worst_quality)
{
projected_bits_perframe *= 1.04;
tmp_q--;
}
// Guess at buffer level at the end of the section
projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->frames_to_key);
if (0)
{
FILE *f = fopen("Subsamle.stt", "a");
fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width);
fclose(f);
}
// The trigger for spatial resampling depends on the various parameters such as whether we are streaming (CBR) or VBR.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
// Trigger resample if we are projected to fall below down sample level or
// resampled last time and are projected to remain below the up sample level
if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) ||
(last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))))
//( ((cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))) &&
// ((projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))) ))
resample_trigger = TRUE;
else
resample_trigger = FALSE;
}
else
{
long long clip_bits = (long long)(cpi->total_stats->count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate));
long long over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
long long over_spend2 = cpi->oxcf.starting_buffer_level - projected_buffer_level;
if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced
((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ...
(over_spend > clip_bits / 20))) // ... Overspend > 5% of total bits
resample_trigger = TRUE;
else
resample_trigger = FALSE;
}
if (resample_trigger)
{
while ((kf_q >= cpi->worst_quality) && (scale_val < 6))
{
scale_val ++;
cpi->common.vert_scale = vscale_lookup[scale_val];
cpi->common.horiz_scale = hscale_lookup[scale_val];
Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
// Reducing the area to 1/4 does not reduce the complexity (err_per_frame) to 1/4...
// effective_sizeratio attempts to provide a crude correction for this
effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height);
effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
// Now try again and see what Q we get with the smaller image size
kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, bits_per_frame, new_height, new_width, group_iiratio);
if (0)
{
FILE *f = fopen("Subsamle.stt", "a");
fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, (int)(cpi->kf_group_bits / cpi->frames_to_key), new_height, new_width);
fclose(f);
}
}
}
if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height))
{
cpi->common.Width = new_width;
cpi->common.Height = new_height;
vp8_alloc_compressor_data(cpi);
}
}
}