// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_VIRTUAL_FRAME_ARM_H_
#define V8_ARM_VIRTUAL_FRAME_ARM_H_
#include "register-allocator.h"
#include "scopes.h"
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// Virtual frames
//
// The virtual frame is an abstraction of the physical stack frame. It
// encapsulates the parameters, frame-allocated locals, and the expression
// stack. It supports push/pop operations on the expression stack, as well
// as random access to the expression stack elements, locals, and
// parameters.
class VirtualFrame : public ZoneObject {
public:
// A utility class to introduce a scope where the virtual frame is
// expected to remain spilled. The constructor spills the code
// generator's current frame, but no attempt is made to require it
// to stay spilled. It is intended as documentation while the code
// generator is being transformed.
class SpilledScope BASE_EMBEDDED {
public:
SpilledScope() {}
};
// An illegal index into the virtual frame.
static const int kIllegalIndex = -1;
// Construct an initial virtual frame on entry to a JS function.
VirtualFrame();
// Construct a virtual frame as a clone of an existing one.
explicit VirtualFrame(VirtualFrame* original);
CodeGenerator* cgen() { return CodeGeneratorScope::Current(); }
MacroAssembler* masm() { return cgen()->masm(); }
// Create a duplicate of an existing valid frame element.
FrameElement CopyElementAt(int index,
NumberInfo::Type info = NumberInfo::kUnknown);
// The number of elements on the virtual frame.
int element_count() { return elements_.length(); }
// The height of the virtual expression stack.
int height() {
return element_count() - expression_base_index();
}
int register_location(int num) {
ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
return register_locations_[num];
}
int register_location(Register reg) {
return register_locations_[RegisterAllocator::ToNumber(reg)];
}
void set_register_location(Register reg, int index) {
register_locations_[RegisterAllocator::ToNumber(reg)] = index;
}
bool is_used(int num) {
ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
return register_locations_[num] != kIllegalIndex;
}
bool is_used(Register reg) {
return register_locations_[RegisterAllocator::ToNumber(reg)]
!= kIllegalIndex;
}
// Add extra in-memory elements to the top of the frame to match an actual
// frame (eg, the frame after an exception handler is pushed). No code is
// emitted.
void Adjust(int count);
// Forget elements from the top of the frame to match an actual frame (eg,
// the frame after a runtime call). No code is emitted.
void Forget(int count) {
ASSERT(count >= 0);
ASSERT(stack_pointer_ == element_count() - 1);
stack_pointer_ -= count;
// On ARM, all elements are in memory, so there is no extra bookkeeping
// (registers, copies, etc.) beyond dropping the elements.
elements_.Rewind(stack_pointer_ + 1);
}
// Forget count elements from the top of the frame and adjust the stack
// pointer downward. This is used, for example, before merging frames at
// break, continue, and return targets.
void ForgetElements(int count);
// Spill all values from the frame to memory.
void SpillAll();
// Spill all occurrences of a specific register from the frame.
void Spill(Register reg) {
if (is_used(reg)) SpillElementAt(register_location(reg));
}
// Spill all occurrences of an arbitrary register if possible. Return the
// register spilled or no_reg if it was not possible to free any register
// (ie, they all have frame-external references).
Register SpillAnyRegister();
// Prepare this virtual frame for merging to an expected frame by
// performing some state changes that do not require generating
// code. It is guaranteed that no code will be generated.
void PrepareMergeTo(VirtualFrame* expected);
// Make this virtual frame have a state identical to an expected virtual
// frame. As a side effect, code may be emitted to make this frame match
// the expected one.
void MergeTo(VirtualFrame* expected);
// Detach a frame from its code generator, perhaps temporarily. This
// tells the register allocator that it is free to use frame-internal
// registers. Used when the code generator's frame is switched from this
// one to NULL by an unconditional jump.
void DetachFromCodeGenerator() {
RegisterAllocator* cgen_allocator = cgen()->allocator();
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
if (is_used(i)) cgen_allocator->Unuse(i);
}
}
// (Re)attach a frame to its code generator. This informs the register
// allocator that the frame-internal register references are active again.
// Used when a code generator's frame is switched from NULL to this one by
// binding a label.
void AttachToCodeGenerator() {
RegisterAllocator* cgen_allocator = cgen()->allocator();
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
if (is_used(i)) cgen_allocator->Unuse(i);
}
}
// Emit code for the physical JS entry and exit frame sequences. After
// calling Enter, the virtual frame is ready for use; and after calling
// Exit it should not be used. Note that Enter does not allocate space in
// the physical frame for storing frame-allocated locals.
void Enter();
void Exit();
// Prepare for returning from the frame by spilling locals and
// dropping all non-locals elements in the virtual frame. This
// avoids generating unnecessary merge code when jumping to the
// shared return site. Emits code for spills.
void PrepareForReturn();
// Number of local variables after when we use a loop for allocating.
static const int kLocalVarBound = 5;
// Allocate and initialize the frame-allocated locals.
void AllocateStackSlots();
// The current top of the expression stack as an assembly operand.
MemOperand Top() { return MemOperand(sp, 0); }
// An element of the expression stack as an assembly operand.
MemOperand ElementAt(int index) {
return MemOperand(sp, index * kPointerSize);
}
// Random-access store to a frame-top relative frame element. The result
// becomes owned by the frame and is invalidated.
void SetElementAt(int index, Result* value);
// Set a frame element to a constant. The index is frame-top relative.
void SetElementAt(int index, Handle<Object> value) {
Result temp(value);
SetElementAt(index, &temp);
}
void PushElementAt(int index) {
PushFrameSlotAt(element_count() - index - 1);
}
// A frame-allocated local as an assembly operand.
MemOperand LocalAt(int index) {
ASSERT(0 <= index);
ASSERT(index < local_count());
return MemOperand(fp, kLocal0Offset - index * kPointerSize);
}
// Push a copy of the value of a local frame slot on top of the frame.
void PushLocalAt(int index) {
PushFrameSlotAt(local0_index() + index);
}
// Push the value of a local frame slot on top of the frame and invalidate
// the local slot. The slot should be written to before trying to read
// from it again.
void TakeLocalAt(int index) {
TakeFrameSlotAt(local0_index() + index);
}
// Store the top value on the virtual frame into a local frame slot. The
// value is left in place on top of the frame.
void StoreToLocalAt(int index) {
StoreToFrameSlotAt(local0_index() + index);
}
// Push the address of the receiver slot on the frame.
void PushReceiverSlotAddress();
// The function frame slot.
MemOperand Function() { return MemOperand(fp, kFunctionOffset); }
// Push the function on top of the frame.
void PushFunction() { PushFrameSlotAt(function_index()); }
// The context frame slot.
MemOperand Context() { return MemOperand(fp, kContextOffset); }
// Save the value of the esi register to the context frame slot.
void SaveContextRegister();
// Restore the esi register from the value of the context frame
// slot.
void RestoreContextRegister();
// A parameter as an assembly operand.
MemOperand ParameterAt(int index) {
// Index -1 corresponds to the receiver.
ASSERT(-1 <= index); // -1 is the receiver.
ASSERT(index <= parameter_count());
return MemOperand(fp, (1 + parameter_count() - index) * kPointerSize);
}
// Push a copy of the value of a parameter frame slot on top of the frame.
void PushParameterAt(int index) {
PushFrameSlotAt(param0_index() + index);
}
// Push the value of a paramter frame slot on top of the frame and
// invalidate the parameter slot. The slot should be written to before
// trying to read from it again.
void TakeParameterAt(int index) {
TakeFrameSlotAt(param0_index() + index);
}
// Store the top value on the virtual frame into a parameter frame slot.
// The value is left in place on top of the frame.
void StoreToParameterAt(int index) {
StoreToFrameSlotAt(param0_index() + index);
}
// The receiver frame slot.
MemOperand Receiver() { return ParameterAt(-1); }
// Push a try-catch or try-finally handler on top of the virtual frame.
void PushTryHandler(HandlerType type);
// Call stub given the number of arguments it expects on (and
// removes from) the stack.
void CallStub(CodeStub* stub, int arg_count) {
Forget(arg_count);
ASSERT(cgen()->HasValidEntryRegisters());
masm()->CallStub(stub);
}
// Call runtime given the number of arguments expected on (and
// removed from) the stack.
void CallRuntime(Runtime::Function* f, int arg_count);
void CallRuntime(Runtime::FunctionId id, int arg_count);
#ifdef ENABLE_DEBUGGER_SUPPORT
void DebugBreak();
#endif
// Invoke builtin given the number of arguments it expects on (and
// removes from) the stack.
void InvokeBuiltin(Builtins::JavaScript id,
InvokeJSFlags flag,
int arg_count);
// Call into an IC stub given the number of arguments it removes
// from the stack. Register arguments to the IC stub are implicit,
// and depend on the type of IC stub.
void CallCodeObject(Handle<Code> ic,
RelocInfo::Mode rmode,
int dropped_args);
// Drop a number of elements from the top of the expression stack. May
// emit code to affect the physical frame. Does not clobber any registers
// excepting possibly the stack pointer.
void Drop(int count);
// Drop one element.
void Drop() { Drop(1); }
// Duplicate the top element of the frame.
void Dup() { PushFrameSlotAt(element_count() - 1); }
// Pop an element from the top of the expression stack. Returns a
// Result, which may be a constant or a register.
Result Pop();
// Pop and save an element from the top of the expression stack and
// emit a corresponding pop instruction.
void EmitPop(Register reg);
// Push an element on top of the expression stack and emit a
// corresponding push instruction.
void EmitPush(Register reg);
// Push multiple registers on the stack and the virtual frame
// Register are selected by setting bit in src_regs and
// are pushed in decreasing order: r15 .. r0.
void EmitPushMultiple(int count, int src_regs);
// Push an element on the virtual frame.
void Push(Register reg, NumberInfo::Type info = NumberInfo::kUnknown);
void Push(Handle<Object> value);
void Push(Smi* value) { Push(Handle<Object>(value)); }
// Pushing a result invalidates it (its contents become owned by the frame).
void Push(Result* result) {
if (result->is_register()) {
Push(result->reg());
} else {
ASSERT(result->is_constant());
Push(result->handle());
}
result->Unuse();
}
// Nip removes zero or more elements from immediately below the top
// of the frame, leaving the previous top-of-frame value on top of
// the frame. Nip(k) is equivalent to x = Pop(), Drop(k), Push(x).
void Nip(int num_dropped);
private:
static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset;
static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset;
static const int kContextOffset = StandardFrameConstants::kContextOffset;
static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize;
static const int kPreallocatedElements = 5 + 8; // 8 expression stack slots.
ZoneList<FrameElement> elements_;
// The index of the element that is at the processor's stack pointer
// (the sp register).
int stack_pointer_;
// The index of the register frame element using each register, or
// kIllegalIndex if a register is not on the frame.
int register_locations_[RegisterAllocator::kNumRegisters];
// The number of frame-allocated locals and parameters respectively.
int parameter_count() { return cgen()->scope()->num_parameters(); }
int local_count() { return cgen()->scope()->num_stack_slots(); }
// The index of the element that is at the processor's frame pointer
// (the fp register). The parameters, receiver, function, and context
// are below the frame pointer.
int frame_pointer() { return parameter_count() + 3; }
// The index of the first parameter. The receiver lies below the first
// parameter.
int param0_index() { return 1; }
// The index of the context slot in the frame. It is immediately
// below the frame pointer.
int context_index() { return frame_pointer() - 1; }
// The index of the function slot in the frame. It is below the frame
// pointer and context slot.
int function_index() { return frame_pointer() - 2; }
// The index of the first local. Between the frame pointer and the
// locals lies the return address.
int local0_index() { return frame_pointer() + 2; }
// The index of the base of the expression stack.
int expression_base_index() { return local0_index() + local_count(); }
// Convert a frame index into a frame pointer relative offset into the
// actual stack.
int fp_relative(int index) {
ASSERT(index < element_count());
ASSERT(frame_pointer() < element_count()); // FP is on the frame.
return (frame_pointer() - index) * kPointerSize;
}
// Record an occurrence of a register in the virtual frame. This has the
// effect of incrementing the register's external reference count and
// of updating the index of the register's location in the frame.
void Use(Register reg, int index) {
ASSERT(!is_used(reg));
set_register_location(reg, index);
cgen()->allocator()->Use(reg);
}
// Record that a register reference has been dropped from the frame. This
// decrements the register's external reference count and invalidates the
// index of the register's location in the frame.
void Unuse(Register reg) {
ASSERT(is_used(reg));
set_register_location(reg, kIllegalIndex);
cgen()->allocator()->Unuse(reg);
}
// Spill the element at a particular index---write it to memory if
// necessary, free any associated register, and forget its value if
// constant.
void SpillElementAt(int index);
// Sync the element at a particular index. If it is a register or
// constant that disagrees with the value on the stack, write it to memory.
// Keep the element type as register or constant, and clear the dirty bit.
void SyncElementAt(int index);
// Sync the range of elements in [begin, end] with memory.
void SyncRange(int begin, int end);
// Sync a single unsynced element that lies beneath or at the stack pointer.
void SyncElementBelowStackPointer(int index);
// Sync a single unsynced element that lies just above the stack pointer.
void SyncElementByPushing(int index);
// Push a copy of a frame slot (typically a local or parameter) on top of
// the frame.
void PushFrameSlotAt(int index);
// Push a the value of a frame slot (typically a local or parameter) on
// top of the frame and invalidate the slot.
void TakeFrameSlotAt(int index);
// Store the value on top of the frame to a frame slot (typically a local
// or parameter).
void StoreToFrameSlotAt(int index);
// Spill all elements in registers. Spill the top spilled_args elements
// on the frame. Sync all other frame elements.
// Then drop dropped_args elements from the virtual frame, to match
// the effect of an upcoming call that will drop them from the stack.
void PrepareForCall(int spilled_args, int dropped_args);
// Move frame elements currently in registers or constants, that
// should be in memory in the expected frame, to memory.
void MergeMoveRegistersToMemory(VirtualFrame* expected);
// Make the register-to-register moves necessary to
// merge this frame with the expected frame.
// Register to memory moves must already have been made,
// and memory to register moves must follow this call.
// This is because some new memory-to-register moves are
// created in order to break cycles of register moves.
// Used in the implementation of MergeTo().
void MergeMoveRegistersToRegisters(VirtualFrame* expected);
// Make the memory-to-register and constant-to-register moves
// needed to make this frame equal the expected frame.
// Called after all register-to-memory and register-to-register
// moves have been made. After this function returns, the frames
// should be equal.
void MergeMoveMemoryToRegisters(VirtualFrame* expected);
// Invalidates a frame slot (puts an invalid frame element in it).
// Copies on the frame are correctly handled, and if this slot was
// the backing store of copies, the index of the new backing store
// is returned. Otherwise, returns kIllegalIndex.
// Register counts are correctly updated.
int InvalidateFrameSlotAt(int index);
bool Equals(VirtualFrame* other);
// Classes that need raw access to the elements_ array.
friend class DeferredCode;
friend class JumpTarget;
};
} } // namespace v8::internal
#endif // V8_ARM_VIRTUAL_FRAME_ARM_H_