// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#include "assembler.h"
#include "mips/assembler-mips.h"
namespace v8 {
namespace internal {
// Forward declaration.
class JumpTarget;
// Register at is used for instruction generation. So it is not safe to use it
// unless we know exactly what we do.
// Registers aliases
const Register cp = s7; // JavaScript context pointer
const Register fp = s8_fp; // Alias fp
enum InvokeJSFlags {
CALL_JS,
JUMP_JS
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
MacroAssembler(void* buffer, int size);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(const Operand& target,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Call(const Operand& target,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Jump(Register target,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Jump(byte* target, RelocInfo::Mode rmode,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Call(Register target,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Call(byte* target, RelocInfo::Mode rmode,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Call(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Ret(Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Branch(Condition cond, int16_t offset, Register rs = zero_reg,
const Operand& rt = Operand(zero_reg), Register scratch = at);
void Branch(Condition cond, Label* L, Register rs = zero_reg,
const Operand& rt = Operand(zero_reg), Register scratch = at);
// conditionnal branch and link
void BranchAndLink(Condition cond, int16_t offset, Register rs = zero_reg,
const Operand& rt = Operand(zero_reg),
Register scratch = at);
void BranchAndLink(Condition cond, Label* L, Register rs = zero_reg,
const Operand& rt = Operand(zero_reg),
Register scratch = at);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = cc_always);
void Call(Label* target);
// Jump unconditionally to given label.
// We NEED a nop in the branch delay slot, as it used by v8, for example in
// CodeGenerator::ProcessDeferred().
// Use rather b(Label) for code generation.
void jmp(Label* L) {
Branch(cc_always, L);
nop();
}
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index);
void LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond, Register src1, const Operand& src2);
// Sets the remembered set bit for [address+offset], where address is the
// address of the heap object 'object'. The address must be in the first 8K
// of an allocated page. The 'scratch' register is used in the
// implementation and all 3 registers are clobbered by the operation, as
// well as the ip register.
void RecordWrite(Register object, Register offset, Register scratch);
// ---------------------------------------------------------------------------
// Instruction macros
#define DEFINE_INSTRUCTION(instr) \
void instr(Register rd, Register rs, const Operand& rt); \
void instr(Register rd, Register rs, Register rt) { \
instr(rd, rs, Operand(rt)); \
} \
void instr(Register rs, Register rt, int32_t j) { \
instr(rs, rt, Operand(j)); \
}
#define DEFINE_INSTRUCTION2(instr) \
void instr(Register rs, const Operand& rt); \
void instr(Register rs, Register rt) { \
instr(rs, Operand(rt)); \
} \
void instr(Register rs, int32_t j) { \
instr(rs, Operand(j)); \
}
DEFINE_INSTRUCTION(Add);
DEFINE_INSTRUCTION(Addu);
DEFINE_INSTRUCTION(Mul);
DEFINE_INSTRUCTION2(Mult);
DEFINE_INSTRUCTION2(Multu);
DEFINE_INSTRUCTION2(Div);
DEFINE_INSTRUCTION2(Divu);
DEFINE_INSTRUCTION(And);
DEFINE_INSTRUCTION(Or);
DEFINE_INSTRUCTION(Xor);
DEFINE_INSTRUCTION(Nor);
DEFINE_INSTRUCTION(Slt);
DEFINE_INSTRUCTION(Sltu);
#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2
//------------Pseudo-instructions-------------
void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
// Move the logical ones complement of source to dest.
void movn(Register rd, Register rt);
// load int32 in the rd register
void li(Register rd, Operand j, bool gen2instr = false);
inline void li(Register rd, int32_t j, bool gen2instr = false) {
li(rd, Operand(j), gen2instr);
}
// Exception-generating instructions and debugging support
void stop(const char* msg);
// Push multiple registers on the stack.
// With MultiPush, lower registers are pushed first on the stack.
// For example if you push t0, t1, s0, and ra you get:
// | |
// |-----------------------|
// | t0 | +
// |-----------------------| |
// | t1 | |
// |-----------------------| |
// | s0 | v
// |-----------------------| -
// | ra |
// |-----------------------|
// | |
void MultiPush(RegList regs);
void MultiPushReversed(RegList regs);
void Push(Register src) {
Addu(sp, sp, Operand(-kPointerSize));
sw(src, MemOperand(sp, 0));
}
inline void push(Register src) { Push(src); }
void Push(Register src, Condition cond, Register tst1, Register tst2) {
// Since we don't have conditionnal execution we use a Branch.
Branch(cond, 3, tst1, Operand(tst2));
nop();
Addu(sp, sp, Operand(-kPointerSize));
sw(src, MemOperand(sp, 0));
}
// Pops multiple values from the stack and load them in the
// registers specified in regs. Pop order is the opposite as in MultiPush.
void MultiPop(RegList regs);
void MultiPopReversed(RegList regs);
void Pop(Register dst) {
lw(dst, MemOperand(sp, 0));
Addu(sp, sp, Operand(kPointerSize));
}
void Pop() {
Add(sp, sp, Operand(kPointerSize));
}
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain.
// The return address must be passed in register lr.
// On exit, r0 contains TOS (code slot).
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// ---------------------------------------------------------------------------
// Support functions.
inline void BranchOnSmi(Register value, Label* smi_label,
Register scratch = at) {
ASSERT_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(eq, smi_label, scratch, Operand(zero_reg));
}
inline void BranchOnNotSmi(Register value, Label* not_smi_label,
Register scratch = at) {
ASSERT_EQ(0, kSmiTag);
andi(scratch, value, kSmiTagMask);
Branch(ne, not_smi_label, scratch, Operand(zero_reg));
}
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void CallJSExitStub(CodeStub* stub);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
// Eventually this should be used for all C calls.
void CallRuntime(Runtime::Function* f, int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToRuntime, but also takes care of passing the number
// of parameters.
void TailCallRuntime(const ExternalReference& ext,
int num_arguments,
int result_size);
// Jump to the builtin routine.
void JumpToRuntime(const ExternalReference& builtin);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags);
// Store the code object for the given builtin in the target register and
// setup the function in r1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
struct Unresolved {
int pc;
uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders.
const char* name;
};
List<Unresolved>* unresolved() { return &unresolved_; }
Handle<Object> CodeObject() { return code_object_; }
// ---------------------------------------------------------------------------
// Stack limit support
void StackLimitCheck(Label* on_stack_limit_hit);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg, Register rs, Operand rt);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg, Register rs, Operand rt);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
private:
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));
// Get the code for the given builtin. Returns if able to resolve
// the function in the 'resolved' flag.
Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
List<Unresolved> unresolved_;
bool generating_stub_;
bool allow_stub_calls_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate a MemOperand for loading a field from an object.
static inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_