/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "JIT.h"
#if ENABLE(JIT)
#include "CodeBlock.h"
#include "JITInlineMethods.h"
#include "JITStubCall.h"
#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
#include "ResultType.h"
#include "SamplingTool.h"
#ifndef NDEBUG
#include <stdio.h>
#endif
using namespace std;
namespace JSC {
#if USE(JSVALUE32_64)
void JIT::emit_op_negate(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
Jump srcNotInt = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
addSlowCase(branch32(Equal, regT0, Imm32(0)));
neg32(regT0);
emitStoreInt32(dst, regT0, (dst == src));
Jump end = jump();
srcNotInt.link(this);
addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
xor32(Imm32(1 << 31), regT1);
store32(regT1, tagFor(dst));
if (dst != src)
store32(regT0, payloadFor(dst));
end.link(this);
}
void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
linkSlowCase(iter); // 0 check
linkSlowCase(iter); // double check
JITStubCall stubCall(this, cti_op_negate);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
void JIT::emit_op_jnless(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
JumpList notInt32Op1;
JumpList notInt32Op2;
// Int32 less.
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThanOrEqual, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double less.
emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
end.link(this);
}
void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (!supportsFloatingPoint()) {
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // double check
linkSlowCase(iter); // int32 check
}
if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // double check
}
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
void JIT::emit_op_jless(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
JumpList notInt32Op1;
JumpList notInt32Op2;
// Int32 less.
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThan, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double less.
emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
end.link(this);
}
void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (!supportsFloatingPoint()) {
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // double check
linkSlowCase(iter); // int32 check
}
if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // double check
}
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
}
void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
JumpList notInt32Op1;
JumpList notInt32Op2;
// Int32 less.
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addJump(branch32(GreaterThan, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double less.
emitBinaryDoubleOp(op_jnlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
end.link(this);
}
void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
if (!supportsFloatingPoint()) {
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // double check
linkSlowCase(iter); // int32 check
}
if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // double check
}
JITStubCall stubCall(this, cti_op_jlesseq);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
// LeftShift (<<)
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
emitStoreInt32(dst, regT0, dst == op1);
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
if (!isOperandConstantImmediateInt(op1))
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
lshift32(regT2, regT0);
emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
}
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_lshift);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// RightShift (>>)
void JIT::emit_op_rshift(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
rshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
emitStoreInt32(dst, regT0, dst == op1);
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
if (!isOperandConstantImmediateInt(op1))
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
rshift32(regT2, regT0);
emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
}
void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_rshift);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// BitAnd (&)
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
and32(Imm32(constant), regT0);
emitStoreInt32(dst, regT0, (op == dst));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
and32(regT2, regT0);
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
}
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// BitOr (|)
void JIT::emit_op_bitor(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
or32(Imm32(constant), regT0);
emitStoreInt32(dst, regT0, (op == dst));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
or32(regT2, regT0);
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
}
void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitor);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// BitXor (^)
void JIT::emit_op_bitxor(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
xor32(Imm32(constant), regT0);
emitStoreInt32(dst, regT0, (op == dst));
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
xor32(regT2, regT0);
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
}
void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitxor);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// BitNot (~)
void JIT::emit_op_bitnot(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src = currentInstruction[2].u.operand;
emitLoad(src, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
not32(regT0);
emitStoreInt32(dst, regT0, (dst == src));
}
void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
JITStubCall stubCall(this, cti_op_bitnot);
stubCall.addArgument(regT1, regT0);
stubCall.call(dst);
}
// PostInc (i++)
void JIT::emit_op_post_inc(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
if (dst == srcDst) // x = x++ is a noop for ints.
return;
emitStoreInt32(dst, regT0);
addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
emitStoreInt32(srcDst, regT0, true);
}
void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter); // int32 check
if (dst != srcDst)
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_post_inc);
stubCall.addArgument(srcDst);
stubCall.addArgument(Imm32(srcDst));
stubCall.call(dst);
}
// PostDec (i--)
void JIT::emit_op_post_dec(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
if (dst == srcDst) // x = x-- is a noop for ints.
return;
emitStoreInt32(dst, regT0);
addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
emitStoreInt32(srcDst, regT0, true);
}
void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter); // int32 check
if (dst != srcDst)
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_post_dec);
stubCall.addArgument(srcDst);
stubCall.addArgument(Imm32(srcDst));
stubCall.call(dst);
}
// PreInc (++i)
void JIT::emit_op_pre_inc(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
emitStoreInt32(srcDst, regT0, true);
}
void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_pre_inc);
stubCall.addArgument(srcDst);
stubCall.call(srcDst);
}
// PreDec (--i)
void JIT::emit_op_pre_dec(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
emitStoreInt32(srcDst, regT0, true);
}
void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
JITStubCall stubCall(this, cti_op_pre_dec);
stubCall.addArgument(srcDst);
stubCall.call(srcDst);
}
// Addition (+)
void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
return;
}
JumpList notInt32Op1;
JumpList notInt32Op2;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second());
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
// Int32 case.
addSlowCase(branchAdd32(Overflow, regT2, regT0));
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double case.
emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
{
// Int32 case.
emitLoad(op, regT1, regT0);
Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0));
emitStoreInt32(dst, regT0, (op == dst));
// Double case.
if (!supportsFloatingPoint()) {
addSlowCase(notInt32);
return;
}
Jump end = jump();
notInt32.link(this);
if (!opType.definitelyIsNumber())
addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
move(Imm32(constant), regT2);
convertInt32ToDouble(regT2, fpRegT0);
emitLoadDouble(op, fpRegT1);
addDouble(fpRegT1, fpRegT0);
emitStoreDouble(dst, fpRegT0);
end.link(this);
}
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
return;
unsigned op;
int32_t constant;
if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint())
linkSlowCase(iter); // non-sse case
else {
ResultType opType = op == op1 ? types.first() : types.second();
if (!opType.definitelyIsNumber())
linkSlowCase(iter); // double check
}
} else {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
}
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// Subtraction (-)
void JIT::emit_op_sub(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
JumpList notInt32Op1;
JumpList notInt32Op2;
if (isOperandConstantImmediateInt(op2)) {
emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first());
return;
}
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
// Int32 case.
addSlowCase(branchSub32(Overflow, regT2, regT0));
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double case.
emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
{
// Int32 case.
emitLoad(op, regT1, regT0);
Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
addSlowCase(branchSub32(Overflow, Imm32(constant), regT0));
emitStoreInt32(dst, regT0, (op == dst));
// Double case.
if (!supportsFloatingPoint()) {
addSlowCase(notInt32);
return;
}
Jump end = jump();
notInt32.link(this);
if (!opType.definitelyIsNumber())
addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
move(Imm32(constant), regT2);
convertInt32ToDouble(regT2, fpRegT0);
emitLoadDouble(op, fpRegT1);
subDouble(fpRegT0, fpRegT1);
emitStoreDouble(dst, fpRegT1);
end.link(this);
}
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint() || !types.first().definitelyIsNumber())
linkSlowCase(iter); // int32 or double check
} else {
linkSlowCase(iter); // overflow check
if (!supportsFloatingPoint()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
}
JITStubCall stubCall(this, cti_op_sub);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
{
JumpList end;
if (!notInt32Op1.empty()) {
// Double case 1: Op1 is not int32; Op2 is unknown.
notInt32Op1.link(this);
ASSERT(op1IsInRegisters);
// Verify Op1 is double.
if (!types.first().definitelyIsNumber())
addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
if (!op2IsInRegisters)
emitLoad(op2, regT3, regT2);
Jump doubleOp2 = branch32(Below, regT3, Imm32(JSValue::LowestTag));
if (!types.second().definitelyIsNumber())
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
convertInt32ToDouble(regT2, fpRegT0);
Jump doTheMath = jump();
// Load Op2 as double into double register.
doubleOp2.link(this);
emitLoadDouble(op2, fpRegT0);
// Do the math.
doTheMath.link(this);
switch (opcodeID) {
case op_mul:
emitLoadDouble(op1, fpRegT2);
mulDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_add:
emitLoadDouble(op1, fpRegT2);
addDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_sub:
emitLoadDouble(op1, fpRegT1);
subDouble(fpRegT0, fpRegT1);
emitStoreDouble(dst, fpRegT1);
break;
case op_div:
emitLoadDouble(op1, fpRegT1);
divDouble(fpRegT0, fpRegT1);
emitStoreDouble(dst, fpRegT1);
break;
case op_jnless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
break;
case op_jnlesseq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
default:
ASSERT_NOT_REACHED();
}
if (!notInt32Op2.empty())
end.append(jump());
}
if (!notInt32Op2.empty()) {
// Double case 2: Op1 is int32; Op2 is not int32.
notInt32Op2.link(this);
ASSERT(op2IsInRegisters);
if (!op1IsInRegisters)
emitLoadPayload(op1, regT0);
convertInt32ToDouble(regT0, fpRegT0);
// Verify op2 is double.
if (!types.second().definitelyIsNumber())
addSlowCase(branch32(Above, regT3, Imm32(JSValue::LowestTag)));
// Do the math.
switch (opcodeID) {
case op_mul:
emitLoadDouble(op2, fpRegT2);
mulDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_add:
emitLoadDouble(op2, fpRegT2);
addDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_sub:
emitLoadDouble(op2, fpRegT2);
subDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_div:
emitLoadDouble(op2, fpRegT2);
divDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
case op_jnless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
break;
case op_jnlesseq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
default:
ASSERT_NOT_REACHED();
}
}
end.link(this);
}
// Multiplication (*)
void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
JumpList notInt32Op1;
JumpList notInt32Op2;
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
// Int32 case.
move(regT0, regT3);
addSlowCase(branchMul32(Overflow, regT2, regT0));
addSlowCase(branchTest32(Zero, regT0));
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double case.
emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
Jump overflow = getSlowCase(iter); // overflow check
linkSlowCase(iter); // zero result check
Jump negZero = branchOr32(Signed, regT2, regT3);
emitStoreInt32(dst, Imm32(0), (op1 == dst || op2 == dst));
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
negZero.link(this);
overflow.link(this);
if (!supportsFloatingPoint()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
}
if (supportsFloatingPoint()) {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
Label jitStubCall(this);
JITStubCall stubCall(this, cti_op_mul);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// Division (/)
void JIT::emit_op_div(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!supportsFloatingPoint()) {
addSlowCase(jump());
return;
}
// Int32 divide.
JumpList notInt32Op1;
JumpList notInt32Op2;
JumpList end;
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
convertInt32ToDouble(regT0, fpRegT0);
convertInt32ToDouble(regT2, fpRegT1);
divDouble(fpRegT1, fpRegT0);
JumpList doubleResult;
branchConvertDoubleToInt32(fpRegT0, regT0, doubleResult, fpRegT1);
// Int32 result.
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
end.append(jump());
// Double result.
doubleResult.link(this);
emitStoreDouble(dst, fpRegT0);
end.append(jump());
// Double divide.
emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2);
end.link(this);
}
void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!supportsFloatingPoint())
linkSlowCase(iter);
else {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter); // double check
if (!types.second().definitelyIsNumber()) {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // double check
}
}
JITStubCall stubCall(this, cti_op_div);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
// Mod (%)
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
emitLoad(op1, X86Registers::edx, X86Registers::eax);
move(Imm32(getConstantOperand(op2).asInt32()), X86Registers::ecx);
addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
if (getConstantOperand(op2).asInt32() == -1)
addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
} else {
emitLoad2(op1, X86Registers::edx, X86Registers::eax, op2, X86Registers::ebx, X86Registers::ecx);
addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, X86Registers::ebx, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
addSlowCase(branch32(Equal, X86Registers::ecx, Imm32(0))); // divide by 0
}
move(X86Registers::eax, X86Registers::ebx); // Save dividend payload, in case of 0.
m_assembler.cdq();
m_assembler.idivl_r(X86Registers::ecx);
// If the remainder is zero and the dividend is negative, the result is -0.
Jump storeResult1 = branchTest32(NonZero, X86Registers::edx);
Jump storeResult2 = branchTest32(Zero, X86Registers::ebx, Imm32(0x80000000)); // not negative
emitStore(dst, jsNumber(m_globalData, -0.0));
Jump end = jump();
storeResult1.link(this);
storeResult2.link(this);
emitStoreInt32(dst, X86Registers::edx, (op1 == dst || op2 == dst));
end.link(this);
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
linkSlowCase(iter); // int32 check
if (getConstantOperand(op2).asInt32() == -1)
linkSlowCase(iter); // 0x80000000 check
} else {
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // 0 check
linkSlowCase(iter); // 0x80000000 check
}
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
}
#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
#if ENABLE(JIT_OPTIMIZE_MOD)
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
addSlowCase(branch32(Equal, regT2, Imm32(0)));
emitNakedCall(m_globalData->jitStubs.ctiSoftModulo());
emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
#else
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(dst);
#endif
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
#if ENABLE(JIT_OPTIMIZE_MOD)
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call(result);
#else
ASSERT_NOT_REACHED();
#endif
}
#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ END: OP_MOD ------------------------------ */
#else // USE(JSVALUE32_64)
void JIT::emit_op_lshift(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(op1, regT0, op2, regT2);
// FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
emitFastArithImmToInt(regT0);
emitFastArithImmToInt(regT2);
lshift32(regT2, regT0);
#if USE(JSVALUE32)
addSlowCase(branchAdd32(Overflow, regT0, regT0));
signExtend32ToPtr(regT0, regT0);
#endif
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
#if USE(JSVALUE64)
UNUSED_PARAM(op1);
UNUSED_PARAM(op2);
linkSlowCase(iter);
linkSlowCase(iter);
#else
// If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
Jump notImm1 = getSlowCase(iter);
Jump notImm2 = getSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegisters(op1, regT0, op2, regT2);
notImm1.link(this);
notImm2.link(this);
#endif
JITStubCall stubCall(this, cti_op_lshift);
stubCall.addArgument(regT0);
stubCall.addArgument(regT2);
stubCall.call(result);
}
void JIT::emit_op_rshift(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
// isOperandConstantImmediateInt(op2) => 1 SlowCase
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
// Mask with 0x1f as per ecma-262 11.7.2 step 7.
rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT2);
if (supportsFloatingPointTruncate()) {
Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
#if USE(JSVALUE64)
// supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
addSlowCase(emitJumpIfNotImmediateNumber(regT0));
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
#else
// supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell)
emitJumpSlowCaseIfNotJSCell(regT0, op1);
addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get()));
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
addSlowCase(branchAdd32(Overflow, regT0, regT0));
#endif
lhsIsInt.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
} else {
// !supportsFloatingPoint() => 2 SlowCases
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
}
emitFastArithImmToInt(regT2);
rshift32(regT2, regT0);
#if USE(JSVALUE32)
signExtend32ToPtr(regT0, regT0);
#endif
}
#if USE(JSVALUE64)
emitFastArithIntToImmNoCheck(regT0, regT0);
#else
orPtr(Imm32(JSImmediate::TagTypeNumber), regT0);
#endif
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
JITStubCall stubCall(this, cti_op_rshift);
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
} else {
if (supportsFloatingPointTruncate()) {
#if USE(JSVALUE64)
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
#else
linkSlowCaseIfNotJSCell(iter, op1);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
#endif
// We're reloading op1 to regT0 as we can no longer guarantee that
// we have not munged the operand. It may have already been shifted
// correctly, but it still will not have been tagged.
stubCall.addArgument(op1, regT0);
stubCall.addArgument(regT2);
} else {
linkSlowCase(iter);
linkSlowCase(iter);
stubCall.addArgument(regT0);
stubCall.addArgument(regT2);
}
}
stubCall.call(result);
}
void JIT::emit_op_jnless(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
// - int immediate to int immediate
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t op2imm = getConstantOperandImmediateInt(op2);
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
#if USE(JSVALUE64)
int32_t op1imm = getConstantOperandImmediateInt(op1);
#else
int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
#endif
addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
}
}
void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
// - floating-point number to floating-point number.
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1 = emitJumpIfNotJSCell(regT0);
Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
#endif
int32_t op2imm = getConstantOperand(op2).asInt32();;
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
#if USE(JSVALUE64)
fail1.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1.link(this);
fail2.link(this);
#endif
}
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op2))
fail1 = emitJumpIfNotJSCell(regT1);
Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
int32_t op1imm = getConstantOperand(op1).asInt32();;
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
#if USE(JSVALUE64)
fail1.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op2))
fail1.link(this);
fail2.link(this);
#endif
}
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
addPtr(tagTypeNumberRegister, regT0);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT0, fpRegT0);
movePtrToDouble(regT1, fpRegT1);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1 = emitJumpIfNotJSCell(regT0);
Jump fail2;
if (!m_codeBlock->isKnownNotImmediate(op2))
fail2 = emitJumpIfNotJSCell(regT1);
Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
#if USE(JSVALUE64)
fail1.link(this);
fail2.link(this);
fail3.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1.link(this);
if (!m_codeBlock->isKnownNotImmediate(op2))
fail2.link(this);
fail3.link(this);
fail4.link(this);
#endif
}
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
}
void JIT::emit_op_jless(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
// - int immediate to int immediate
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t op2imm = getConstantOperandImmediateInt(op2);
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
#if USE(JSVALUE64)
int32_t op1imm = getConstantOperandImmediateInt(op1);
#else
int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
#endif
addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
addJump(branch32(LessThan, regT0, regT1), target);
}
}
void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
// - floating-point number to floating-point number.
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1 = emitJumpIfNotJSCell(regT0);
Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
#endif
int32_t op2imm = getConstantOperand(op2).asInt32();
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
#if USE(JSVALUE64)
fail1.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1.link(this);
fail2.link(this);
#endif
}
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op2))
fail1 = emitJumpIfNotJSCell(regT1);
Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
int32_t op1imm = getConstantOperand(op1).asInt32();
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
#if USE(JSVALUE64)
fail1.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op2))
fail1.link(this);
fail2.link(this);
#endif
}
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
} else {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
addPtr(tagTypeNumberRegister, regT0);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT0, fpRegT0);
movePtrToDouble(regT1, fpRegT1);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1 = emitJumpIfNotJSCell(regT0);
Jump fail2;
if (!m_codeBlock->isKnownNotImmediate(op2))
fail2 = emitJumpIfNotJSCell(regT1);
Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
#if USE(JSVALUE64)
fail1.link(this);
fail2.link(this);
fail3.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1.link(this);
if (!m_codeBlock->isKnownNotImmediate(op2))
fail2.link(this);
fail3.link(this);
fail4.link(this);
#endif
}
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jless);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
}
}
void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
// We generate inline code for the following cases in the fast path:
// - int immediate to constant int immediate
// - constant int immediate to int immediate
// - int immediate to int immediate
if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t op2imm = getConstantOperandImmediateInt(op2);
#else
int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target);
} else if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
#if USE(JSVALUE64)
int32_t op1imm = getConstantOperandImmediateInt(op1);
#else
int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
#endif
addJump(branch32(LessThan, regT1, Imm32(op1imm)), target);
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
addJump(branch32(GreaterThan, regT0, regT1), target);
}
}
void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned op1 = currentInstruction[1].u.operand;
unsigned op2 = currentInstruction[2].u.operand;
unsigned target = currentInstruction[3].u.operand;
// We generate inline code for the following cases in the slow path:
// - floating-point number to constant int immediate
// - constant int immediate to floating-point number
// - floating-point number to floating-point number.
if (isOperandConstantImmediateInt(op2)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1 = emitJumpIfNotJSCell(regT0);
Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
#endif
int32_t op2imm = getConstantOperand(op2).asInt32();;
move(Imm32(op2imm), regT1);
convertInt32ToDouble(regT1, fpRegT1);
emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
#if USE(JSVALUE64)
fail1.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1.link(this);
fail2.link(this);
#endif
}
JITStubCall stubCall(this, cti_op_jlesseq);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else if (isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op2))
fail1 = emitJumpIfNotJSCell(regT1);
Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
int32_t op1imm = getConstantOperand(op1).asInt32();;
move(Imm32(op1imm), regT0);
convertInt32ToDouble(regT0, fpRegT0);
emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
#if USE(JSVALUE64)
fail1.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op2))
fail1.link(this);
fail2.link(this);
#endif
}
JITStubCall stubCall(this, cti_op_jlesseq);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
} else {
linkSlowCase(iter);
if (supportsFloatingPoint()) {
#if USE(JSVALUE64)
Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
Jump fail3 = emitJumpIfImmediateInteger(regT1);
addPtr(tagTypeNumberRegister, regT0);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT0, fpRegT0);
movePtrToDouble(regT1, fpRegT1);
#else
Jump fail1;
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1 = emitJumpIfNotJSCell(regT0);
Jump fail2;
if (!m_codeBlock->isKnownNotImmediate(op2))
fail2 = emitJumpIfNotJSCell(regT1);
Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
#if USE(JSVALUE64)
fail1.link(this);
fail2.link(this);
fail3.link(this);
#else
if (!m_codeBlock->isKnownNotImmediate(op1))
fail1.link(this);
if (!m_codeBlock->isKnownNotImmediate(op2))
fail2.link(this);
fail3.link(this);
fail4.link(this);
#endif
}
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jlesseq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), target);
}
}
void JIT::emit_op_bitand(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t imm = getConstantOperandImmediateInt(op1);
andPtr(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
#else
andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0);
#endif
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
int32_t imm = getConstantOperandImmediateInt(op2);
andPtr(Imm32(imm), regT0);
if (imm >= 0)
emitFastArithIntToImmNoCheck(regT0, regT0);
#else
andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0);
#endif
} else {
emitGetVirtualRegisters(op1, regT0, op2, regT1);
andPtr(regT1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
}
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
if (isOperandConstantImmediateInt(op1)) {
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT0);
stubCall.call(result);
} else if (isOperandConstantImmediateInt(op2)) {
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
} else {
JITStubCall stubCall(this, cti_op_bitand);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT1);
stubCall.call(result);
}
}
void JIT::emit_op_post_inc(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
addSlowCase(branchAdd32(Overflow, Imm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
#else
addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
signExtend32ToPtr(regT1, regT1);
#endif
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_post_inc);
stubCall.addArgument(regT0);
stubCall.addArgument(Imm32(srcDst));
stubCall.call(result);
}
void JIT::emit_op_post_dec(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcDst, regT0);
move(regT0, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
addSlowCase(branchSub32(Zero, Imm32(1), regT1));
emitFastArithIntToImmNoCheck(regT1, regT1);
#else
addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
signExtend32ToPtr(regT1, regT1);
#endif
emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_post_dec);
stubCall.addArgument(regT0);
stubCall.addArgument(Imm32(srcDst));
stubCall.call(result);
}
void JIT::emit_op_pre_inc(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
#else
addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
signExtend32ToPtr(regT0, regT0);
#endif
emitPutVirtualRegister(srcDst);
}
void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegister(srcDst, regT0);
notImm.link(this);
JITStubCall stubCall(this, cti_op_pre_inc);
stubCall.addArgument(regT0);
stubCall.call(srcDst);
}
void JIT::emit_op_pre_dec(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
emitGetVirtualRegister(srcDst, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
#if USE(JSVALUE64)
addSlowCase(branchSub32(Zero, Imm32(1), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
#else
addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
signExtend32ToPtr(regT0, regT0);
#endif
emitPutVirtualRegister(srcDst);
}
void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegister(srcDst, regT0);
notImm.link(this);
JITStubCall stubCall(this, cti_op_pre_dec);
stubCall.addArgument(regT0);
stubCall.call(srcDst);
}
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
#if CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx);
emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax);
emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx);
#if USE(JSVALUE64)
addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
m_assembler.cdq();
m_assembler.idivl_r(X86Registers::ecx);
#else
emitFastArithDeTagImmediate(X86Registers::eax);
addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx));
m_assembler.cdq();
m_assembler.idivl_r(X86Registers::ecx);
signExtend32ToPtr(X86Registers::edx, X86Registers::edx);
#endif
emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
#if USE(JSVALUE64)
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
#else
Jump notImm1 = getSlowCase(iter);
Jump notImm2 = getSlowCase(iter);
linkSlowCase(iter);
emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax);
emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx);
notImm1.link(this);
notImm2.link(this);
#endif
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(X86Registers::eax);
stubCall.addArgument(X86Registers::ecx);
stubCall.call(result);
}
#else // CPU(X86) || CPU(X86_64)
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
#if ENABLE(JIT_OPTIMIZE_MOD)
emitGetVirtualRegisters(op1, regT0, op2, regT2);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT2);
addSlowCase(branch32(Equal, regT2, Imm32(1)));
emitNakedCall(m_globalData->jitStubs.ctiSoftModulo());
emitPutVirtualRegister(result, regT0);
#else
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
#endif
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
#if ENABLE(JIT_OPTIMIZE_MOD)
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
#else
ASSERT_NOT_REACHED();
#endif
}
#endif // CPU(X86) || CPU(X86_64)
/* ------------------------------ END: OP_MOD ------------------------------ */
#if USE(JSVALUE64)
/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
{
emitGetVirtualRegisters(op1, regT0, op2, regT1);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
if (opcodeID == op_add)
addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
addSlowCase(branchMul32(Overflow, regT1, regT0));
addSlowCase(branchTest32(Zero, regT0));
}
emitFastArithIntToImmNoCheck(regT0, regT0);
}
void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
Jump notImm1;
Jump notImm2;
if (op1HasImmediateIntFastCase) {
notImm2 = getSlowCase(iter);
} else if (op2HasImmediateIntFastCase) {
notImm1 = getSlowCase(iter);
} else {
notImm1 = getSlowCase(iter);
notImm2 = getSlowCase(iter);
}
linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
linkSlowCase(iter);
emitGetVirtualRegister(op1, regT0);
Label stubFunctionCall(this);
JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
emitGetVirtualRegister(op1, regT0);
emitGetVirtualRegister(op2, regT1);
}
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(result);
Jump end = jump();
if (op1HasImmediateIntFastCase) {
notImm2.link(this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op1, regT1);
convertInt32ToDouble(regT1, fpRegT1);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT2);
} else if (op2HasImmediateIntFastCase) {
notImm1.link(this);
if (!types.first().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
emitGetVirtualRegister(op2, regT1);
convertInt32ToDouble(regT1, fpRegT1);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT2);
} else {
// if we get here, eax is not an int32, edx not yet checked.
notImm1.link(this);
if (!types.first().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT1);
Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
convertInt32ToDouble(regT1, fpRegT2);
Jump op2wasInteger = jump();
// if we get here, eax IS an int32, edx is not.
notImm2.link(this);
if (!types.second().definitelyIsNumber())
emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
convertInt32ToDouble(regT0, fpRegT1);
op2isDouble.link(this);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT2);
op2wasInteger.link(this);
}
if (opcodeID == op_add)
addDouble(fpRegT2, fpRegT1);
else if (opcodeID == op_sub)
subDouble(fpRegT2, fpRegT1);
else if (opcodeID == op_mul)
mulDouble(fpRegT2, fpRegT1);
else {
ASSERT(opcodeID == op_div);
divDouble(fpRegT2, fpRegT1);
}
moveDoubleToPtr(fpRegT1, regT0);
subPtr(tagTypeNumberRegister, regT0);
emitPutVirtualRegister(result, regT0);
end.link(this);
}
void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
return;
}
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
emitFastArithIntToImmNoCheck(regT0, regT0);
} else
compileBinaryArithOp(op_add, result, op1, op2, types);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
return;
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
emitFastArithReTagImmediate(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
emitFastArithReTagImmediate(regT0, regT0);
} else
compileBinaryArithOp(op_mul, result, op1, op2, types);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
void JIT::emit_op_div(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (isOperandConstantImmediateDouble(op1)) {
emitGetVirtualRegister(op1, regT0);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
} else if (isOperandConstantImmediateInt(op1)) {
emitLoadInt32ToDouble(op1, fpRegT0);
} else {
emitGetVirtualRegister(op1, regT0);
if (!types.first().definitelyIsNumber())
emitJumpSlowCaseIfNotImmediateNumber(regT0);
Jump notInt = emitJumpIfNotImmediateInteger(regT0);
convertInt32ToDouble(regT0, fpRegT0);
Jump skipDoubleLoad = jump();
notInt.link(this);
addPtr(tagTypeNumberRegister, regT0);
movePtrToDouble(regT0, fpRegT0);
skipDoubleLoad.link(this);
}
if (isOperandConstantImmediateDouble(op2)) {
emitGetVirtualRegister(op2, regT1);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoadInt32ToDouble(op2, fpRegT1);
} else {
emitGetVirtualRegister(op2, regT1);
if (!types.second().definitelyIsNumber())
emitJumpSlowCaseIfNotImmediateNumber(regT1);
Jump notInt = emitJumpIfNotImmediateInteger(regT1);
convertInt32ToDouble(regT1, fpRegT1);
Jump skipDoubleLoad = jump();
notInt.link(this);
addPtr(tagTypeNumberRegister, regT1);
movePtrToDouble(regT1, fpRegT1);
skipDoubleLoad.link(this);
}
divDouble(fpRegT1, fpRegT0);
// Double result.
moveDoubleToPtr(fpRegT0, regT0);
subPtr(tagTypeNumberRegister, regT0);
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
#ifndef NDEBUG
breakpoint();
#endif
return;
}
if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
if (!types.first().definitelyIsNumber())
linkSlowCase(iter);
}
if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) {
if (!types.second().definitelyIsNumber())
linkSlowCase(iter);
}
// There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
JITStubCall stubCall(this, cti_op_div);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
}
void JIT::emit_op_sub(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOp(op_sub, result, op1, op2, types);
emitPutVirtualRegister(result);
}
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
}
#else // USE(JSVALUE64)
/* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
{
Structure* numberStructure = m_globalData->numberStructure.get();
Jump wasJSNumberCell1;
Jump wasJSNumberCell2;
emitGetVirtualRegisters(src1, regT0, src2, regT1);
if (types.second().isReusable() && supportsFloatingPoint()) {
ASSERT(types.second().mightBeNumber());
// Check op2 is a number
Jump op2imm = emitJumpIfImmediateInteger(regT1);
if (!types.second().definitelyIsNumber()) {
emitJumpSlowCaseIfNotJSCell(regT1, src2);
addSlowCase(checkStructure(regT1, numberStructure));
}
// (1) In this case src2 is a reusable number cell.
// Slow case if src1 is not a number type.
Jump op1imm = emitJumpIfImmediateInteger(regT0);
if (!types.first().definitelyIsNumber()) {
emitJumpSlowCaseIfNotJSCell(regT0, src1);
addSlowCase(checkStructure(regT0, numberStructure));
}
// (1a) if we get here, src1 is also a number cell
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
Jump loadedDouble = jump();
// (1b) if we get here, src1 is an immediate
op1imm.link(this);
emitFastArithImmToInt(regT0);
convertInt32ToDouble(regT0, fpRegT0);
// (1c)
loadedDouble.link(this);
if (opcodeID == op_add)
addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
else if (opcodeID == op_sub)
subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
else {
ASSERT(opcodeID == op_mul);
mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
}
// Store the result to the JSNumberCell and jump.
storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)));
move(regT1, regT0);
emitPutVirtualRegister(dst);
wasJSNumberCell2 = jump();
// (2) This handles cases where src2 is an immediate number.
// Two slow cases - either src1 isn't an immediate, or the subtract overflows.
op2imm.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
} else if (types.first().isReusable() && supportsFloatingPoint()) {
ASSERT(types.first().mightBeNumber());
// Check op1 is a number
Jump op1imm = emitJumpIfImmediateInteger(regT0);
if (!types.first().definitelyIsNumber()) {
emitJumpSlowCaseIfNotJSCell(regT0, src1);
addSlowCase(checkStructure(regT0, numberStructure));
}
// (1) In this case src1 is a reusable number cell.
// Slow case if src2 is not a number type.
Jump op2imm = emitJumpIfImmediateInteger(regT1);
if (!types.second().definitelyIsNumber()) {
emitJumpSlowCaseIfNotJSCell(regT1, src2);
addSlowCase(checkStructure(regT1, numberStructure));
}
// (1a) if we get here, src2 is also a number cell
loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
Jump loadedDouble = jump();
// (1b) if we get here, src2 is an immediate
op2imm.link(this);
emitFastArithImmToInt(regT1);
convertInt32ToDouble(regT1, fpRegT1);
// (1c)
loadedDouble.link(this);
loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
if (opcodeID == op_add)
addDouble(fpRegT1, fpRegT0);
else if (opcodeID == op_sub)
subDouble(fpRegT1, fpRegT0);
else {
ASSERT(opcodeID == op_mul);
mulDouble(fpRegT1, fpRegT0);
}
storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
emitPutVirtualRegister(dst);
// Store the result to the JSNumberCell and jump.
storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
emitPutVirtualRegister(dst);
wasJSNumberCell1 = jump();
// (2) This handles cases where src1 is an immediate number.
// Two slow cases - either src2 isn't an immediate, or the subtract overflows.
op1imm.link(this);
emitJumpSlowCaseIfNotImmediateInteger(regT1);
} else
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
if (opcodeID == op_add) {
emitFastArithDeTagImmediate(regT0);
addSlowCase(branchAdd32(Overflow, regT1, regT0));
} else if (opcodeID == op_sub) {
addSlowCase(branchSub32(Overflow, regT1, regT0));
signExtend32ToPtr(regT0, regT0);
emitFastArithReTagImmediate(regT0, regT0);
} else {
ASSERT(opcodeID == op_mul);
// convert eax & edx from JSImmediates to ints, and check if either are zero
emitFastArithImmToInt(regT1);
Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0);
Jump op2NonZero = branchTest32(NonZero, regT1);
op1Zero.link(this);
// if either input is zero, add the two together, and check if the result is < 0.
// If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate.
move(regT0, regT2);
addSlowCase(branchAdd32(Signed, regT1, regT2));
// Skip the above check if neither input is zero
op2NonZero.link(this);
addSlowCase(branchMul32(Overflow, regT1, regT0));
signExtend32ToPtr(regT0, regT0);
emitFastArithReTagImmediate(regT0, regT0);
}
emitPutVirtualRegister(dst);
if (types.second().isReusable() && supportsFloatingPoint())
wasJSNumberCell2.link(this);
else if (types.first().isReusable() && supportsFloatingPoint())
wasJSNumberCell1.link(this);
}
void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
{
linkSlowCase(iter);
if (types.second().isReusable() && supportsFloatingPoint()) {
if (!types.first().definitelyIsNumber()) {
linkSlowCaseIfNotJSCell(iter, src1);
linkSlowCase(iter);
}
if (!types.second().definitelyIsNumber()) {
linkSlowCaseIfNotJSCell(iter, src2);
linkSlowCase(iter);
}
} else if (types.first().isReusable() && supportsFloatingPoint()) {
if (!types.first().definitelyIsNumber()) {
linkSlowCaseIfNotJSCell(iter, src1);
linkSlowCase(iter);
}
if (!types.second().definitelyIsNumber()) {
linkSlowCaseIfNotJSCell(iter, src2);
linkSlowCase(iter);
}
}
linkSlowCase(iter);
// additional entry point to handle -0 cases.
if (opcodeID == op_mul)
linkSlowCase(iter);
JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
stubCall.addArgument(src1, regT2);
stubCall.addArgument(src2, regT2);
stubCall.call(dst);
}
void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
return;
}
if (isOperandConstantImmediateInt(op1)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0));
signExtend32ToPtr(regT0, regT0);
emitPutVirtualRegister(result);
} else if (isOperandConstantImmediateInt(op2)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0));
signExtend32ToPtr(regT0, regT0);
emitPutVirtualRegister(result);
} else {
compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
}
void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
return;
if (isOperandConstantImmediateInt(op1)) {
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0);
notImm.link(this);
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(regT0);
stubCall.call(result);
} else if (isOperandConstantImmediateInt(op2)) {
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0);
notImm.link(this);
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(regT0);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
} else {
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber());
compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types);
}
}
void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
emitGetVirtualRegister(op2, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitFastArithDeTagImmediate(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
signExtend32ToPtr(regT0, regT0);
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
emitGetVirtualRegister(op1, regT0);
emitJumpSlowCaseIfNotImmediateInteger(regT0);
emitFastArithDeTagImmediate(regT0);
addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
signExtend32ToPtr(regT0, regT0);
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
} else
compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0))
|| (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) {
linkSlowCase(iter);
linkSlowCase(iter);
// There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
JITStubCall stubCall(this, cti_op_mul);
stubCall.addArgument(op1, regT2);
stubCall.addArgument(op2, regT2);
stubCall.call(result);
} else
compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
void JIT::emit_op_sub(Instruction* currentInstruction)
{
compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
#endif // USE(JSVALUE64)
/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
#endif // USE(JSVALUE32_64)
} // namespace JSC
#endif // ENABLE(JIT)