/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RegexJIT.h"
#include "ASCIICType.h"
#include "JSGlobalData.h"
#include "LinkBuffer.h"
#include "MacroAssembler.h"
#include "RegexCompiler.h"
#include "pcre.h" // temporary, remove when fallback is removed.
#if ENABLE(YARR_JIT)
using namespace WTF;
namespace JSC { namespace Yarr {
class RegexGenerator : private MacroAssembler {
friend void jitCompileRegex(JSGlobalData* globalData, RegexCodeBlock& jitObject, const UString& pattern, unsigned& numSubpatterns, const char*& error, bool ignoreCase, bool multiline);
#if CPU(ARM)
static const RegisterID input = ARMRegisters::r0;
static const RegisterID index = ARMRegisters::r1;
static const RegisterID length = ARMRegisters::r2;
static const RegisterID output = ARMRegisters::r4;
static const RegisterID regT0 = ARMRegisters::r5;
static const RegisterID regT1 = ARMRegisters::r6;
static const RegisterID returnRegister = ARMRegisters::r0;
#elif CPU(X86)
static const RegisterID input = X86Registers::eax;
static const RegisterID index = X86Registers::edx;
static const RegisterID length = X86Registers::ecx;
static const RegisterID output = X86Registers::edi;
static const RegisterID regT0 = X86Registers::ebx;
static const RegisterID regT1 = X86Registers::esi;
static const RegisterID returnRegister = X86Registers::eax;
#elif CPU(X86_64)
static const RegisterID input = X86Registers::edi;
static const RegisterID index = X86Registers::esi;
static const RegisterID length = X86Registers::edx;
static const RegisterID output = X86Registers::ecx;
static const RegisterID regT0 = X86Registers::eax;
static const RegisterID regT1 = X86Registers::ebx;
static const RegisterID returnRegister = X86Registers::eax;
#endif
void optimizeAlternative(PatternAlternative* alternative)
{
if (!alternative->m_terms.size())
return;
for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) {
PatternTerm& term = alternative->m_terms[i];
PatternTerm& nextTerm = alternative->m_terms[i + 1];
if ((term.type == PatternTerm::TypeCharacterClass)
&& (term.quantityType == QuantifierFixedCount)
&& (nextTerm.type == PatternTerm::TypePatternCharacter)
&& (nextTerm.quantityType == QuantifierFixedCount)) {
PatternTerm termCopy = term;
alternative->m_terms[i] = nextTerm;
alternative->m_terms[i + 1] = termCopy;
}
}
}
void matchCharacterClassRange(RegisterID character, JumpList& failures, JumpList& matchDest, const CharacterRange* ranges, unsigned count, unsigned* matchIndex, const UChar* matches, unsigned matchCount)
{
do {
// pick which range we're going to generate
int which = count >> 1;
char lo = ranges[which].begin;
char hi = ranges[which].end;
// check if there are any ranges or matches below lo. If not, just jl to failure -
// if there is anything else to check, check that first, if it falls through jmp to failure.
if ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) {
Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo));
// generate code for all ranges before this one
if (which)
matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount);
while ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) {
matchDest.append(branch32(Equal, character, Imm32((unsigned short)matches[*matchIndex])));
++*matchIndex;
}
failures.append(jump());
loOrAbove.link(this);
} else if (which) {
Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo));
matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount);
failures.append(jump());
loOrAbove.link(this);
} else
failures.append(branch32(LessThan, character, Imm32((unsigned short)lo)));
while ((*matchIndex < matchCount) && (matches[*matchIndex] <= hi))
++*matchIndex;
matchDest.append(branch32(LessThanOrEqual, character, Imm32((unsigned short)hi)));
// fall through to here, the value is above hi.
// shuffle along & loop around if there are any more matches to handle.
unsigned next = which + 1;
ranges += next;
count -= next;
} while (count);
}
void matchCharacterClass(RegisterID character, JumpList& matchDest, const CharacterClass* charClass)
{
Jump unicodeFail;
if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) {
Jump isAscii = branch32(LessThanOrEqual, character, Imm32(0x7f));
if (charClass->m_matchesUnicode.size()) {
for (unsigned i = 0; i < charClass->m_matchesUnicode.size(); ++i) {
UChar ch = charClass->m_matchesUnicode[i];
matchDest.append(branch32(Equal, character, Imm32(ch)));
}
}
if (charClass->m_rangesUnicode.size()) {
for (unsigned i = 0; i < charClass->m_rangesUnicode.size(); ++i) {
UChar lo = charClass->m_rangesUnicode[i].begin;
UChar hi = charClass->m_rangesUnicode[i].end;
Jump below = branch32(LessThan, character, Imm32(lo));
matchDest.append(branch32(LessThanOrEqual, character, Imm32(hi)));
below.link(this);
}
}
unicodeFail = jump();
isAscii.link(this);
}
if (charClass->m_ranges.size()) {
unsigned matchIndex = 0;
JumpList failures;
matchCharacterClassRange(character, failures, matchDest, charClass->m_ranges.begin(), charClass->m_ranges.size(), &matchIndex, charClass->m_matches.begin(), charClass->m_matches.size());
while (matchIndex < charClass->m_matches.size())
matchDest.append(branch32(Equal, character, Imm32((unsigned short)charClass->m_matches[matchIndex++])));
failures.link(this);
} else if (charClass->m_matches.size()) {
// optimization: gather 'a','A' etc back together, can mask & test once.
Vector<char> matchesAZaz;
for (unsigned i = 0; i < charClass->m_matches.size(); ++i) {
char ch = charClass->m_matches[i];
if (m_pattern.m_ignoreCase) {
if (isASCIILower(ch)) {
matchesAZaz.append(ch);
continue;
}
if (isASCIIUpper(ch))
continue;
}
matchDest.append(branch32(Equal, character, Imm32((unsigned short)ch)));
}
if (unsigned countAZaz = matchesAZaz.size()) {
or32(Imm32(32), character);
for (unsigned i = 0; i < countAZaz; ++i)
matchDest.append(branch32(Equal, character, Imm32(matchesAZaz[i])));
}
}
if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size())
unicodeFail.link(this);
}
// Jumps if input not available; will have (incorrectly) incremented already!
Jump jumpIfNoAvailableInput(unsigned countToCheck)
{
add32(Imm32(countToCheck), index);
return branch32(Above, index, length);
}
Jump jumpIfAvailableInput(unsigned countToCheck)
{
add32(Imm32(countToCheck), index);
return branch32(BelowOrEqual, index, length);
}
Jump checkInput()
{
return branch32(BelowOrEqual, index, length);
}
Jump atEndOfInput()
{
return branch32(Equal, index, length);
}
Jump notAtEndOfInput()
{
return branch32(NotEqual, index, length);
}
Jump jumpIfCharEquals(UChar ch, int inputPosition)
{
return branch16(Equal, BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), Imm32(ch));
}
Jump jumpIfCharNotEquals(UChar ch, int inputPosition)
{
return branch16(NotEqual, BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), Imm32(ch));
}
void readCharacter(int inputPosition, RegisterID reg)
{
load16(BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), reg);
}
void storeToFrame(RegisterID reg, unsigned frameLocation)
{
poke(reg, frameLocation);
}
void storeToFrame(Imm32 imm, unsigned frameLocation)
{
poke(imm, frameLocation);
}
DataLabelPtr storeToFrameWithPatch(unsigned frameLocation)
{
return storePtrWithPatch(ImmPtr(0), Address(stackPointerRegister, frameLocation * sizeof(void*)));
}
void loadFromFrame(unsigned frameLocation, RegisterID reg)
{
peek(reg, frameLocation);
}
void loadFromFrameAndJump(unsigned frameLocation)
{
jump(Address(stackPointerRegister, frameLocation * sizeof(void*)));
}
struct AlternativeBacktrackRecord {
DataLabelPtr dataLabel;
Label backtrackLocation;
AlternativeBacktrackRecord(DataLabelPtr dataLabel, Label backtrackLocation)
: dataLabel(dataLabel)
, backtrackLocation(backtrackLocation)
{
}
};
struct TermGenerationState {
TermGenerationState(PatternDisjunction* disjunction, unsigned checkedTotal)
: disjunction(disjunction)
, checkedTotal(checkedTotal)
{
}
void resetAlternative()
{
isBackTrackGenerated = false;
alt = 0;
}
bool alternativeValid()
{
return alt < disjunction->m_alternatives.size();
}
void nextAlternative()
{
++alt;
}
PatternAlternative* alternative()
{
return disjunction->m_alternatives[alt];
}
void resetTerm()
{
ASSERT(alternativeValid());
t = 0;
}
bool termValid()
{
ASSERT(alternativeValid());
return t < alternative()->m_terms.size();
}
void nextTerm()
{
ASSERT(alternativeValid());
++t;
}
PatternTerm& term()
{
ASSERT(alternativeValid());
return alternative()->m_terms[t];
}
PatternTerm& lookaheadTerm()
{
ASSERT(alternativeValid());
ASSERT((t + 1) < alternative()->m_terms.size());
return alternative()->m_terms[t + 1];
}
bool isSinglePatternCharacterLookaheadTerm()
{
ASSERT(alternativeValid());
return ((t + 1) < alternative()->m_terms.size())
&& (lookaheadTerm().type == PatternTerm::TypePatternCharacter)
&& (lookaheadTerm().quantityType == QuantifierFixedCount)
&& (lookaheadTerm().quantityCount == 1);
}
int inputOffset()
{
return term().inputPosition - checkedTotal;
}
void jumpToBacktrack(Jump jump, MacroAssembler* masm)
{
if (isBackTrackGenerated)
jump.linkTo(backtrackLabel, masm);
else
backTrackJumps.append(jump);
}
void jumpToBacktrack(JumpList& jumps, MacroAssembler* masm)
{
if (isBackTrackGenerated)
jumps.linkTo(backtrackLabel, masm);
else
backTrackJumps.append(jumps);
}
bool plantJumpToBacktrackIfExists(MacroAssembler* masm)
{
if (isBackTrackGenerated) {
masm->jump(backtrackLabel);
return true;
}
return false;
}
void addBacktrackJump(Jump jump)
{
backTrackJumps.append(jump);
}
void setBacktrackGenerated(Label label)
{
isBackTrackGenerated = true;
backtrackLabel = label;
}
void linkAlternativeBacktracks(MacroAssembler* masm)
{
isBackTrackGenerated = false;
backTrackJumps.link(masm);
}
void linkAlternativeBacktracksTo(Label label, MacroAssembler* masm)
{
isBackTrackGenerated = false;
backTrackJumps.linkTo(label, masm);
}
void propagateBacktrackingFrom(TermGenerationState& nestedParenthesesState, MacroAssembler* masm)
{
jumpToBacktrack(nestedParenthesesState.backTrackJumps, masm);
if (nestedParenthesesState.isBackTrackGenerated)
setBacktrackGenerated(nestedParenthesesState.backtrackLabel);
}
PatternDisjunction* disjunction;
int checkedTotal;
private:
unsigned alt;
unsigned t;
JumpList backTrackJumps;
Label backtrackLabel;
bool isBackTrackGenerated;
};
void generateAssertionBOL(TermGenerationState& state)
{
PatternTerm& term = state.term();
if (m_pattern.m_multiline) {
const RegisterID character = regT0;
JumpList matchDest;
if (!term.inputPosition)
matchDest.append(branch32(Equal, index, Imm32(state.checkedTotal)));
readCharacter(state.inputOffset() - 1, character);
matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass());
state.jumpToBacktrack(jump(), this);
matchDest.link(this);
} else {
// Erk, really should poison out these alternatives early. :-/
if (term.inputPosition)
state.jumpToBacktrack(jump(), this);
else
state.jumpToBacktrack(branch32(NotEqual, index, Imm32(state.checkedTotal)), this);
}
}
void generateAssertionEOL(TermGenerationState& state)
{
PatternTerm& term = state.term();
if (m_pattern.m_multiline) {
const RegisterID character = regT0;
JumpList matchDest;
if (term.inputPosition == state.checkedTotal)
matchDest.append(atEndOfInput());
readCharacter(state.inputOffset(), character);
matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass());
state.jumpToBacktrack(jump(), this);
matchDest.link(this);
} else {
if (term.inputPosition == state.checkedTotal)
state.jumpToBacktrack(notAtEndOfInput(), this);
// Erk, really should poison out these alternatives early. :-/
else
state.jumpToBacktrack(jump(), this);
}
}
// Also falls though on nextIsNotWordChar.
void matchAssertionWordchar(TermGenerationState& state, JumpList& nextIsWordChar, JumpList& nextIsNotWordChar)
{
const RegisterID character = regT0;
PatternTerm& term = state.term();
if (term.inputPosition == state.checkedTotal)
nextIsNotWordChar.append(atEndOfInput());
readCharacter(state.inputOffset(), character);
matchCharacterClass(character, nextIsWordChar, m_pattern.wordcharCharacterClass());
}
void generateAssertionWordBoundary(TermGenerationState& state)
{
const RegisterID character = regT0;
PatternTerm& term = state.term();
Jump atBegin;
JumpList matchDest;
if (!term.inputPosition)
atBegin = branch32(Equal, index, Imm32(state.checkedTotal));
readCharacter(state.inputOffset() - 1, character);
matchCharacterClass(character, matchDest, m_pattern.wordcharCharacterClass());
if (!term.inputPosition)
atBegin.link(this);
// We fall through to here if the last character was not a wordchar.
JumpList nonWordCharThenWordChar;
JumpList nonWordCharThenNonWordChar;
if (term.invertOrCapture) {
matchAssertionWordchar(state, nonWordCharThenNonWordChar, nonWordCharThenWordChar);
nonWordCharThenWordChar.append(jump());
} else {
matchAssertionWordchar(state, nonWordCharThenWordChar, nonWordCharThenNonWordChar);
nonWordCharThenNonWordChar.append(jump());
}
state.jumpToBacktrack(nonWordCharThenNonWordChar, this);
// We jump here if the last character was a wordchar.
matchDest.link(this);
JumpList wordCharThenWordChar;
JumpList wordCharThenNonWordChar;
if (term.invertOrCapture) {
matchAssertionWordchar(state, wordCharThenNonWordChar, wordCharThenWordChar);
wordCharThenWordChar.append(jump());
} else {
matchAssertionWordchar(state, wordCharThenWordChar, wordCharThenNonWordChar);
// This can fall-though!
}
state.jumpToBacktrack(wordCharThenWordChar, this);
nonWordCharThenWordChar.link(this);
wordCharThenNonWordChar.link(this);
}
void generatePatternCharacterSingle(TermGenerationState& state)
{
const RegisterID character = regT0;
UChar ch = state.term().patternCharacter;
if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
readCharacter(state.inputOffset(), character);
or32(Imm32(32), character);
state.jumpToBacktrack(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))), this);
} else {
ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
state.jumpToBacktrack(jumpIfCharNotEquals(ch, state.inputOffset()), this);
}
}
void generatePatternCharacterPair(TermGenerationState& state)
{
const RegisterID character = regT0;
UChar ch1 = state.term().patternCharacter;
UChar ch2 = state.lookaheadTerm().patternCharacter;
int mask = 0;
int chPair = ch1 | (ch2 << 16);
if (m_pattern.m_ignoreCase) {
if (isASCIIAlpha(ch1))
mask |= 32;
if (isASCIIAlpha(ch2))
mask |= 32 << 16;
}
if (mask) {
load32WithUnalignedHalfWords(BaseIndex(input, index, TimesTwo, state.inputOffset() * sizeof(UChar)), character);
or32(Imm32(mask), character);
state.jumpToBacktrack(branch32(NotEqual, character, Imm32(chPair | mask)), this);
} else
state.jumpToBacktrack(branch32WithUnalignedHalfWords(NotEqual, BaseIndex(input, index, TimesTwo, state.inputOffset() * sizeof(UChar)), Imm32(chPair)), this);
}
void generatePatternCharacterFixed(TermGenerationState& state)
{
const RegisterID character = regT0;
const RegisterID countRegister = regT1;
PatternTerm& term = state.term();
UChar ch = term.patternCharacter;
move(index, countRegister);
sub32(Imm32(term.quantityCount), countRegister);
Label loop(this);
if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
load16(BaseIndex(input, countRegister, TimesTwo, (state.inputOffset() + term.quantityCount) * sizeof(UChar)), character);
or32(Imm32(32), character);
state.jumpToBacktrack(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))), this);
} else {
ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
state.jumpToBacktrack(branch16(NotEqual, BaseIndex(input, countRegister, TimesTwo, (state.inputOffset() + term.quantityCount) * sizeof(UChar)), Imm32(ch)), this);
}
add32(Imm32(1), countRegister);
branch32(NotEqual, countRegister, index).linkTo(loop, this);
}
void generatePatternCharacterGreedy(TermGenerationState& state)
{
const RegisterID character = regT0;
const RegisterID countRegister = regT1;
PatternTerm& term = state.term();
UChar ch = term.patternCharacter;
move(Imm32(0), countRegister);
JumpList failures;
Label loop(this);
failures.append(atEndOfInput());
if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
readCharacter(state.inputOffset(), character);
or32(Imm32(32), character);
failures.append(branch32(NotEqual, character, Imm32(Unicode::toLower(ch))));
} else {
ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
failures.append(jumpIfCharNotEquals(ch, state.inputOffset()));
}
add32(Imm32(1), countRegister);
add32(Imm32(1), index);
branch32(NotEqual, countRegister, Imm32(term.quantityCount)).linkTo(loop, this);
failures.append(jump());
Label backtrackBegin(this);
loadFromFrame(term.frameLocation, countRegister);
state.jumpToBacktrack(branchTest32(Zero, countRegister), this);
sub32(Imm32(1), countRegister);
sub32(Imm32(1), index);
failures.link(this);
storeToFrame(countRegister, term.frameLocation);
state.setBacktrackGenerated(backtrackBegin);
}
void generatePatternCharacterNonGreedy(TermGenerationState& state)
{
const RegisterID character = regT0;
const RegisterID countRegister = regT1;
PatternTerm& term = state.term();
UChar ch = term.patternCharacter;
move(Imm32(0), countRegister);
Jump firstTimeDoNothing = jump();
Label hardFail(this);
sub32(countRegister, index);
state.jumpToBacktrack(jump(), this);
Label backtrackBegin(this);
loadFromFrame(term.frameLocation, countRegister);
atEndOfInput().linkTo(hardFail, this);
branch32(Equal, countRegister, Imm32(term.quantityCount), hardFail);
if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
readCharacter(state.inputOffset(), character);
or32(Imm32(32), character);
branch32(NotEqual, character, Imm32(Unicode::toLower(ch))).linkTo(hardFail, this);
} else {
ASSERT(!m_pattern.m_ignoreCase || (Unicode::toLower(ch) == Unicode::toUpper(ch)));
jumpIfCharNotEquals(ch, state.inputOffset()).linkTo(hardFail, this);
}
add32(Imm32(1), countRegister);
add32(Imm32(1), index);
firstTimeDoNothing.link(this);
storeToFrame(countRegister, term.frameLocation);
state.setBacktrackGenerated(backtrackBegin);
}
void generateCharacterClassSingle(TermGenerationState& state)
{
const RegisterID character = regT0;
PatternTerm& term = state.term();
JumpList matchDest;
readCharacter(state.inputOffset(), character);
matchCharacterClass(character, matchDest, term.characterClass);
if (term.invertOrCapture)
state.jumpToBacktrack(matchDest, this);
else {
state.jumpToBacktrack(jump(), this);
matchDest.link(this);
}
}
void generateCharacterClassFixed(TermGenerationState& state)
{
const RegisterID character = regT0;
const RegisterID countRegister = regT1;
PatternTerm& term = state.term();
move(index, countRegister);
sub32(Imm32(term.quantityCount), countRegister);
Label loop(this);
JumpList matchDest;
load16(BaseIndex(input, countRegister, TimesTwo, (state.inputOffset() + term.quantityCount) * sizeof(UChar)), character);
matchCharacterClass(character, matchDest, term.characterClass);
if (term.invertOrCapture)
state.jumpToBacktrack(matchDest, this);
else {
state.jumpToBacktrack(jump(), this);
matchDest.link(this);
}
add32(Imm32(1), countRegister);
branch32(NotEqual, countRegister, index).linkTo(loop, this);
}
void generateCharacterClassGreedy(TermGenerationState& state)
{
const RegisterID character = regT0;
const RegisterID countRegister = regT1;
PatternTerm& term = state.term();
move(Imm32(0), countRegister);
JumpList failures;
Label loop(this);
failures.append(atEndOfInput());
if (term.invertOrCapture) {
readCharacter(state.inputOffset(), character);
matchCharacterClass(character, failures, term.characterClass);
} else {
JumpList matchDest;
readCharacter(state.inputOffset(), character);
matchCharacterClass(character, matchDest, term.characterClass);
failures.append(jump());
matchDest.link(this);
}
add32(Imm32(1), countRegister);
add32(Imm32(1), index);
branch32(NotEqual, countRegister, Imm32(term.quantityCount)).linkTo(loop, this);
failures.append(jump());
Label backtrackBegin(this);
loadFromFrame(term.frameLocation, countRegister);
state.jumpToBacktrack(branchTest32(Zero, countRegister), this);
sub32(Imm32(1), countRegister);
sub32(Imm32(1), index);
failures.link(this);
storeToFrame(countRegister, term.frameLocation);
state.setBacktrackGenerated(backtrackBegin);
}
void generateCharacterClassNonGreedy(TermGenerationState& state)
{
const RegisterID character = regT0;
const RegisterID countRegister = regT1;
PatternTerm& term = state.term();
move(Imm32(0), countRegister);
Jump firstTimeDoNothing = jump();
Label hardFail(this);
sub32(countRegister, index);
state.jumpToBacktrack(jump(), this);
Label backtrackBegin(this);
loadFromFrame(term.frameLocation, countRegister);
atEndOfInput().linkTo(hardFail, this);
branch32(Equal, countRegister, Imm32(term.quantityCount), hardFail);
JumpList matchDest;
readCharacter(state.inputOffset(), character);
matchCharacterClass(character, matchDest, term.characterClass);
if (term.invertOrCapture)
matchDest.linkTo(hardFail, this);
else {
jump(hardFail);
matchDest.link(this);
}
add32(Imm32(1), countRegister);
add32(Imm32(1), index);
firstTimeDoNothing.link(this);
storeToFrame(countRegister, term.frameLocation);
state.setBacktrackGenerated(backtrackBegin);
}
void generateParenthesesDisjunction(PatternTerm& parenthesesTerm, TermGenerationState& state, unsigned alternativeFrameLocation)
{
ASSERT((parenthesesTerm.type == PatternTerm::TypeParenthesesSubpattern) || (parenthesesTerm.type == PatternTerm::TypeParentheticalAssertion));
ASSERT(parenthesesTerm.quantityCount == 1);
PatternDisjunction* disjunction = parenthesesTerm.parentheses.disjunction;
unsigned preCheckedCount = ((parenthesesTerm.quantityType == QuantifierFixedCount) && (parenthesesTerm.type != PatternTerm::TypeParentheticalAssertion)) ? disjunction->m_minimumSize : 0;
if (disjunction->m_alternatives.size() == 1) {
state.resetAlternative();
ASSERT(state.alternativeValid());
PatternAlternative* alternative = state.alternative();
optimizeAlternative(alternative);
int countToCheck = alternative->m_minimumSize - preCheckedCount;
if (countToCheck) {
ASSERT((parenthesesTerm.type == PatternTerm::TypeParentheticalAssertion) || (parenthesesTerm.quantityType != QuantifierFixedCount));
// FIXME: This is quite horrible. The call to 'plantJumpToBacktrackIfExists'
// will be forced to always trampoline into here, just to decrement the index.
// Ick.
Jump skip = jump();
Label backtrackBegin(this);
sub32(Imm32(countToCheck), index);
state.addBacktrackJump(jump());
skip.link(this);
state.setBacktrackGenerated(backtrackBegin);
state.jumpToBacktrack(jumpIfNoAvailableInput(countToCheck), this);
state.checkedTotal += countToCheck;
}
for (state.resetTerm(); state.termValid(); state.nextTerm())
generateTerm(state);
state.checkedTotal -= countToCheck;
} else {
JumpList successes;
for (state.resetAlternative(); state.alternativeValid(); state.nextAlternative()) {
PatternAlternative* alternative = state.alternative();
optimizeAlternative(alternative);
ASSERT(alternative->m_minimumSize >= preCheckedCount);
int countToCheck = alternative->m_minimumSize - preCheckedCount;
if (countToCheck) {
state.addBacktrackJump(jumpIfNoAvailableInput(countToCheck));
state.checkedTotal += countToCheck;
}
for (state.resetTerm(); state.termValid(); state.nextTerm())
generateTerm(state);
// Matched an alternative.
DataLabelPtr dataLabel = storeToFrameWithPatch(alternativeFrameLocation);
successes.append(jump());
// Alternative did not match.
Label backtrackLocation(this);
// Can we backtrack the alternative? - if so, do so. If not, just fall through to the next one.
state.plantJumpToBacktrackIfExists(this);
state.linkAlternativeBacktracks(this);
if (countToCheck) {
sub32(Imm32(countToCheck), index);
state.checkedTotal -= countToCheck;
}
m_backtrackRecords.append(AlternativeBacktrackRecord(dataLabel, backtrackLocation));
}
// We fall through to here when the last alternative fails.
// Add a backtrack out of here for the parenthese handling code to link up.
state.addBacktrackJump(jump());
// Generate a trampoline for the parens code to backtrack to, to retry the
// next alternative.
state.setBacktrackGenerated(label());
loadFromFrameAndJump(alternativeFrameLocation);
// FIXME: both of the above hooks are a little inefficient, in that you
// may end up trampolining here, just to trampoline back out to the
// parentheses code, or vice versa. We can probably eliminate a jump
// by restructuring, but coding this way for now for simplicity during
// development.
successes.link(this);
}
}
void generateParenthesesSingle(TermGenerationState& state)
{
const RegisterID indexTemporary = regT0;
PatternTerm& term = state.term();
PatternDisjunction* disjunction = term.parentheses.disjunction;
ASSERT(term.quantityCount == 1);
unsigned preCheckedCount = ((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount)) ? disjunction->m_minimumSize : 0;
unsigned parenthesesFrameLocation = term.frameLocation;
unsigned alternativeFrameLocation = parenthesesFrameLocation;
if (term.quantityType != QuantifierFixedCount)
alternativeFrameLocation += RegexStackSpaceForBackTrackInfoParenthesesOnce;
// optimized case - no capture & no quantifier can be handled in a light-weight manner.
if (!term.invertOrCapture && (term.quantityType == QuantifierFixedCount)) {
TermGenerationState parenthesesState(disjunction, state.checkedTotal);
generateParenthesesDisjunction(state.term(), parenthesesState, alternativeFrameLocation);
// this expects that any backtracks back out of the parentheses will be in the
// parenthesesState's backTrackJumps vector, and that if they need backtracking
// they will have set an entry point on the parenthesesState's backtrackLabel.
state.propagateBacktrackingFrom(parenthesesState, this);
} else {
Jump nonGreedySkipParentheses;
Label nonGreedyTryParentheses;
if (term.quantityType == QuantifierGreedy)
storeToFrame(Imm32(1), parenthesesFrameLocation);
else if (term.quantityType == QuantifierNonGreedy) {
storeToFrame(Imm32(0), parenthesesFrameLocation);
nonGreedySkipParentheses = jump();
nonGreedyTryParentheses = label();
storeToFrame(Imm32(1), parenthesesFrameLocation);
}
// store the match start index
if (term.invertOrCapture) {
int inputOffset = state.inputOffset() - preCheckedCount;
if (inputOffset) {
move(index, indexTemporary);
add32(Imm32(inputOffset), indexTemporary);
store32(indexTemporary, Address(output, (term.parentheses.subpatternId << 1) * sizeof(int)));
} else
store32(index, Address(output, (term.parentheses.subpatternId << 1) * sizeof(int)));
}
// generate the body of the parentheses
TermGenerationState parenthesesState(disjunction, state.checkedTotal);
generateParenthesesDisjunction(state.term(), parenthesesState, alternativeFrameLocation);
// store the match end index
if (term.invertOrCapture) {
int inputOffset = state.inputOffset();
if (inputOffset) {
move(index, indexTemporary);
add32(Imm32(state.inputOffset()), indexTemporary);
store32(indexTemporary, Address(output, ((term.parentheses.subpatternId << 1) + 1) * sizeof(int)));
} else
store32(index, Address(output, ((term.parentheses.subpatternId << 1) + 1) * sizeof(int)));
}
Jump success = jump();
// A failure AFTER the parens jumps here
Label backtrackFromAfterParens(this);
if (term.quantityType == QuantifierGreedy) {
// If this is zero we have now tested with both with and without the parens.
loadFromFrame(parenthesesFrameLocation, indexTemporary);
state.jumpToBacktrack(branchTest32(Zero, indexTemporary), this);
} else if (term.quantityType == QuantifierNonGreedy) {
// If this is zero we have now tested with both with and without the parens.
loadFromFrame(parenthesesFrameLocation, indexTemporary);
branchTest32(Zero, indexTemporary).linkTo(nonGreedyTryParentheses, this);
}
parenthesesState.plantJumpToBacktrackIfExists(this);
// A failure WITHIN the parens jumps here
parenthesesState.linkAlternativeBacktracks(this);
if (term.invertOrCapture) {
store32(Imm32(-1), Address(output, (term.parentheses.subpatternId << 1) * sizeof(int)));
store32(Imm32(-1), Address(output, ((term.parentheses.subpatternId << 1) + 1) * sizeof(int)));
}
if (term.quantityType == QuantifierGreedy)
storeToFrame(Imm32(0), parenthesesFrameLocation);
else
state.jumpToBacktrack(jump(), this);
state.setBacktrackGenerated(backtrackFromAfterParens);
if (term.quantityType == QuantifierNonGreedy)
nonGreedySkipParentheses.link(this);
success.link(this);
}
}
void generateParentheticalAssertion(TermGenerationState& state)
{
PatternTerm& term = state.term();
PatternDisjunction* disjunction = term.parentheses.disjunction;
ASSERT(term.quantityCount == 1);
ASSERT(term.quantityType == QuantifierFixedCount);
unsigned parenthesesFrameLocation = term.frameLocation;
unsigned alternativeFrameLocation = parenthesesFrameLocation + RegexStackSpaceForBackTrackInfoParentheticalAssertion;
int countCheckedAfterAssertion = state.checkedTotal - term.inputPosition;
if (term.invertOrCapture) {
// Inverted case
storeToFrame(index, parenthesesFrameLocation);
state.checkedTotal -= countCheckedAfterAssertion;
if (countCheckedAfterAssertion)
sub32(Imm32(countCheckedAfterAssertion), index);
TermGenerationState parenthesesState(disjunction, state.checkedTotal);
generateParenthesesDisjunction(state.term(), parenthesesState, alternativeFrameLocation);
// Success! - which means - Fail!
loadFromFrame(parenthesesFrameLocation, index);
state.jumpToBacktrack(jump(), this);
// And fail means success.
parenthesesState.linkAlternativeBacktracks(this);
loadFromFrame(parenthesesFrameLocation, index);
state.checkedTotal += countCheckedAfterAssertion;
} else {
// Normal case
storeToFrame(index, parenthesesFrameLocation);
state.checkedTotal -= countCheckedAfterAssertion;
if (countCheckedAfterAssertion)
sub32(Imm32(countCheckedAfterAssertion), index);
TermGenerationState parenthesesState(disjunction, state.checkedTotal);
generateParenthesesDisjunction(state.term(), parenthesesState, alternativeFrameLocation);
// Success! - which means - Success!
loadFromFrame(parenthesesFrameLocation, index);
Jump success = jump();
parenthesesState.linkAlternativeBacktracks(this);
loadFromFrame(parenthesesFrameLocation, index);
state.jumpToBacktrack(jump(), this);
success.link(this);
state.checkedTotal += countCheckedAfterAssertion;
}
}
void generateTerm(TermGenerationState& state)
{
PatternTerm& term = state.term();
switch (term.type) {
case PatternTerm::TypeAssertionBOL:
generateAssertionBOL(state);
break;
case PatternTerm::TypeAssertionEOL:
generateAssertionEOL(state);
break;
case PatternTerm::TypeAssertionWordBoundary:
generateAssertionWordBoundary(state);
break;
case PatternTerm::TypePatternCharacter:
switch (term.quantityType) {
case QuantifierFixedCount:
if (term.quantityCount == 1) {
if (state.isSinglePatternCharacterLookaheadTerm() && (state.lookaheadTerm().inputPosition == (term.inputPosition + 1))) {
generatePatternCharacterPair(state);
state.nextTerm();
} else
generatePatternCharacterSingle(state);
} else
generatePatternCharacterFixed(state);
break;
case QuantifierGreedy:
generatePatternCharacterGreedy(state);
break;
case QuantifierNonGreedy:
generatePatternCharacterNonGreedy(state);
break;
}
break;
case PatternTerm::TypeCharacterClass:
switch (term.quantityType) {
case QuantifierFixedCount:
if (term.quantityCount == 1)
generateCharacterClassSingle(state);
else
generateCharacterClassFixed(state);
break;
case QuantifierGreedy:
generateCharacterClassGreedy(state);
break;
case QuantifierNonGreedy:
generateCharacterClassNonGreedy(state);
break;
}
break;
case PatternTerm::TypeBackReference:
m_generationFailed = true;
break;
case PatternTerm::TypeForwardReference:
break;
case PatternTerm::TypeParenthesesSubpattern:
if ((term.quantityCount == 1) && !term.parentheses.isCopy)
generateParenthesesSingle(state);
else
m_generationFailed = true;
break;
case PatternTerm::TypeParentheticalAssertion:
generateParentheticalAssertion(state);
break;
}
}
void generateDisjunction(PatternDisjunction* disjunction)
{
TermGenerationState state(disjunction, 0);
state.resetAlternative();
// Plant a check to see if there is sufficient input available to run the first alternative.
// Jumping back to the label 'firstAlternative' will get to this check, jumping to
// 'firstAlternativeInputChecked' will jump directly to matching the alternative having
// skipped this check.
Label firstAlternative(this);
// check availability for the next alternative
int countCheckedForCurrentAlternative = 0;
int countToCheckForFirstAlternative = 0;
bool hasShorterAlternatives = false;
JumpList notEnoughInputForPreviousAlternative;
if (state.alternativeValid()) {
PatternAlternative* alternative = state.alternative();
countToCheckForFirstAlternative = alternative->m_minimumSize;
state.checkedTotal += countToCheckForFirstAlternative;
if (countToCheckForFirstAlternative)
notEnoughInputForPreviousAlternative.append(jumpIfNoAvailableInput(countToCheckForFirstAlternative));
countCheckedForCurrentAlternative = countToCheckForFirstAlternative;
}
Label firstAlternativeInputChecked(this);
while (state.alternativeValid()) {
// Track whether any alternatives are shorter than the first one.
hasShorterAlternatives = hasShorterAlternatives || (countCheckedForCurrentAlternative < countToCheckForFirstAlternative);
PatternAlternative* alternative = state.alternative();
optimizeAlternative(alternative);
for (state.resetTerm(); state.termValid(); state.nextTerm())
generateTerm(state);
// If we get here, the alternative matched.
if (m_pattern.m_body->m_callFrameSize)
addPtr(Imm32(m_pattern.m_body->m_callFrameSize * sizeof(void*)), stackPointerRegister);
ASSERT(index != returnRegister);
if (m_pattern.m_body->m_hasFixedSize) {
move(index, returnRegister);
if (alternative->m_minimumSize)
sub32(Imm32(alternative->m_minimumSize), returnRegister);
} else
pop(returnRegister);
store32(index, Address(output, 4));
store32(returnRegister, output);
generateReturn();
state.nextAlternative();
// if there are any more alternatives, plant the check for input before looping.
if (state.alternativeValid()) {
PatternAlternative* nextAlternative = state.alternative();
int countToCheckForNextAlternative = nextAlternative->m_minimumSize;
if (countCheckedForCurrentAlternative > countToCheckForNextAlternative) { // CASE 1: current alternative was longer than the next one.
// If we get here, there the last input checked failed.
notEnoughInputForPreviousAlternative.link(this);
// Check if sufficent input available to run the next alternative
notEnoughInputForPreviousAlternative.append(jumpIfNoAvailableInput(countToCheckForNextAlternative - countCheckedForCurrentAlternative));
// We are now in the correct state to enter the next alternative; this add is only required
// to mirror and revert operation of the sub32, just below.
add32(Imm32(countCheckedForCurrentAlternative - countToCheckForNextAlternative), index);
// If we get here, there the last input checked passed.
state.linkAlternativeBacktracks(this);
// No need to check if we can run the next alternative, since it is shorter -
// just update index.
sub32(Imm32(countCheckedForCurrentAlternative - countToCheckForNextAlternative), index);
} else if (countCheckedForCurrentAlternative < countToCheckForNextAlternative) { // CASE 2: next alternative is longer than the current one.
// If we get here, there the last input checked failed.
// If there is insufficient input to run the current alternative, and the next alternative is longer,
// then there is definitely not enough input to run it - don't even check. Just adjust index, as if
// we had checked.
notEnoughInputForPreviousAlternative.link(this);
add32(Imm32(countToCheckForNextAlternative - countCheckedForCurrentAlternative), index);
notEnoughInputForPreviousAlternative.append(jump());
// The next alternative is longer than the current one; check the difference.
state.linkAlternativeBacktracks(this);
notEnoughInputForPreviousAlternative.append(jumpIfNoAvailableInput(countToCheckForNextAlternative - countCheckedForCurrentAlternative));
} else { // CASE 3: Both alternatives are the same length.
ASSERT(countCheckedForCurrentAlternative == countToCheckForNextAlternative);
// If the next alterative is the same length as this one, then no need to check the input -
// if there was sufficent input to run the current alternative then there is sufficient
// input to run the next one; if not, there isn't.
state.linkAlternativeBacktracks(this);
}
state.checkedTotal -= countCheckedForCurrentAlternative;
countCheckedForCurrentAlternative = countToCheckForNextAlternative;
state.checkedTotal += countCheckedForCurrentAlternative;
}
}
// If we get here, all Alternatives failed...
state.checkedTotal -= countCheckedForCurrentAlternative;
// How much more input need there be to be able to retry from the first alternative?
// examples:
// /yarr_jit/ or /wrec|pcre/
// In these examples we need check for one more input before looping.
// /yarr_jit|pcre/
// In this case we need check for 5 more input to loop (+4 to allow for the first alterative
// being four longer than the last alternative checked, and another +1 to effectively move
// the start position along by one).
// /yarr|rules/ or /wrec|notsomuch/
// In these examples, provided that there was sufficient input to have just been matching for
// the second alternative we can loop without checking for available input (since the second
// alternative is longer than the first). In the latter example we need to decrement index
// (by 4) so the start position is only progressed by 1 from the last iteration.
int incrementForNextIter = (countToCheckForFirstAlternative - countCheckedForCurrentAlternative) + 1;
// First, deal with the cases where there was sufficient input to try the last alternative.
if (incrementForNextIter > 0) // We need to check for more input anyway, fall through to the checking below.
state.linkAlternativeBacktracks(this);
else if (m_pattern.m_body->m_hasFixedSize && !incrementForNextIter) // No need to update anything, link these backtracks straight to the to pof the loop!
state.linkAlternativeBacktracksTo(firstAlternativeInputChecked, this);
else { // no need to check the input, but we do have some bookkeeping to do first.
state.linkAlternativeBacktracks(this);
// Where necessary update our preserved start position.
if (!m_pattern.m_body->m_hasFixedSize) {
move(index, regT0);
sub32(Imm32(countCheckedForCurrentAlternative - 1), regT0);
poke(regT0, m_pattern.m_body->m_callFrameSize);
}
// Update index if necessary, and loop (without checking).
if (incrementForNextIter)
add32(Imm32(incrementForNextIter), index);
jump().linkTo(firstAlternativeInputChecked, this);
}
notEnoughInputForPreviousAlternative.link(this);
// Update our idea of the start position, if we're tracking this.
if (!m_pattern.m_body->m_hasFixedSize) {
if (countCheckedForCurrentAlternative - 1) {
move(index, regT0);
sub32(Imm32(countCheckedForCurrentAlternative - 1), regT0);
poke(regT0, m_pattern.m_body->m_callFrameSize);
} else
poke(index, m_pattern.m_body->m_callFrameSize);
}
// Check if there is sufficent input to run the first alternative again.
jumpIfAvailableInput(incrementForNextIter).linkTo(firstAlternativeInputChecked, this);
// No - insufficent input to run the first alteranative, are there any other alternatives we
// might need to check? If so, the last check will have left the index incremented by
// (countToCheckForFirstAlternative + 1), so we need test whether countToCheckForFirstAlternative
// LESS input is available, to have the effect of just progressing the start position by 1
// from the last iteration. If this check passes we can just jump up to the check associated
// with the first alternative in the loop. This is a bit sad, since we'll end up trying the
// first alternative again, and this check will fail (otherwise the check planted just above
// here would have passed). This is a bit sad, however it saves trying to do something more
// complex here in compilation, and in the common case we should end up coallescing the checks.
//
// FIXME: a nice improvement here may be to stop trying to match sooner, based on the least
// of the minimum-alternative-lengths. E.g. if I have two alternatives of length 200 and 150,
// and a string of length 100, we'll end up looping index from 0 to 100, checking whether there
// is sufficient input to run either alternative (constantly failing). If there had been only
// one alternative, or if the shorter alternative had come first, we would have terminated
// immediately. :-/
if (hasShorterAlternatives)
jumpIfAvailableInput(-countToCheckForFirstAlternative).linkTo(firstAlternative, this);
// index will now be a bit garbled (depending on whether 'hasShorterAlternatives' is true,
// it has either been incremented by 1 or by (countToCheckForFirstAlternative + 1) ...
// but since we're about to return a failure this doesn't really matter!)
unsigned frameSize = m_pattern.m_body->m_callFrameSize;
if (!m_pattern.m_body->m_hasFixedSize)
++frameSize;
if (frameSize)
addPtr(Imm32(frameSize * sizeof(void*)), stackPointerRegister);
move(Imm32(-1), returnRegister);
generateReturn();
}
void generateEnter()
{
#if CPU(X86_64)
push(X86Registers::ebp);
move(stackPointerRegister, X86Registers::ebp);
push(X86Registers::ebx);
#elif CPU(X86)
push(X86Registers::ebp);
move(stackPointerRegister, X86Registers::ebp);
// TODO: do we need spill registers to fill the output pointer if there are no sub captures?
push(X86Registers::ebx);
push(X86Registers::edi);
push(X86Registers::esi);
// load output into edi (2 = saved ebp + return address).
#if COMPILER(MSVC)
loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), input);
loadPtr(Address(X86Registers::ebp, 3 * sizeof(void*)), index);
loadPtr(Address(X86Registers::ebp, 4 * sizeof(void*)), length);
loadPtr(Address(X86Registers::ebp, 5 * sizeof(void*)), output);
#else
loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), output);
#endif
#elif CPU(ARM)
push(ARMRegisters::r4);
push(ARMRegisters::r5);
push(ARMRegisters::r6);
move(ARMRegisters::r3, output);
#endif
}
void generateReturn()
{
#if CPU(X86_64)
pop(X86Registers::ebx);
pop(X86Registers::ebp);
#elif CPU(X86)
pop(X86Registers::esi);
pop(X86Registers::edi);
pop(X86Registers::ebx);
pop(X86Registers::ebp);
#elif CPU(ARM)
pop(ARMRegisters::r6);
pop(ARMRegisters::r5);
pop(ARMRegisters::r4);
#endif
ret();
}
public:
RegexGenerator(RegexPattern& pattern)
: m_pattern(pattern)
, m_generationFailed(false)
{
}
void generate()
{
generateEnter();
// TODO: do I really want this on the stack?
if (!m_pattern.m_body->m_hasFixedSize)
push(index);
if (m_pattern.m_body->m_callFrameSize)
subPtr(Imm32(m_pattern.m_body->m_callFrameSize * sizeof(void*)), stackPointerRegister);
generateDisjunction(m_pattern.m_body);
}
void compile(JSGlobalData* globalData, RegexCodeBlock& jitObject)
{
generate();
LinkBuffer patchBuffer(this, globalData->executableAllocator.poolForSize(size()));
for (unsigned i = 0; i < m_backtrackRecords.size(); ++i)
patchBuffer.patch(m_backtrackRecords[i].dataLabel, patchBuffer.locationOf(m_backtrackRecords[i].backtrackLocation));
jitObject.set(patchBuffer.finalizeCode());
}
bool generationFailed()
{
return m_generationFailed;
}
private:
RegexPattern& m_pattern;
Vector<AlternativeBacktrackRecord> m_backtrackRecords;
bool m_generationFailed;
};
void jitCompileRegex(JSGlobalData* globalData, RegexCodeBlock& jitObject, const UString& patternString, unsigned& numSubpatterns, const char*& error, bool ignoreCase, bool multiline)
{
RegexPattern pattern(ignoreCase, multiline);
if ((error = compileRegex(patternString, pattern)))
return;
numSubpatterns = pattern.m_numSubpatterns;
RegexGenerator generator(pattern);
generator.compile(globalData, jitObject);
if (generator.generationFailed()) {
JSRegExpIgnoreCaseOption ignoreCaseOption = ignoreCase ? JSRegExpIgnoreCase : JSRegExpDoNotIgnoreCase;
JSRegExpMultilineOption multilineOption = multiline ? JSRegExpMultiline : JSRegExpSingleLine;
jitObject.setFallback(jsRegExpCompile(reinterpret_cast<const UChar*>(patternString.data()), patternString.size(), ignoreCaseOption, multilineOption, &numSubpatterns, &error));
}
}
}}
#endif