/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if USE(ACCELERATED_COMPOSITING)
#include "RenderLayerCompositor.h"
#include "AnimationController.h"
#include "Chrome.h"
#include "ChromeClient.h"
#include "CSSPropertyNames.h"
#include "Frame.h"
#include "FrameView.h"
#include "GraphicsLayer.h"
#include "HitTestResult.h"
#include "HTMLCanvasElement.h"
#include "Page.h"
#include "RenderEmbeddedObject.h"
#include "RenderLayerBacking.h"
#include "RenderReplica.h"
#include "RenderVideo.h"
#include "RenderView.h"
#include "Settings.h"
#if PROFILE_LAYER_REBUILD
#include <wtf/CurrentTime.h>
#endif
#ifndef NDEBUG
#include "CString.h"
#include "RenderTreeAsText.h"
#endif
#if ENABLE(3D_RENDERING)
// This symbol is used to determine from a script whether 3D rendering is enabled (via 'nm').
bool WebCoreHas3DRendering = true;
#endif
namespace WebCore {
using namespace HTMLNames;
struct CompositingState {
CompositingState(RenderLayer* compAncestor)
: m_compositingAncestor(compAncestor)
, m_subtreeIsCompositing(false)
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
, m_fixedSibling(false)
#endif
#ifndef NDEBUG
, m_depth(0)
#endif
{
}
RenderLayer* m_compositingAncestor;
bool m_subtreeIsCompositing;
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
bool m_fixedSibling;
#endif
#ifndef NDEBUG
int m_depth;
#endif
};
RenderLayerCompositor::RenderLayerCompositor(RenderView* renderView)
: m_renderView(renderView)
, m_rootPlatformLayer(0)
, m_hasAcceleratedCompositing(true)
, m_showDebugBorders(false)
, m_showRepaintCounter(false)
, m_compositingConsultsOverlap(true)
, m_compositing(false)
, m_rootLayerAttached(false)
, m_compositingLayersNeedRebuild(false)
#if PROFILE_LAYER_REBUILD
, m_rootLayerUpdateCount(0)
#endif // PROFILE_LAYER_REBUILD
{
}
RenderLayerCompositor::~RenderLayerCompositor()
{
ASSERT(!m_rootLayerAttached);
}
void RenderLayerCompositor::enableCompositingMode(bool enable /* = true */)
{
if (enable != m_compositing) {
m_compositing = enable;
// We never go out of compositing mode for a given page,
// but if all the layers disappear, we'll just be left with
// the empty root layer, which has minimal overhead.
if (m_compositing)
ensureRootPlatformLayer();
else
destroyRootPlatformLayer();
}
}
void RenderLayerCompositor::cacheAcceleratedCompositingFlags()
{
bool hasAcceleratedCompositing = false;
bool showDebugBorders = false;
bool showRepaintCounter = false;
if (Settings* settings = m_renderView->document()->settings()) {
hasAcceleratedCompositing = settings->acceleratedCompositingEnabled();
showDebugBorders = settings->showDebugBorders();
showRepaintCounter = settings->showRepaintCounter();
}
if (hasAcceleratedCompositing != m_hasAcceleratedCompositing || showDebugBorders != m_showDebugBorders || showRepaintCounter != m_showRepaintCounter)
setCompositingLayersNeedRebuild();
m_hasAcceleratedCompositing = hasAcceleratedCompositing;
m_showDebugBorders = showDebugBorders;
m_showRepaintCounter = showRepaintCounter;
}
void RenderLayerCompositor::setCompositingLayersNeedRebuild(bool needRebuild)
{
if (inCompositingMode())
m_compositingLayersNeedRebuild = needRebuild;
}
void RenderLayerCompositor::scheduleSync()
{
Frame* frame = m_renderView->frameView()->frame();
Page* page = frame ? frame->page() : 0;
if (!page)
return;
page->chrome()->client()->scheduleCompositingLayerSync();
}
void RenderLayerCompositor::updateCompositingLayers(CompositingUpdateType updateType, RenderLayer* updateRoot)
{
bool checkForHierarchyUpdate = false;
bool needGeometryUpdate = false;
switch (updateType) {
case CompositingUpdateAfterLayoutOrStyleChange:
case CompositingUpdateOnPaitingOrHitTest:
checkForHierarchyUpdate = true;
break;
case CompositingUpdateOnScroll:
if (m_compositingConsultsOverlap)
checkForHierarchyUpdate = true; // Overlap can change with scrolling, so need to check for hierarchy updates.
needGeometryUpdate = true;
break;
}
if (!checkForHierarchyUpdate && !needGeometryUpdate)
return;
ASSERT(inCompositingMode());
bool needHierarchyUpdate = m_compositingLayersNeedRebuild;
if (!updateRoot) {
// Only clear the flag if we're updating the entire hierarchy.
m_compositingLayersNeedRebuild = false;
updateRoot = rootRenderLayer();
}
#if PROFILE_LAYER_REBUILD
++m_rootLayerUpdateCount;
double startTime = WTF::currentTime();
#endif
if (checkForHierarchyUpdate) {
// Go through the layers in presentation order, so that we can compute which RenderLayers need compositing layers.
// FIXME: we could maybe do this and the hierarchy udpate in one pass, but the parenting logic would be more complex.
CompositingState compState(updateRoot);
bool layersChanged = false;
if (m_compositingConsultsOverlap) {
OverlapMap overlapTestRequestMap;
computeCompositingRequirements(updateRoot, &overlapTestRequestMap, compState, layersChanged);
} else
computeCompositingRequirements(updateRoot, 0, compState, layersChanged);
needHierarchyUpdate |= layersChanged;
}
if (needHierarchyUpdate) {
// Update the hierarchy of the compositing layers.
CompositingState compState(updateRoot);
Vector<GraphicsLayer*> childList;
rebuildCompositingLayerTree(updateRoot, compState, childList);
// Host the document layer in the RenderView's root layer.
if (updateRoot == rootRenderLayer() && !childList.isEmpty())
m_rootPlatformLayer->setChildren(childList);
} else if (needGeometryUpdate) {
// We just need to do a geometry update. This is only used for position:fixed scrolling;
// most of the time, geometry is updated via RenderLayer::styleChanged().
updateLayerTreeGeometry(updateRoot);
}
#if PROFILE_LAYER_REBUILD
double endTime = WTF::currentTime();
if (updateRoot == rootRenderLayer())
fprintf(stderr, "Update %d: computeCompositingRequirements for the world took %fms\n",
m_rootLayerUpdateCount, 1000.0 * (endTime - startTime));
#endif
ASSERT(updateRoot || !m_compositingLayersNeedRebuild);
if (!hasAcceleratedCompositing())
enableCompositingMode(false);
}
bool RenderLayerCompositor::updateBacking(RenderLayer* layer, CompositingChangeRepaint shouldRepaint)
{
bool layerChanged = false;
if (needsToBeComposited(layer)) {
enableCompositingMode();
// 3D transforms turn off the testing of overlap.
if (requiresCompositingForTransform(layer->renderer()))
setCompositingConsultsOverlap(false);
if (!layer->backing()) {
// If we need to repaint, do so before making backing
if (shouldRepaint == CompositingChangeRepaintNow)
repaintOnCompositingChange(layer);
layer->ensureBacking();
layerChanged = true;
}
} else {
if (layer->backing()) {
// If we're removing backing on a reflection, clear the source GraphicsLayer's pointer to
// its replica GraphicsLayer. In practice this should never happen because reflectee and reflection
// are both either composited, or not composited.
if (layer->isReflection()) {
RenderLayer* sourceLayer = toRenderBoxModelObject(layer->renderer()->parent())->layer();
if (RenderLayerBacking* backing = sourceLayer->backing()) {
ASSERT(backing->graphicsLayer()->replicaLayer() == layer->backing()->graphicsLayer());
backing->graphicsLayer()->setReplicatedByLayer(0);
}
}
layer->clearBacking();
layerChanged = true;
// The layer's cached repaints rects are relative to the repaint container, so change when
// compositing changes; we need to update them here.
layer->computeRepaintRects();
// If we need to repaint, do so now that we've removed the backing
if (shouldRepaint == CompositingChangeRepaintNow)
repaintOnCompositingChange(layer);
}
}
#if ENABLE(VIDEO)
if (layerChanged && layer->renderer()->isVideo()) {
// If it's a video, give the media player a chance to hook up to the layer.
RenderVideo* video = toRenderVideo(layer->renderer());
video->acceleratedRenderingStateChanged();
}
#endif
return layerChanged;
}
bool RenderLayerCompositor::updateLayerCompositingState(RenderLayer* layer, CompositingChangeRepaint shouldRepaint)
{
bool layerChanged = updateBacking(layer, shouldRepaint);
// See if we need content or clipping layers. Methods called here should assume
// that the compositing state of descendant layers has not been updated yet.
if (layer->backing() && layer->backing()->updateGraphicsLayerConfiguration())
layerChanged = true;
return layerChanged;
}
void RenderLayerCompositor::repaintOnCompositingChange(RenderLayer* layer)
{
// If the renderer is not attached yet, no need to repaint.
if (!layer->renderer()->parent())
return;
RenderBoxModelObject* repaintContainer = layer->renderer()->containerForRepaint();
if (!repaintContainer)
repaintContainer = m_renderView;
layer->repaintIncludingNonCompositingDescendants(repaintContainer);
if (repaintContainer == m_renderView) {
// The contents of this layer may be moving between the window
// and a GraphicsLayer, so we need to make sure the window system
// synchronizes those changes on the screen.
m_renderView->frameView()->setNeedsOneShotDrawingSynchronization();
}
}
// The bounds of the GraphicsLayer created for a compositing layer is the union of the bounds of all the descendant
// RenderLayers that are rendered by the composited RenderLayer.
IntRect RenderLayerCompositor::calculateCompositedBounds(const RenderLayer* layer, const RenderLayer* ancestorLayer)
{
if (!layer->isSelfPaintingLayer())
return IntRect();
IntRect boundingBoxRect, unionBounds;
boundingBoxRect = unionBounds = layer->localBoundingBox();
if (layer->renderer()->hasOverflowClip() || layer->renderer()->hasMask()) {
int ancestorRelX = 0, ancestorRelY = 0;
layer->convertToLayerCoords(ancestorLayer, ancestorRelX, ancestorRelY);
boundingBoxRect.move(ancestorRelX, ancestorRelY);
return boundingBoxRect;
}
if (RenderLayer* reflection = layer->reflectionLayer()) {
if (!reflection->isComposited()) {
IntRect childUnionBounds = calculateCompositedBounds(reflection, layer);
unionBounds.unite(childUnionBounds);
}
}
ASSERT(layer->isStackingContext() || (!layer->m_posZOrderList || layer->m_posZOrderList->size() == 0));
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = negZOrderList->at(i);
if (!curLayer->isComposited()) {
IntRect childUnionBounds = calculateCompositedBounds(curLayer, layer);
unionBounds.unite(childUnionBounds);
}
}
}
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = posZOrderList->at(i);
if (!curLayer->isComposited()) {
IntRect childUnionBounds = calculateCompositedBounds(curLayer, layer);
unionBounds.unite(childUnionBounds);
}
}
}
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = normalFlowList->at(i);
if (!curLayer->isComposited()) {
IntRect curAbsBounds = calculateCompositedBounds(curLayer, layer);
unionBounds.unite(curAbsBounds);
}
}
}
if (layer->paintsWithTransform(PaintBehaviorNormal)) {
TransformationMatrix* affineTrans = layer->transform();
boundingBoxRect = affineTrans->mapRect(boundingBoxRect);
unionBounds = affineTrans->mapRect(unionBounds);
}
int ancestorRelX = 0, ancestorRelY = 0;
layer->convertToLayerCoords(ancestorLayer, ancestorRelX, ancestorRelY);
unionBounds.move(ancestorRelX, ancestorRelY);
return unionBounds;
}
void RenderLayerCompositor::layerWasAdded(RenderLayer* /*parent*/, RenderLayer* /*child*/)
{
setCompositingLayersNeedRebuild();
}
void RenderLayerCompositor::layerWillBeRemoved(RenderLayer* parent, RenderLayer* child)
{
if (!child->isComposited() || parent->renderer()->documentBeingDestroyed())
return;
setCompositingParent(child, 0);
RenderLayer* compLayer = parent->enclosingCompositingLayer();
if (compLayer) {
ASSERT(compLayer->backing());
IntRect compBounds = child->backing()->compositedBounds();
int offsetX = 0, offsetY = 0;
child->convertToLayerCoords(compLayer, offsetX, offsetY);
compBounds.move(offsetX, offsetY);
compLayer->setBackingNeedsRepaintInRect(compBounds);
// The contents of this layer may be moving from a GraphicsLayer to the window,
// so we need to make sure the window system synchronizes those changes on the screen.
m_renderView->frameView()->setNeedsOneShotDrawingSynchronization();
}
setCompositingLayersNeedRebuild();
}
RenderLayer* RenderLayerCompositor::enclosingNonStackingClippingLayer(const RenderLayer* layer) const
{
for (RenderLayer* curr = layer->parent(); curr != 0; curr = curr->parent()) {
if (curr->isStackingContext())
return 0;
if (curr->renderer()->hasOverflowClip())
return curr;
}
return 0;
}
void RenderLayerCompositor::addToOverlapMap(OverlapMap& overlapMap, RenderLayer* layer, IntRect& layerBounds, bool& boundsComputed)
{
if (layer->isRootLayer())
return;
if (!boundsComputed) {
layerBounds = layer->renderer()->localToAbsoluteQuad(FloatRect(layer->localBoundingBox())).enclosingBoundingBox();
boundsComputed = true;
}
overlapMap.add(layer, layerBounds);
}
bool RenderLayerCompositor::overlapsCompositedLayers(OverlapMap& overlapMap, const IntRect& layerBounds)
{
RenderLayerCompositor::OverlapMap::const_iterator end = overlapMap.end();
for (RenderLayerCompositor::OverlapMap::const_iterator it = overlapMap.begin(); it != end; ++it) {
const IntRect& bounds = it->second;
if (layerBounds.intersects(bounds))
return true;
}
return false;
}
// Recurse through the layers in z-index and overflow order (which is equivalent to painting order)
// For the z-order children of a compositing layer:
// If a child layers has a compositing layer, then all subsequent layers must
// be compositing in order to render above that layer.
//
// If a child in the negative z-order list is compositing, then the layer itself
// must be compositing so that its contents render over that child.
// This implies that its positive z-index children must also be compositing.
//
void RenderLayerCompositor::computeCompositingRequirements(RenderLayer* layer, OverlapMap* overlapMap, struct CompositingState& compositingState, bool& layersChanged)
{
layer->updateLayerPosition();
layer->updateZOrderLists();
layer->updateNormalFlowList();
// Clear the flag
layer->setHasCompositingDescendant(false);
bool mustOverlapCompositedLayers = compositingState.m_subtreeIsCompositing;
bool haveComputedBounds = false;
IntRect absBounds;
if (overlapMap && !overlapMap->isEmpty()) {
// If we're testing for overlap, we only need to composite if we overlap something that is already composited.
absBounds = layer->renderer()->localToAbsoluteQuad(FloatRect(layer->localBoundingBox())).enclosingBoundingBox();
haveComputedBounds = true;
mustOverlapCompositedLayers = overlapsCompositedLayers(*overlapMap, absBounds);
}
layer->setMustOverlapCompositedLayers(mustOverlapCompositedLayers);
// The children of this layer don't need to composite, unless there is
// a compositing layer among them, so start by inheriting the compositing
// ancestor with m_subtreeIsCompositing set to false.
CompositingState childState(compositingState.m_compositingAncestor);
#ifndef NDEBUG
++childState.m_depth;
#endif
const bool willBeComposited = needsToBeComposited(layer);
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
// If we are a fixed layer, signal it to our siblings
if (layer->isFixed())
compositingState.m_fixedSibling = true;
if (!willBeComposited && compositingState.m_fixedSibling)
layer->setMustOverlapCompositedLayers(true);
if (willBeComposited || compositingState.m_fixedSibling) {
#else
if (willBeComposited) {
#endif
// Tell the parent it has compositing descendants.
compositingState.m_subtreeIsCompositing = true;
// This layer now acts as the ancestor for kids.
childState.m_compositingAncestor = layer;
if (overlapMap)
addToOverlapMap(*overlapMap, layer, absBounds, haveComputedBounds);
}
#if ENABLE(VIDEO)
// Video is special. It's a replaced element with a content layer, but has shadow content
// for the controller that must render in front. Without this, the controls fail to show
// when the video element is a stacking context (e.g. due to opacity or transform).
if (willBeComposited && layer->renderer()->isVideo())
childState.m_subtreeIsCompositing = true;
#endif
if (layer->isStackingContext()) {
ASSERT(!layer->m_zOrderListsDirty);
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
childState.m_fixedSibling = false;
// For the negative z-order, if we have a fixed layer
// we need to make all the siblings composited layers.
// Otherwise a negative layer (below the fixed layer) could
// still be drawn onto a higher z-order layer (e.g. the body)
// if not immediately intersecting with our fixed layer.
// So it's not enough here to only set m_fixedSibling for
// subsequent siblings as we do for the normal flow
// and positive z-order.
for (size_t j = 0; j < listSize; ++j) {
if ((negZOrderList->at(j))->isFixed()) {
childState.m_fixedSibling = true;
break;
}
}
#endif
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = negZOrderList->at(i);
computeCompositingRequirements(curLayer, overlapMap, childState, layersChanged);
// If we have to make a layer for this child, make one now so we can have a contents layer
// (since we need to ensure that the -ve z-order child renders underneath our contents).
if (!willBeComposited && childState.m_subtreeIsCompositing) {
// make layer compositing
layer->setMustOverlapCompositedLayers(true);
childState.m_compositingAncestor = layer;
if (overlapMap)
addToOverlapMap(*overlapMap, layer, absBounds, haveComputedBounds);
}
}
}
}
ASSERT(!layer->m_normalFlowListDirty);
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
childState.m_fixedSibling = false;
#endif
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = normalFlowList->at(i);
computeCompositingRequirements(curLayer, overlapMap, childState, layersChanged);
}
}
if (layer->isStackingContext()) {
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
childState.m_fixedSibling = false;
#endif
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = posZOrderList->at(i);
computeCompositingRequirements(curLayer, overlapMap, childState, layersChanged);
}
}
}
// If we have a software transform, and we have layers under us, we need to also
// be composited. Also, if we have opacity < 1, then we need to be a layer so that
// the child layers are opaque, then rendered with opacity on this layer.
if (!willBeComposited && childState.m_subtreeIsCompositing && requiresCompositingWhenDescendantsAreCompositing(layer->renderer())) {
layer->setMustOverlapCompositedLayers(true);
if (overlapMap)
addToOverlapMap(*overlapMap, layer, absBounds, haveComputedBounds);
}
if (layer->reflectionLayer())
layer->reflectionLayer()->setMustOverlapCompositedLayers(needsToBeComposited(layer));
// Subsequent layers in the parent stacking context also need to composite.
if (childState.m_subtreeIsCompositing)
compositingState.m_subtreeIsCompositing = true;
// If the layer is going into compositing mode, repaint its old location.
if (!layer->isComposited() && needsToBeComposited(layer))
repaintOnCompositingChange(layer);
// Set the flag to say that this SC has compositing children.
// this can affect the answer to needsToBeComposited() when clipping,
// but that's ok here.
layer->setHasCompositingDescendant(childState.m_subtreeIsCompositing);
// Update backing now, so that we can use isComposited() reliably during tree traversal in rebuildCompositingLayerTree().
if (updateBacking(layer, CompositingChangeRepaintNow))
layersChanged = true;
if (layer->reflectionLayer() && updateLayerCompositingState(layer->reflectionLayer(), CompositingChangeRepaintNow))
layersChanged = true;
}
void RenderLayerCompositor::setCompositingParent(RenderLayer* childLayer, RenderLayer* parentLayer)
{
ASSERT(!parentLayer || childLayer->ancestorCompositingLayer() == parentLayer);
ASSERT(childLayer->isComposited());
// It's possible to be called with a parent that isn't yet composited when we're doing
// partial updates as required by painting or hit testing. Just bail in that case;
// we'll do a full layer update soon.
if (!parentLayer || !parentLayer->isComposited())
return;
if (parentLayer) {
GraphicsLayer* hostingLayer = parentLayer->backing()->parentForSublayers();
GraphicsLayer* hostedLayer = childLayer->backing()->childForSuperlayers();
hostingLayer->addChild(hostedLayer);
} else
childLayer->backing()->childForSuperlayers()->removeFromParent();
}
void RenderLayerCompositor::removeCompositedChildren(RenderLayer* layer)
{
ASSERT(layer->isComposited());
GraphicsLayer* hostingLayer = layer->backing()->parentForSublayers();
hostingLayer->removeAllChildren();
}
void RenderLayerCompositor::parentInRootLayer(RenderLayer* layer)
{
ASSERT(layer->isComposited());
GraphicsLayer* layerAnchor = layer->backing()->childForSuperlayers();
if (layerAnchor->parent() != m_rootPlatformLayer) {
layerAnchor->removeFromParent();
if (m_rootPlatformLayer)
m_rootPlatformLayer->addChild(layerAnchor);
}
}
#if ENABLE(VIDEO)
bool RenderLayerCompositor::canAccelerateVideoRendering(RenderVideo* o) const
{
if (!m_hasAcceleratedCompositing)
return false;
return o->supportsAcceleratedRendering();
}
#endif
void RenderLayerCompositor::rebuildCompositingLayerTree(RenderLayer* layer, const CompositingState& compositingState, Vector<GraphicsLayer*>& childLayersOfEnclosingLayer)
{
// Make the layer compositing if necessary, and set up clipping and content layers.
// Note that we can only do work here that is independent of whether the descendant layers
// have been processed. computeCompositingRequirements() will already have done the repaint if necessary.
RenderLayerBacking* layerBacking = layer->backing();
if (layerBacking) {
// The compositing state of all our children has been updated already, so now
// we can compute and cache the composited bounds for this layer.
layerBacking->updateCompositedBounds();
if (RenderLayer* reflection = layer->reflectionLayer()) {
if (reflection->backing())
reflection->backing()->updateCompositedBounds();
}
layerBacking->updateGraphicsLayerConfiguration();
layerBacking->updateGraphicsLayerGeometry();
if (!layer->parent())
updateRootLayerPosition();
}
// If this layer has backing, then we are collecting its children, otherwise appending
// to the compositing child list of an enclosing layer.
Vector<GraphicsLayer*> layerChildren;
Vector<GraphicsLayer*>& childList = layerBacking ? layerChildren : childLayersOfEnclosingLayer;
CompositingState childState = compositingState;
if (layer->isComposited())
childState.m_compositingAncestor = layer;
#ifndef NDEBUG
++childState.m_depth;
#endif
// The children of this stacking context don't need to composite, unless there is
// a compositing layer among them, so start by assuming false.
childState.m_subtreeIsCompositing = false;
if (layer->isStackingContext()) {
ASSERT(!layer->m_zOrderListsDirty);
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = negZOrderList->at(i);
rebuildCompositingLayerTree(curLayer, childState, childList);
}
}
// If a negative z-order child is compositing, we get a foreground layer which needs to get parented.
if (layerBacking && layerBacking->foregroundLayer())
childList.append(layerBacking->foregroundLayer());
}
ASSERT(!layer->m_normalFlowListDirty);
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = normalFlowList->at(i);
rebuildCompositingLayerTree(curLayer, childState, childList);
}
}
if (layer->isStackingContext()) {
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = posZOrderList->at(i);
rebuildCompositingLayerTree(curLayer, childState, childList);
}
}
}
if (layerBacking) {
layerBacking->parentForSublayers()->setChildren(layerChildren);
childLayersOfEnclosingLayer.append(layerBacking->childForSuperlayers());
}
}
// This just updates layer geometry without changing the hierarchy.
void RenderLayerCompositor::updateLayerTreeGeometry(RenderLayer* layer)
{
if (RenderLayerBacking* layerBacking = layer->backing()) {
// The compositing state of all our children has been updated already, so now
// we can compute and cache the composited bounds for this layer.
layerBacking->updateCompositedBounds();
if (RenderLayer* reflection = layer->reflectionLayer()) {
if (reflection->backing())
reflection->backing()->updateCompositedBounds();
}
layerBacking->updateGraphicsLayerConfiguration();
layerBacking->updateGraphicsLayerGeometry();
if (!layer->parent())
updateRootLayerPosition();
}
if (layer->isStackingContext()) {
ASSERT(!layer->m_zOrderListsDirty);
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
for (size_t i = 0; i < listSize; ++i)
updateLayerTreeGeometry(negZOrderList->at(i));
}
}
ASSERT(!layer->m_normalFlowListDirty);
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
for (size_t i = 0; i < listSize; ++i)
updateLayerTreeGeometry(normalFlowList->at(i));
}
if (layer->isStackingContext()) {
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
for (size_t i = 0; i < listSize; ++i)
updateLayerTreeGeometry(posZOrderList->at(i));
}
}
}
// Recurs down the RenderLayer tree until its finds the compositing descendants of compositingAncestor and updates their geometry.
void RenderLayerCompositor::updateCompositingDescendantGeometry(RenderLayer* compositingAncestor, RenderLayer* layer, RenderLayerBacking::UpdateDepth updateDepth)
{
if (layer != compositingAncestor) {
if (RenderLayerBacking* layerBacking = layer->backing()) {
layerBacking->updateCompositedBounds();
if (RenderLayer* reflection = layer->reflectionLayer()) {
if (reflection->backing())
reflection->backing()->updateCompositedBounds();
}
layerBacking->updateGraphicsLayerGeometry();
if (updateDepth == RenderLayerBacking::CompositingChildren)
return;
}
}
if (layer->reflectionLayer())
updateCompositingDescendantGeometry(compositingAncestor, layer->reflectionLayer(), updateDepth);
if (!layer->hasCompositingDescendant())
return;
if (layer->isStackingContext()) {
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
for (size_t i = 0; i < listSize; ++i)
updateCompositingDescendantGeometry(compositingAncestor, negZOrderList->at(i), updateDepth);
}
}
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
for (size_t i = 0; i < listSize; ++i)
updateCompositingDescendantGeometry(compositingAncestor, normalFlowList->at(i), updateDepth);
}
if (layer->isStackingContext()) {
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
for (size_t i = 0; i < listSize; ++i)
updateCompositingDescendantGeometry(compositingAncestor, posZOrderList->at(i), updateDepth);
}
}
}
void RenderLayerCompositor::repaintCompositedLayersAbsoluteRect(const IntRect& absRect)
{
recursiveRepaintLayerRect(rootRenderLayer(), absRect);
}
void RenderLayerCompositor::recursiveRepaintLayerRect(RenderLayer* layer, const IntRect& rect)
{
// FIXME: This method does not work correctly with transforms.
if (layer->isComposited())
layer->setBackingNeedsRepaintInRect(rect);
if (layer->hasCompositingDescendant()) {
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = negZOrderList->at(i);
int x = 0;
int y = 0;
curLayer->convertToLayerCoords(layer, x, y);
IntRect childRect(rect);
childRect.move(-x, -y);
recursiveRepaintLayerRect(curLayer, childRect);
}
}
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = posZOrderList->at(i);
int x = 0;
int y = 0;
curLayer->convertToLayerCoords(layer, x, y);
IntRect childRect(rect);
childRect.move(-x, -y);
recursiveRepaintLayerRect(curLayer, childRect);
}
}
}
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = normalFlowList->at(i);
int x = 0;
int y = 0;
curLayer->convertToLayerCoords(layer, x, y);
IntRect childRect(rect);
childRect.move(-x, -y);
recursiveRepaintLayerRect(curLayer, childRect);
}
}
}
RenderLayer* RenderLayerCompositor::rootRenderLayer() const
{
return m_renderView->layer();
}
GraphicsLayer* RenderLayerCompositor::rootPlatformLayer() const
{
return m_rootPlatformLayer.get();
}
void RenderLayerCompositor::didMoveOnscreen()
{
if (!m_rootPlatformLayer)
return;
Frame* frame = m_renderView->frameView()->frame();
Page* page = frame ? frame->page() : 0;
if (!page)
return;
page->chrome()->client()->attachRootGraphicsLayer(frame, m_rootPlatformLayer.get());
m_rootLayerAttached = true;
}
void RenderLayerCompositor::willMoveOffscreen()
{
if (!m_rootPlatformLayer || !m_rootLayerAttached)
return;
Frame* frame = m_renderView->frameView()->frame();
Page* page = frame ? frame->page() : 0;
if (!page)
return;
page->chrome()->client()->attachRootGraphicsLayer(frame, 0);
m_rootLayerAttached = false;
}
void RenderLayerCompositor::updateRootLayerPosition()
{
if (m_rootPlatformLayer)
m_rootPlatformLayer->setSize(FloatSize(m_renderView->rightLayoutOverflow(), m_renderView->bottomLayoutOverflow()));
}
void RenderLayerCompositor::didStartAcceleratedAnimation()
{
// If an accelerated animation or transition runs, we have to turn off overlap checking because
// we don't do layout for every frame, but we have to ensure that the layering is
// correct between the animating object and other objects on the page.
setCompositingConsultsOverlap(false);
}
bool RenderLayerCompositor::has3DContent() const
{
return layerHas3DContent(rootRenderLayer());
}
bool RenderLayerCompositor::needsToBeComposited(const RenderLayer* layer) const
{
if (!m_hasAcceleratedCompositing || !layer->isSelfPaintingLayer())
return false;
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
// if an ancestor is fixed positioned, we need to be composited...
const RenderLayer* currLayer = layer;
while ((currLayer = currLayer->parent())) {
if (currLayer->isComposited() && currLayer->isFixed())
return true;
}
#endif
return requiresCompositingLayer(layer) || layer->mustOverlapCompositedLayers();
}
#if PLATFORM(ANDROID)
bool RenderLayerCompositor::requiresCompositingForMobileSites(const RenderLayer* layer) const
{
// First, check if we are in an iframe, and if so bail out
if (m_renderView->document()->frame()->tree()->parent())
return false;
RenderObject* renderer = layer->renderer();
// Check for transforms
if (requiresCompositingForTransform(renderer))
return true;
// Check for animations
if (requiresCompositingForAnimation(renderer))
return true;
#if ENABLE(COMPOSITED_FIXED_ELEMENTS)
// For the moment, we want to only enable fixed composited layers on mobile websites.
// We can consider a website as being a 'mobile' site if all the
// following checks are true:
// 1) - the viewport width is either undefined (-1) or equal to device-width (0), and
// 2) - no scaling is allowed
if (!layer->isFixed())
return false;
Settings* settings = m_renderView->document()->settings();
if (!settings)
return false;
if ((settings->viewportWidth() == -1 || settings->viewportWidth() == 0) &&
!settings->viewportUserScalable())
return true;
#endif
return false;
}
#endif
// Note: this specifies whether the RL needs a compositing layer for intrinsic reasons.
// Use needsToBeComposited() to determine if a RL actually needs a compositing layer.
// static
bool RenderLayerCompositor::requiresCompositingLayer(const RenderLayer* layer) const
{
RenderObject* renderer = layer->renderer();
// The compositing state of a reflection should match that of its reflected layer.
if (layer->isReflection()) {
renderer = renderer->parent(); // The RenderReplica's parent is the object being reflected.
layer = toRenderBoxModelObject(renderer)->layer();
}
// The root layer always has a compositing layer, but it may not have backing.
return (inCompositingMode() && layer->isRootLayer()) ||
#if PLATFORM(ANDROID)
requiresCompositingForMobileSites(layer) ||
#else
requiresCompositingForTransform(renderer) ||
requiresCompositingForVideo(renderer) ||
requiresCompositingForCanvas(renderer) ||
requiresCompositingForPlugin(renderer) ||
requiresCompositingForAnimation(renderer) ||
#endif
renderer->style()->backfaceVisibility() == BackfaceVisibilityHidden ||
clipsCompositingDescendants(layer);
}
// Return true if the given layer has some ancestor in the RenderLayer hierarchy that clips,
// up to the enclosing compositing ancestor. This is required because compositing layers are parented
// according to the z-order hierarchy, yet clipping goes down the renderer hierarchy.
// Thus, a RenderLayer can be clipped by a RenderLayer that is an ancestor in the renderer hierarchy,
// but a sibling in the z-order hierarchy.
bool RenderLayerCompositor::clippedByAncestor(RenderLayer* layer) const
{
if (!layer->isComposited() || !layer->parent())
return false;
RenderLayer* compositingAncestor = layer->ancestorCompositingLayer();
if (!compositingAncestor)
return false;
// If the compositingAncestor clips, that will be taken care of by clipsCompositingDescendants(),
// so we only care about clipping between its first child that is our ancestor (the computeClipRoot),
// and layer.
RenderLayer* computeClipRoot = 0;
RenderLayer* curr = layer;
while (curr) {
RenderLayer* next = curr->parent();
if (next == compositingAncestor) {
computeClipRoot = curr;
break;
}
curr = next;
}
if (!computeClipRoot || computeClipRoot == layer)
return false;
IntRect backgroundRect = layer->backgroundClipRect(computeClipRoot, true);
return backgroundRect != ClipRects::infiniteRect();
}
// Return true if the given layer is a stacking context and has compositing child
// layers that it needs to clip. In this case we insert a clipping GraphicsLayer
// into the hierarchy between this layer and its children in the z-order hierarchy.
bool RenderLayerCompositor::clipsCompositingDescendants(const RenderLayer* layer) const
{
// FIXME: need to look at hasClip() too eventually
return layer->hasCompositingDescendant() &&
layer->renderer()->hasOverflowClip();
}
bool RenderLayerCompositor::requiresCompositingForTransform(RenderObject* renderer) const
{
RenderStyle* style = renderer->style();
// Note that we ask the renderer if it has a transform, because the style may have transforms,
// but the renderer may be an inline that doesn't suppport them.
return renderer->hasTransform() && (style->transform().has3DOperation() || style->transformStyle3D() == TransformStyle3DPreserve3D || style->hasPerspective());
}
bool RenderLayerCompositor::requiresCompositingForVideo(RenderObject* renderer) const
{
#if ENABLE(VIDEO)
if (renderer->isVideo()) {
RenderVideo* video = toRenderVideo(renderer);
return canAccelerateVideoRendering(video);
}
#else
UNUSED_PARAM(renderer);
#endif
return false;
}
bool RenderLayerCompositor::requiresCompositingForCanvas(RenderObject* renderer) const
{
#if ENABLE(3D_CANVAS)
if (renderer->isCanvas()) {
HTMLCanvasElement* canvas = static_cast<HTMLCanvasElement*>(renderer->node());
return canvas->is3D();
}
#else
UNUSED_PARAM(renderer);
#endif
return false;
}
bool RenderLayerCompositor::requiresCompositingForPlugin(RenderObject* renderer) const
{
return renderer->isEmbeddedObject() && toRenderEmbeddedObject(renderer)->allowsAcceleratedCompositing();
}
bool RenderLayerCompositor::requiresCompositingForAnimation(RenderObject* renderer) const
{
if (AnimationController* animController = renderer->animation()) {
return (animController->isAnimatingPropertyOnRenderer(renderer, CSSPropertyOpacity) && inCompositingMode())
|| animController->isAnimatingPropertyOnRenderer(renderer, CSSPropertyWebkitTransform);
}
return false;
}
bool RenderLayerCompositor::requiresCompositingWhenDescendantsAreCompositing(RenderObject* renderer) const
{
return renderer->hasTransform() || renderer->isTransparent() || renderer->hasMask() || renderer->hasReflection();
}
// If an element has negative z-index children, those children render in front of the
// layer background, so we need an extra 'contents' layer for the foreground of the layer
// object.
bool RenderLayerCompositor::needsContentsCompositingLayer(const RenderLayer* layer) const
{
return (layer->m_negZOrderList && layer->m_negZOrderList->size() > 0);
}
void RenderLayerCompositor::ensureRootPlatformLayer()
{
if (m_rootPlatformLayer)
return;
m_rootPlatformLayer = GraphicsLayer::create(0);
m_rootPlatformLayer->setSize(FloatSize(m_renderView->rightLayoutOverflow(), m_renderView->bottomLayoutOverflow()));
m_rootPlatformLayer->setPosition(FloatPoint(0, 0));
// The root layer does flipping if we need it on this platform.
m_rootPlatformLayer->setGeometryOrientation(GraphicsLayer::compositingCoordinatesOrientation());
// Need to clip to prevent transformed content showing outside this frame
m_rootPlatformLayer->setMasksToBounds(true);
didMoveOnscreen();
}
void RenderLayerCompositor::destroyRootPlatformLayer()
{
if (!m_rootPlatformLayer)
return;
willMoveOffscreen();
m_rootPlatformLayer = 0;
}
bool RenderLayerCompositor::layerHas3DContent(const RenderLayer* layer) const
{
const RenderStyle* style = layer->renderer()->style();
if (style &&
(style->transformStyle3D() == TransformStyle3DPreserve3D ||
style->hasPerspective() ||
style->transform().has3DOperation()))
return true;
if (layer->isStackingContext()) {
if (Vector<RenderLayer*>* negZOrderList = layer->negZOrderList()) {
size_t listSize = negZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = negZOrderList->at(i);
if (layerHas3DContent(curLayer))
return true;
}
}
if (Vector<RenderLayer*>* posZOrderList = layer->posZOrderList()) {
size_t listSize = posZOrderList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = posZOrderList->at(i);
if (layerHas3DContent(curLayer))
return true;
}
}
}
if (Vector<RenderLayer*>* normalFlowList = layer->normalFlowList()) {
size_t listSize = normalFlowList->size();
for (size_t i = 0; i < listSize; ++i) {
RenderLayer* curLayer = normalFlowList->at(i);
if (layerHas3DContent(curLayer))
return true;
}
}
return false;
}
} // namespace WebCore
#endif // USE(ACCELERATED_COMPOSITING)