/*
* Misc utility routines for accessing chip-specific features
* of the SiliconBackplane-based Broadcom chips.
*
* Copyright (C) 1999-2010, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: aiutils.c,v 1.6.4.7.4.6 2010/04/21 20:43:47 Exp $
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include "siutils_priv.h"
STATIC uint32
get_asd(si_t *sih, uint32 *eromptr, uint sp, uint ad, uint st,
uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh);
/* EROM parsing */
static uint32
get_erom_ent(si_t *sih, uint32 *eromptr, uint32 mask, uint32 match)
{
uint32 ent;
uint inv = 0, nom = 0;
while (TRUE) {
ent = R_REG(si_osh(sih), (uint32 *)(uintptr)(*eromptr));
*eromptr += sizeof(uint32);
if (mask == 0)
break;
if ((ent & ER_VALID) == 0) {
inv++;
continue;
}
if (ent == (ER_END | ER_VALID))
break;
if ((ent & mask) == match)
break;
nom++;
}
SI_MSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent));
if (inv + nom)
SI_MSG((" after %d invalid and %d non-matching entries\n", inv, nom));
return ent;
}
STATIC uint32
get_asd(si_t *sih, uint32 *eromptr, uint sp, uint ad, uint st,
uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh)
{
uint32 asd, sz, szd;
asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
if (((asd & ER_TAG1) != ER_ADD) ||
(((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
((asd & AD_ST_MASK) != st)) {
/* This is not what we want, "push" it back */
*eromptr -= sizeof(uint32);
return 0;
}
*addrl = asd & AD_ADDR_MASK;
if (asd & AD_AG32)
*addrh = get_erom_ent(sih, eromptr, 0, 0);
else
*addrh = 0;
*sizeh = 0;
sz = asd & AD_SZ_MASK;
if (sz == AD_SZ_SZD) {
szd = get_erom_ent(sih, eromptr, 0, 0);
*sizel = szd & SD_SZ_MASK;
if (szd & SD_SG32)
*sizeh = get_erom_ent(sih, eromptr, 0, 0);
} else
*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);
SI_MSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n",
sp, ad, st, *sizeh, *sizel, *addrh, *addrl));
return asd;
}
/* parse the enumeration rom to identify all cores */
void
ai_scan(si_t *sih, void *regs, uint devid)
{
si_info_t *sii = SI_INFO(sih);
chipcregs_t *cc = (chipcregs_t *)regs;
uint32 erombase, eromptr, eromlim;
erombase = R_REG(sii->osh, &cc->eromptr);
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
eromptr = (uintptr)REG_MAP(erombase, SI_CORE_SIZE);
break;
case PCI_BUS:
/* Set wrappers address */
sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
/* Now point the window at the erom */
OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase);
eromptr = (uint32)(uintptr)regs;
break;
case SPI_BUS:
case SDIO_BUS:
eromptr = erombase;
break;
case PCMCIA_BUS:
default:
SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype));
ASSERT(0);
return;
}
eromlim = eromptr + ER_REMAPCONTROL;
SI_MSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%08x, eromlim = 0x%08x\n",
regs, erombase, eromptr, eromlim));
while (eromptr < eromlim) {
uint32 cia, cib, base, cid, mfg, crev, nmw, nsw, nmp, nsp;
uint32 mpd, asd, addrl, addrh, sizel, sizeh;
uint i, j, idx;
bool br;
br = FALSE;
/* Grok a component */
cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
if (cia == (ER_END | ER_VALID)) {
SI_MSG(("Found END of erom after %d cores\n", sii->numcores));
return;
}
base = eromptr - sizeof(uint32);
cib = get_erom_ent(sih, &eromptr, 0, 0);
if ((cib & ER_TAG) != ER_CI) {
SI_ERROR(("CIA not followed by CIB\n"));
goto error;
}
cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
SI_MSG(("Found component 0x%04x/0x%4x rev %d at erom addr 0x%08x, with nmw = %d, "
"nsw = %d, nmp = %d & nsp = %d\n",
mfg, cid, crev, base, nmw, nsw, nmp, nsp));
if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0))
continue;
if ((nmw + nsw == 0)) {
/* A component which is not a core */
if (cid == OOB_ROUTER_CORE_ID) {
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
&addrl, &addrh, &sizel, &sizeh);
if (asd != 0) {
sii->common_info->oob_router = addrl;
}
}
continue;
}
idx = sii->numcores;
/* sii->eromptr[idx] = base; */
sii->common_info->cia[idx] = cia;
sii->common_info->cib[idx] = cib;
sii->common_info->coreid[idx] = cid;
for (i = 0; i < nmp; i++) {
mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
if ((mpd & ER_TAG) != ER_MP) {
SI_ERROR(("Not enough MP entries for component 0x%x\n", cid));
goto error;
}
SI_MSG((" Master port %d, mp: %d id: %d\n", i,
(mpd & MPD_MP_MASK) >> MPD_MP_SHIFT,
(mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT));
}
/* First Slave Address Descriptor should be port 0:
* the main register space for the core
*/
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
if (asd == 0) {
/* Try again to see if it is a bridge */
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
&sizel, &sizeh);
if (asd != 0)
br = TRUE;
else
if ((addrh != 0) || (sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("First Slave ASD for core 0x%04x malformed "
"(0x%08x)\n", cid, asd));
goto error;
}
}
sii->common_info->coresba[idx] = addrl;
sii->common_info->coresba_size[idx] = sizel;
/* Get any more ASDs in port 0 */
j = 1;
do {
asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE))
sii->common_info->coresba2[idx] = addrl;
sii->common_info->coresba2_size[idx] = sizel;
j++;
} while (asd != 0);
/* Go through the ASDs for other slave ports */
for (i = 1; i < nsp; i++) {
j = 0;
do {
asd = get_asd(sih, &eromptr, i, j++, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
} while (asd != 0);
if (j == 0) {
SI_ERROR((" SP %d has no address descriptors\n", i));
goto error;
}
}
/* Now get master wrappers */
for (i = 0; i < nmw; i++) {
asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0) {
SI_ERROR(("Missing descriptor for MW %d\n", i));
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("Master wrapper %d is not 4KB\n", i));
goto error;
}
if (i == 0)
sii->common_info->wrapba[idx] = addrl;
}
/* And finally slave wrappers */
for (i = 0; i < nsw; i++) {
uint fwp = (nsp == 1) ? 0 : 1;
asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0) {
SI_ERROR(("Missing descriptor for SW %d\n", i));
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
SI_ERROR(("Slave wrapper %d is not 4KB\n", i));
goto error;
}
if ((nmw == 0) && (i == 0))
sii->common_info->wrapba[idx] = addrl;
}
/* Don't record bridges */
if (br)
continue;
/* Done with core */
sii->numcores++;
}
SI_ERROR(("Reached end of erom without finding END"));
error:
sii->numcores = 0;
return;
}
/* This function changes the logical "focus" to the indicated core.
* Return the current core's virtual address.
*/
void *
ai_setcoreidx(si_t *sih, uint coreidx)
{
si_info_t *sii = SI_INFO(sih);
uint32 addr = sii->common_info->coresba[coreidx];
uint32 wrap = sii->common_info->wrapba[coreidx];
void *regs;
if (coreidx >= sii->numcores)
return (NULL);
/*
* If the user has provided an interrupt mask enabled function,
* then assert interrupts are disabled before switching the core.
*/
ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg));
switch (BUSTYPE(sih->bustype)) {
case SI_BUS:
/* map new one */
if (!sii->common_info->regs[coreidx]) {
sii->common_info->regs[coreidx] = REG_MAP(addr, SI_CORE_SIZE);
ASSERT(GOODREGS(sii->common_info->regs[coreidx]));
}
sii->curmap = regs = sii->common_info->regs[coreidx];
if (!sii->common_info->wrappers[coreidx]) {
sii->common_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE);
ASSERT(GOODREGS(sii->common_info->wrappers[coreidx]));
}
sii->curwrap = sii->common_info->wrappers[coreidx];
break;
case SPI_BUS:
case SDIO_BUS:
sii->curmap = regs = (void *)((uintptr)addr);
sii->curwrap = (void *)((uintptr)wrap);
break;
case PCMCIA_BUS:
default:
ASSERT(0);
regs = NULL;
break;
}
sii->curmap = regs;
sii->curidx = coreidx;
return regs;
}
/* Return the number of address spaces in current core */
int
ai_numaddrspaces(si_t *sih)
{
return 2;
}
/* Return the address of the nth address space in the current core */
uint32
ai_addrspace(si_t *sih, uint asidx)
{
si_info_t *sii;
uint cidx;
sii = SI_INFO(sih);
cidx = sii->curidx;
if (asidx == 0)
return sii->common_info->coresba[cidx];
else if (asidx == 1)
return sii->common_info->coresba2[cidx];
else {
SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
__FUNCTION__, asidx));
return 0;
}
}
/* Return the size of the nth address space in the current core */
uint32
ai_addrspacesize(si_t *sih, uint asidx)
{
si_info_t *sii;
uint cidx;
sii = SI_INFO(sih);
cidx = sii->curidx;
if (asidx == 0)
return sii->common_info->coresba_size[cidx];
else if (asidx == 1)
return sii->common_info->coresba2_size[cidx];
else {
SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
__FUNCTION__, asidx));
return 0;
}
}
uint
ai_flag(si_t *sih)
{
si_info_t *sii;
aidmp_t *ai;
sii = SI_INFO(sih);
ai = sii->curwrap;
return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f);
}
void
ai_setint(si_t *sih, int siflag)
{
}
void
ai_write_wrap_reg(si_t *sih, uint32 offset, uint32 val)
{
si_info_t *sii = SI_INFO(sih);
aidmp_t *ai = sii->curwrap;
W_REG(sii->osh, (uint32 *)((uint8 *)ai+offset), val);
return;
}
uint
ai_corevendor(si_t *sih)
{
si_info_t *sii;
uint32 cia;
sii = SI_INFO(sih);
cia = sii->common_info->cia[sii->curidx];
return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT);
}
uint
ai_corerev(si_t *sih)
{
si_info_t *sii;
uint32 cib;
sii = SI_INFO(sih);
cib = sii->common_info->cib[sii->curidx];
return ((cib & CIB_REV_MASK) >> CIB_REV_SHIFT);
}
bool
ai_iscoreup(si_t *sih)
{
si_info_t *sii;
aidmp_t *ai;
sii = SI_INFO(sih);
ai = sii->curwrap;
return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) &&
((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0));
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
* switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fidleing with interrupts or core switches are needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
* and (on newer pci cores) chipcommon registers.
*/
uint
ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
uint origidx = 0;
uint32 *r = NULL;
uint w;
uint intr_val = 0;
bool fast = FALSE;
si_info_t *sii;
sii = SI_INFO(sih);
ASSERT(GOODIDX(coreidx));
ASSERT(regoff < SI_CORE_SIZE);
ASSERT((val & ~mask) == 0);
if (coreidx >= SI_MAXCORES)
return 0;
if (BUSTYPE(sih->bustype) == SI_BUS) {
/* If internal bus, we can always get at everything */
fast = TRUE;
/* map if does not exist */
if (!sii->common_info->wrappers[coreidx]) {
sii->common_info->regs[coreidx] =
REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE);
ASSERT(GOODREGS(sii->common_info->regs[coreidx]));
}
r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff);
} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = TRUE;
r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/* pci registers are at either in the last 2KB of an 8KB window
* or, in pcie and pci rev 13 at 8KB
*/
fast = TRUE;
if (SI_FAST(sii))
r = (uint32 *)((char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (uint32 *)((char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
regoff);
}
}
if (!fast) {
INTR_OFF(sii, intr_val);
/* save current core index */
origidx = si_coreidx(&sii->pub);
/* switch core */
r = (uint32*) ((uchar*) ai_setcoreidx(&sii->pub, coreidx) + regoff);
}
ASSERT(r != NULL);
/* mask and set */
if (mask || val) {
w = (R_REG(sii->osh, r) & ~mask) | val;
W_REG(sii->osh, r, w);
}
/* readback */
w = R_REG(sii->osh, r);
if (!fast) {
/* restore core index */
if (origidx != coreidx)
ai_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return (w);
}
void
ai_core_disable(si_t *sih, uint32 bits)
{
si_info_t *sii;
volatile uint32 dummy;
aidmp_t *ai;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
/* if core is already in reset, just return */
if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET)
return;
W_REG(sii->osh, &ai->ioctrl, bits);
dummy = R_REG(sii->osh, &ai->ioctrl);
OSL_DELAY(10);
W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
OSL_DELAY(1);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
void
ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
si_info_t *sii;
aidmp_t *ai;
volatile uint32 dummy;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
/*
* Must do the disable sequence first to work for arbitrary current core state.
*/
ai_core_disable(sih, (bits | resetbits));
/*
* Now do the initialization sequence.
*/
W_REG(sii->osh, &ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN));
dummy = R_REG(sii->osh, &ai->ioctrl);
W_REG(sii->osh, &ai->resetctrl, 0);
OSL_DELAY(1);
W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN));
dummy = R_REG(sii->osh, &ai->ioctrl);
OSL_DELAY(1);
}
void
ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
aidmp_t *ai;
uint32 w;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
W_REG(sii->osh, &ai->ioctrl, w);
}
}
uint32
ai_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
aidmp_t *ai;
uint32 w;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
W_REG(sii->osh, &ai->ioctrl, w);
}
return R_REG(sii->osh, &ai->ioctrl);
}
uint32
ai_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
si_info_t *sii;
aidmp_t *ai;
uint32 w;
sii = SI_INFO(sih);
ASSERT(GOODREGS(sii->curwrap));
ai = sii->curwrap;
ASSERT((val & ~mask) == 0);
ASSERT((mask & ~SISF_CORE_BITS) == 0);
if (mask || val) {
w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
W_REG(sii->osh, &ai->iostatus, w);
}
return R_REG(sii->osh, &ai->iostatus);
}