// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "liveedit.h" #include "macro-assembler.h" #include "prettyprinter.h" #include "scopes.h" #include "stub-cache.h" namespace v8 { namespace internal { void BreakableStatementChecker::Check(Statement* stmt) { Visit(stmt); } void BreakableStatementChecker::Check(Expression* expr) { Visit(expr); } void BreakableStatementChecker::VisitDeclaration(Declaration* decl) { } void BreakableStatementChecker::VisitBlock(Block* stmt) { } void BreakableStatementChecker::VisitExpressionStatement( ExpressionStatement* stmt) { // Check if expression is breakable. Visit(stmt->expression()); } void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) { } void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) { // If the condition is breakable the if statement is breakable. Visit(stmt->condition()); } void BreakableStatementChecker::VisitContinueStatement( ContinueStatement* stmt) { } void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) { } void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) { // Return is breakable if the expression is. Visit(stmt->expression()); } void BreakableStatementChecker::VisitWithEnterStatement( WithEnterStatement* stmt) { Visit(stmt->expression()); } void BreakableStatementChecker::VisitWithExitStatement( WithExitStatement* stmt) { } void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) { // Switch statements breakable if the tag expression is. Visit(stmt->tag()); } void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) { // Mark do while as breakable to avoid adding a break slot in front of it. is_breakable_ = true; } void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) { // Mark while statements breakable if the condition expression is. Visit(stmt->cond()); } void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) { // Mark for statements breakable if the condition expression is. if (stmt->cond() != NULL) { Visit(stmt->cond()); } } void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) { // Mark for in statements breakable if the enumerable expression is. Visit(stmt->enumerable()); } void BreakableStatementChecker::VisitTryCatchStatement( TryCatchStatement* stmt) { // Mark try catch as breakable to avoid adding a break slot in front of it. is_breakable_ = true; } void BreakableStatementChecker::VisitTryFinallyStatement( TryFinallyStatement* stmt) { // Mark try finally as breakable to avoid adding a break slot in front of it. is_breakable_ = true; } void BreakableStatementChecker::VisitDebuggerStatement( DebuggerStatement* stmt) { // The debugger statement is breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) { } void BreakableStatementChecker::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { } void BreakableStatementChecker::VisitConditional(Conditional* expr) { } void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) { } void BreakableStatementChecker::VisitLiteral(Literal* expr) { } void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) { } void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) { } void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) { } void BreakableStatementChecker::VisitCatchExtensionObject( CatchExtensionObject* expr) { } void BreakableStatementChecker::VisitAssignment(Assignment* expr) { // If assigning to a property (including a global property) the assignment is // breakable. Variable* var = expr->target()->AsVariableProxy()->AsVariable(); Property* prop = expr->target()->AsProperty(); if (prop != NULL || (var != NULL && var->is_global())) { is_breakable_ = true; return; } // Otherwise the assignment is breakable if the assigned value is. Visit(expr->value()); } void BreakableStatementChecker::VisitThrow(Throw* expr) { // Throw is breakable if the expression is. Visit(expr->exception()); } void BreakableStatementChecker::VisitProperty(Property* expr) { // Property load is breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCall(Call* expr) { // Function calls both through IC and call stub are breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCallNew(CallNew* expr) { // Function calls through new are breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) { } void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) { Visit(expr->expression()); } void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) { Visit(expr->expression()); } void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) { Visit(expr->left()); if (expr->op() != Token::AND && expr->op() != Token::OR) { Visit(expr->right()); } } void BreakableStatementChecker::VisitCompareToNull(CompareToNull* expr) { Visit(expr->expression()); } void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) { Visit(expr->left()); Visit(expr->right()); } void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) { } #define __ ACCESS_MASM(masm()) bool FullCodeGenerator::MakeCode(CompilationInfo* info) { Isolate* isolate = info->isolate(); Handle<Script> script = info->script(); if (!script->IsUndefined() && !script->source()->IsUndefined()) { int len = String::cast(script->source())->length(); isolate->counters()->total_full_codegen_source_size()->Increment(len); } if (FLAG_trace_codegen) { PrintF("Full Compiler - "); } CodeGenerator::MakeCodePrologue(info); const int kInitialBufferSize = 4 * KB; MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize); #ifdef ENABLE_GDB_JIT_INTERFACE masm.positions_recorder()->StartGDBJITLineInfoRecording(); #endif FullCodeGenerator cgen(&masm); cgen.Generate(info); if (cgen.HasStackOverflow()) { ASSERT(!isolate->has_pending_exception()); return false; } unsigned table_offset = cgen.EmitStackCheckTable(); Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, NOT_IN_LOOP); Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info); code->set_optimizable(info->IsOptimizable()); cgen.PopulateDeoptimizationData(code); code->set_has_deoptimization_support(info->HasDeoptimizationSupport()); code->set_allow_osr_at_loop_nesting_level(0); code->set_stack_check_table_offset(table_offset); CodeGenerator::PrintCode(code, info); info->SetCode(code); // may be an empty handle. #ifdef ENABLE_GDB_JIT_INTERFACE if (FLAG_gdbjit && !code.is_null()) { GDBJITLineInfo* lineinfo = masm.positions_recorder()->DetachGDBJITLineInfo(); GDBJIT(RegisterDetailedLineInfo(*code, lineinfo)); } #endif return !code.is_null(); } unsigned FullCodeGenerator::EmitStackCheckTable() { // The stack check table consists of a length (in number of entries) // field, and then a sequence of entries. Each entry is a pair of AST id // and code-relative pc offset. masm()->Align(kIntSize); masm()->RecordComment("[ Stack check table"); unsigned offset = masm()->pc_offset(); unsigned length = stack_checks_.length(); __ dd(length); for (unsigned i = 0; i < length; ++i) { __ dd(stack_checks_[i].id); __ dd(stack_checks_[i].pc_and_state); } masm()->RecordComment("]"); return offset; } void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) { // Fill in the deoptimization information. ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty()); if (!info_->HasDeoptimizationSupport()) return; int length = bailout_entries_.length(); Handle<DeoptimizationOutputData> data = isolate()->factory()-> NewDeoptimizationOutputData(length, TENURED); for (int i = 0; i < length; i++) { data->SetAstId(i, Smi::FromInt(bailout_entries_[i].id)); data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state)); } code->set_deoptimization_data(*data); } void FullCodeGenerator::PrepareForBailout(AstNode* node, State state) { PrepareForBailoutForId(node->id(), state); } void FullCodeGenerator::RecordJSReturnSite(Call* call) { // We record the offset of the function return so we can rebuild the frame // if the function was inlined, i.e., this is the return address in the // inlined function's frame. // // The state is ignored. We defensively set it to TOS_REG, which is the // real state of the unoptimized code at the return site. PrepareForBailoutForId(call->ReturnId(), TOS_REG); #ifdef DEBUG // In debug builds, mark the return so we can verify that this function // was called. ASSERT(!call->return_is_recorded_); call->return_is_recorded_ = true; #endif } void FullCodeGenerator::PrepareForBailoutForId(int id, State state) { // There's no need to prepare this code for bailouts from already optimized // code or code that can't be optimized. if (!FLAG_deopt || !info_->HasDeoptimizationSupport()) return; unsigned pc_and_state = StateField::encode(state) | PcField::encode(masm_->pc_offset()); BailoutEntry entry = { id, pc_and_state }; #ifdef DEBUG // Assert that we don't have multiple bailout entries for the same node. for (int i = 0; i < bailout_entries_.length(); i++) { if (bailout_entries_.at(i).id == entry.id) { AstPrinter printer; PrintF("%s", printer.PrintProgram(info_->function())); UNREACHABLE(); } } #endif // DEBUG bailout_entries_.Add(entry); } void FullCodeGenerator::RecordStackCheck(int ast_id) { // The pc offset does not need to be encoded and packed together with a // state. BailoutEntry entry = { ast_id, masm_->pc_offset() }; stack_checks_.Add(entry); } int FullCodeGenerator::SlotOffset(Slot* slot) { ASSERT(slot != NULL); // Offset is negative because higher indexes are at lower addresses. int offset = -slot->index() * kPointerSize; // Adjust by a (parameter or local) base offset. switch (slot->type()) { case Slot::PARAMETER: offset += (scope()->num_parameters() + 1) * kPointerSize; break; case Slot::LOCAL: offset += JavaScriptFrameConstants::kLocal0Offset; break; case Slot::CONTEXT: case Slot::LOOKUP: UNREACHABLE(); } return offset; } bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) { // Inline smi case inside loops, but not division and modulo which // are too complicated and take up too much space. if (op == Token::DIV ||op == Token::MOD) return false; if (FLAG_always_inline_smi_code) return true; return loop_depth_ > 0; } void FullCodeGenerator::EffectContext::Plug(Register reg) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const { __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::Plug(Register reg) const { __ push(reg); } void FullCodeGenerator::TestContext::Plug(Register reg) const { // For simplicity we always test the accumulator register. __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); codegen()->DoTest(true_label_, false_label_, fall_through_); } void FullCodeGenerator::EffectContext::PlugTOS() const { __ Drop(1); } void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const { __ pop(result_register()); } void FullCodeGenerator::StackValueContext::PlugTOS() const { } void FullCodeGenerator::TestContext::PlugTOS() const { // For simplicity we always test the accumulator register. __ pop(result_register()); codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); codegen()->DoTest(true_label_, false_label_, fall_through_); } void FullCodeGenerator::EffectContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { // In an effect context, the true and the false case branch to the // same label. *if_true = *if_false = *fall_through = materialize_true; } void FullCodeGenerator::AccumulatorValueContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = *fall_through = materialize_true; *if_false = materialize_false; } void FullCodeGenerator::StackValueContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = *fall_through = materialize_true; *if_false = materialize_false; } void FullCodeGenerator::TestContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = true_label_; *if_false = false_label_; *fall_through = fall_through_; } void FullCodeGenerator::VisitDeclarations( ZoneList<Declaration*>* declarations) { int length = declarations->length(); int globals = 0; for (int i = 0; i < length; i++) { Declaration* decl = declarations->at(i); Variable* var = decl->proxy()->var(); Slot* slot = var->AsSlot(); // If it was not possible to allocate the variable at compile // time, we need to "declare" it at runtime to make sure it // actually exists in the local context. if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) { VisitDeclaration(decl); } else { // Count global variables and functions for later processing globals++; } } // Compute array of global variable and function declarations. // Do nothing in case of no declared global functions or variables. if (globals > 0) { Handle<FixedArray> array = isolate()->factory()->NewFixedArray(2 * globals, TENURED); for (int j = 0, i = 0; i < length; i++) { Declaration* decl = declarations->at(i); Variable* var = decl->proxy()->var(); Slot* slot = var->AsSlot(); if ((slot == NULL || slot->type() != Slot::LOOKUP) && var->is_global()) { array->set(j++, *(var->name())); if (decl->fun() == NULL) { if (var->mode() == Variable::CONST) { // In case this is const property use the hole. array->set_the_hole(j++); } else { array->set_undefined(j++); } } else { Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(decl->fun(), script()); // Check for stack-overflow exception. if (function.is_null()) { SetStackOverflow(); return; } array->set(j++, *function); } } } // Invoke the platform-dependent code generator to do the actual // declaration the global variables and functions. DeclareGlobals(array); } } void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) { if (FLAG_debug_info) { CodeGenerator::RecordPositions(masm_, fun->start_position()); } } void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) { if (FLAG_debug_info) { CodeGenerator::RecordPositions(masm_, fun->end_position() - 1); } } void FullCodeGenerator::SetStatementPosition(Statement* stmt) { if (FLAG_debug_info) { #ifdef ENABLE_DEBUGGER_SUPPORT if (!isolate()->debugger()->IsDebuggerActive()) { CodeGenerator::RecordPositions(masm_, stmt->statement_pos()); } else { // Check if the statement will be breakable without adding a debug break // slot. BreakableStatementChecker checker; checker.Check(stmt); // Record the statement position right here if the statement is not // breakable. For breakable statements the actual recording of the // position will be postponed to the breakable code (typically an IC). bool position_recorded = CodeGenerator::RecordPositions( masm_, stmt->statement_pos(), !checker.is_breakable()); // If the position recording did record a new position generate a debug // break slot to make the statement breakable. if (position_recorded) { Debug::GenerateSlot(masm_); } } #else CodeGenerator::RecordPositions(masm_, stmt->statement_pos()); #endif } } void FullCodeGenerator::SetExpressionPosition(Expression* expr, int pos) { if (FLAG_debug_info) { #ifdef ENABLE_DEBUGGER_SUPPORT if (!isolate()->debugger()->IsDebuggerActive()) { CodeGenerator::RecordPositions(masm_, pos); } else { // Check if the expression will be breakable without adding a debug break // slot. BreakableStatementChecker checker; checker.Check(expr); // Record a statement position right here if the expression is not // breakable. For breakable expressions the actual recording of the // position will be postponed to the breakable code (typically an IC). // NOTE this will record a statement position for something which might // not be a statement. As stepping in the debugger will only stop at // statement positions this is used for e.g. the condition expression of // a do while loop. bool position_recorded = CodeGenerator::RecordPositions( masm_, pos, !checker.is_breakable()); // If the position recording did record a new position generate a debug // break slot to make the statement breakable. if (position_recorded) { Debug::GenerateSlot(masm_); } } #else CodeGenerator::RecordPositions(masm_, pos); #endif } } void FullCodeGenerator::SetStatementPosition(int pos) { if (FLAG_debug_info) { CodeGenerator::RecordPositions(masm_, pos); } } void FullCodeGenerator::SetSourcePosition(int pos) { if (FLAG_debug_info && pos != RelocInfo::kNoPosition) { masm_->positions_recorder()->RecordPosition(pos); } } // Lookup table for code generators for special runtime calls which are // generated inline. #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \ &FullCodeGenerator::Emit##Name, const FullCodeGenerator::InlineFunctionGenerator FullCodeGenerator::kInlineFunctionGenerators[] = { INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) }; #undef INLINE_FUNCTION_GENERATOR_ADDRESS FullCodeGenerator::InlineFunctionGenerator FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) { int lookup_index = static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction); ASSERT(lookup_index >= 0); ASSERT(static_cast<size_t>(lookup_index) < ARRAY_SIZE(kInlineFunctionGenerators)); return kInlineFunctionGenerators[lookup_index]; } void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* node) { ZoneList<Expression*>* args = node->arguments(); Handle<String> name = node->name(); const Runtime::Function* function = node->function(); ASSERT(function != NULL); ASSERT(function->intrinsic_type == Runtime::INLINE); InlineFunctionGenerator generator = FindInlineFunctionGenerator(function->function_id); ((*this).*(generator))(args); } void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { Comment cmnt(masm_, "[ BinaryOperation"); Token::Value op = expr->op(); Expression* left = expr->left(); Expression* right = expr->right(); OverwriteMode mode = NO_OVERWRITE; if (left->ResultOverwriteAllowed()) { mode = OVERWRITE_LEFT; } else if (right->ResultOverwriteAllowed()) { mode = OVERWRITE_RIGHT; } switch (op) { case Token::COMMA: VisitForEffect(left); if (context()->IsTest()) ForwardBailoutToChild(expr); context()->HandleExpression(right); break; case Token::OR: case Token::AND: EmitLogicalOperation(expr); break; case Token::ADD: case Token::SUB: case Token::DIV: case Token::MOD: case Token::MUL: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: { // Load both operands. VisitForStackValue(left); VisitForAccumulatorValue(right); SetSourcePosition(expr->position()); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr, op, mode, left, right); } else { EmitBinaryOp(op, mode); } break; } default: UNREACHABLE(); } } void FullCodeGenerator::EmitLogicalOperation(BinaryOperation* expr) { Label eval_right, done; context()->EmitLogicalLeft(expr, &eval_right, &done); PrepareForBailoutForId(expr->RightId(), NO_REGISTERS); __ bind(&eval_right); if (context()->IsTest()) ForwardBailoutToChild(expr); context()->HandleExpression(expr->right()); __ bind(&done); } void FullCodeGenerator::EffectContext::EmitLogicalLeft(BinaryOperation* expr, Label* eval_right, Label* done) const { if (expr->op() == Token::OR) { codegen()->VisitForControl(expr->left(), done, eval_right, eval_right); } else { ASSERT(expr->op() == Token::AND); codegen()->VisitForControl(expr->left(), eval_right, done, eval_right); } } void FullCodeGenerator::AccumulatorValueContext::EmitLogicalLeft( BinaryOperation* expr, Label* eval_right, Label* done) const { HandleExpression(expr->left()); // We want the value in the accumulator for the test, and on the stack in case // we need it. __ push(result_register()); Label discard, restore; if (expr->op() == Token::OR) { codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); codegen()->DoTest(&restore, &discard, &restore); } else { ASSERT(expr->op() == Token::AND); codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); codegen()->DoTest(&discard, &restore, &restore); } __ bind(&restore); __ pop(result_register()); __ jmp(done); __ bind(&discard); __ Drop(1); } void FullCodeGenerator::StackValueContext::EmitLogicalLeft( BinaryOperation* expr, Label* eval_right, Label* done) const { codegen()->VisitForAccumulatorValue(expr->left()); // We want the value in the accumulator for the test, and on the stack in case // we need it. __ push(result_register()); Label discard; if (expr->op() == Token::OR) { codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); codegen()->DoTest(done, &discard, &discard); } else { ASSERT(expr->op() == Token::AND); codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL); codegen()->DoTest(&discard, done, &discard); } __ bind(&discard); __ Drop(1); } void FullCodeGenerator::TestContext::EmitLogicalLeft(BinaryOperation* expr, Label* eval_right, Label* done) const { if (expr->op() == Token::OR) { codegen()->VisitForControl(expr->left(), true_label_, eval_right, eval_right); } else { ASSERT(expr->op() == Token::AND); codegen()->VisitForControl(expr->left(), eval_right, false_label_, eval_right); } } void FullCodeGenerator::ForwardBailoutToChild(Expression* expr) { if (!info_->HasDeoptimizationSupport()) return; ASSERT(context()->IsTest()); ASSERT(expr == forward_bailout_stack_->expr()); forward_bailout_pending_ = forward_bailout_stack_; } void FullCodeGenerator::EffectContext::HandleExpression( Expression* expr) const { codegen()->HandleInNonTestContext(expr, NO_REGISTERS); } void FullCodeGenerator::AccumulatorValueContext::HandleExpression( Expression* expr) const { codegen()->HandleInNonTestContext(expr, TOS_REG); } void FullCodeGenerator::StackValueContext::HandleExpression( Expression* expr) const { codegen()->HandleInNonTestContext(expr, NO_REGISTERS); } void FullCodeGenerator::TestContext::HandleExpression(Expression* expr) const { codegen()->VisitInTestContext(expr); } void FullCodeGenerator::HandleInNonTestContext(Expression* expr, State state) { ASSERT(forward_bailout_pending_ == NULL); AstVisitor::Visit(expr); PrepareForBailout(expr, state); // Forwarding bailouts to children is a one shot operation. It // should have been processed at this point. ASSERT(forward_bailout_pending_ == NULL); } void FullCodeGenerator::VisitInTestContext(Expression* expr) { ForwardBailoutStack stack(expr, forward_bailout_pending_); ForwardBailoutStack* saved = forward_bailout_stack_; forward_bailout_pending_ = NULL; forward_bailout_stack_ = &stack; AstVisitor::Visit(expr); forward_bailout_stack_ = saved; } void FullCodeGenerator::VisitBlock(Block* stmt) { Comment cmnt(masm_, "[ Block"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); VisitStatements(stmt->statements()); __ bind(nested_statement.break_target()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) { Comment cmnt(masm_, "[ ExpressionStatement"); SetStatementPosition(stmt); VisitForEffect(stmt->expression()); } void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) { Comment cmnt(masm_, "[ EmptyStatement"); SetStatementPosition(stmt); } void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) { Comment cmnt(masm_, "[ IfStatement"); SetStatementPosition(stmt); Label then_part, else_part, done; if (stmt->HasElseStatement()) { VisitForControl(stmt->condition(), &then_part, &else_part, &then_part); PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS); __ bind(&then_part); Visit(stmt->then_statement()); __ jmp(&done); PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS); __ bind(&else_part); Visit(stmt->else_statement()); } else { VisitForControl(stmt->condition(), &then_part, &done, &then_part); PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS); __ bind(&then_part); Visit(stmt->then_statement()); PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS); } __ bind(&done); PrepareForBailoutForId(stmt->id(), NO_REGISTERS); } void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) { Comment cmnt(masm_, "[ ContinueStatement"); SetStatementPosition(stmt); NestedStatement* current = nesting_stack_; int stack_depth = 0; // When continuing, we clobber the unpredictable value in the accumulator // with one that's safe for GC. If we hit an exit from the try block of // try...finally on our way out, we will unconditionally preserve the // accumulator on the stack. ClearAccumulator(); while (!current->IsContinueTarget(stmt->target())) { stack_depth = current->Exit(stack_depth); current = current->outer(); } __ Drop(stack_depth); Iteration* loop = current->AsIteration(); __ jmp(loop->continue_target()); } void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) { Comment cmnt(masm_, "[ BreakStatement"); SetStatementPosition(stmt); NestedStatement* current = nesting_stack_; int stack_depth = 0; // When breaking, we clobber the unpredictable value in the accumulator // with one that's safe for GC. If we hit an exit from the try block of // try...finally on our way out, we will unconditionally preserve the // accumulator on the stack. ClearAccumulator(); while (!current->IsBreakTarget(stmt->target())) { stack_depth = current->Exit(stack_depth); current = current->outer(); } __ Drop(stack_depth); Breakable* target = current->AsBreakable(); __ jmp(target->break_target()); } void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) { Comment cmnt(masm_, "[ ReturnStatement"); SetStatementPosition(stmt); Expression* expr = stmt->expression(); VisitForAccumulatorValue(expr); // Exit all nested statements. NestedStatement* current = nesting_stack_; int stack_depth = 0; while (current != NULL) { stack_depth = current->Exit(stack_depth); current = current->outer(); } __ Drop(stack_depth); EmitReturnSequence(); } void FullCodeGenerator::VisitWithEnterStatement(WithEnterStatement* stmt) { Comment cmnt(masm_, "[ WithEnterStatement"); SetStatementPosition(stmt); VisitForStackValue(stmt->expression()); if (stmt->is_catch_block()) { __ CallRuntime(Runtime::kPushCatchContext, 1); } else { __ CallRuntime(Runtime::kPushContext, 1); } // Both runtime calls return the new context in both the context and the // result registers. // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } void FullCodeGenerator::VisitWithExitStatement(WithExitStatement* stmt) { Comment cmnt(masm_, "[ WithExitStatement"); SetStatementPosition(stmt); // Pop context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) { Comment cmnt(masm_, "[ DoWhileStatement"); SetStatementPosition(stmt); Label body, stack_check; Iteration loop_statement(this, stmt); increment_loop_depth(); __ bind(&body); Visit(stmt->body()); // Record the position of the do while condition and make sure it is // possible to break on the condition. __ bind(loop_statement.continue_target()); PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS); SetExpressionPosition(stmt->cond(), stmt->condition_position()); VisitForControl(stmt->cond(), &stack_check, loop_statement.break_target(), &stack_check); // Check stack before looping. PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS); __ bind(&stack_check); EmitStackCheck(stmt); __ jmp(&body); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_target()); decrement_loop_depth(); } void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) { Comment cmnt(masm_, "[ WhileStatement"); Label test, body; Iteration loop_statement(this, stmt); increment_loop_depth(); // Emit the test at the bottom of the loop. __ jmp(&test); PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&body); Visit(stmt->body()); // Emit the statement position here as this is where the while // statement code starts. __ bind(loop_statement.continue_target()); SetStatementPosition(stmt); // Check stack before looping. EmitStackCheck(stmt); __ bind(&test); VisitForControl(stmt->cond(), &body, loop_statement.break_target(), loop_statement.break_target()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_target()); decrement_loop_depth(); } void FullCodeGenerator::VisitForStatement(ForStatement* stmt) { Comment cmnt(masm_, "[ ForStatement"); Label test, body; Iteration loop_statement(this, stmt); if (stmt->init() != NULL) { Visit(stmt->init()); } increment_loop_depth(); // Emit the test at the bottom of the loop (even if empty). __ jmp(&test); PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&body); Visit(stmt->body()); PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS); __ bind(loop_statement.continue_target()); SetStatementPosition(stmt); if (stmt->next() != NULL) { Visit(stmt->next()); } // Emit the statement position here as this is where the for // statement code starts. SetStatementPosition(stmt); // Check stack before looping. EmitStackCheck(stmt); __ bind(&test); if (stmt->cond() != NULL) { VisitForControl(stmt->cond(), &body, loop_statement.break_target(), loop_statement.break_target()); } else { __ jmp(&body); } PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_target()); decrement_loop_depth(); } void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) { Comment cmnt(masm_, "[ TryCatchStatement"); SetStatementPosition(stmt); // The try block adds a handler to the exception handler chain // before entering, and removes it again when exiting normally. // If an exception is thrown during execution of the try block, // control is passed to the handler, which also consumes the handler. // At this point, the exception is in a register, and store it in // the temporary local variable (prints as ".catch-var") before // executing the catch block. The catch block has been rewritten // to introduce a new scope to bind the catch variable and to remove // that scope again afterwards. Label try_handler_setup, catch_entry, done; __ Call(&try_handler_setup); // Try handler code, exception in result register. // Store exception in local .catch variable before executing catch block. { // The catch variable is *always* a variable proxy for a local variable. Variable* catch_var = stmt->catch_var()->AsVariableProxy()->AsVariable(); ASSERT_NOT_NULL(catch_var); Slot* variable_slot = catch_var->AsSlot(); ASSERT_NOT_NULL(variable_slot); ASSERT_EQ(Slot::LOCAL, variable_slot->type()); StoreToFrameField(SlotOffset(variable_slot), result_register()); } Visit(stmt->catch_block()); __ jmp(&done); // Try block code. Sets up the exception handler chain. __ bind(&try_handler_setup); { TryCatch try_block(this, &catch_entry); __ PushTryHandler(IN_JAVASCRIPT, TRY_CATCH_HANDLER); Visit(stmt->try_block()); __ PopTryHandler(); } __ bind(&done); } void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) { Comment cmnt(masm_, "[ TryFinallyStatement"); SetStatementPosition(stmt); // Try finally is compiled by setting up a try-handler on the stack while // executing the try body, and removing it again afterwards. // // The try-finally construct can enter the finally block in three ways: // 1. By exiting the try-block normally. This removes the try-handler and // calls the finally block code before continuing. // 2. By exiting the try-block with a function-local control flow transfer // (break/continue/return). The site of the, e.g., break removes the // try handler and calls the finally block code before continuing // its outward control transfer. // 3. by exiting the try-block with a thrown exception. // This can happen in nested function calls. It traverses the try-handler // chain and consumes the try-handler entry before jumping to the // handler code. The handler code then calls the finally-block before // rethrowing the exception. // // The finally block must assume a return address on top of the stack // (or in the link register on ARM chips) and a value (return value or // exception) in the result register (rax/eax/r0), both of which must // be preserved. The return address isn't GC-safe, so it should be // cooked before GC. Label finally_entry; Label try_handler_setup; // Setup the try-handler chain. Use a call to // Jump to try-handler setup and try-block code. Use call to put try-handler // address on stack. __ Call(&try_handler_setup); // Try handler code. Return address of call is pushed on handler stack. { // This code is only executed during stack-handler traversal when an // exception is thrown. The execption is in the result register, which // is retained by the finally block. // Call the finally block and then rethrow the exception. __ Call(&finally_entry); __ push(result_register()); __ CallRuntime(Runtime::kReThrow, 1); } __ bind(&finally_entry); { // Finally block implementation. Finally finally_block(this); EnterFinallyBlock(); Visit(stmt->finally_block()); ExitFinallyBlock(); // Return to the calling code. } __ bind(&try_handler_setup); { // Setup try handler (stack pointer registers). TryFinally try_block(this, &finally_entry); __ PushTryHandler(IN_JAVASCRIPT, TRY_FINALLY_HANDLER); Visit(stmt->try_block()); __ PopTryHandler(); } // Execute the finally block on the way out. Clobber the unpredictable // value in the accumulator with one that's safe for GC. The finally // block will unconditionally preserve the accumulator on the stack. ClearAccumulator(); __ Call(&finally_entry); } void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) { #ifdef ENABLE_DEBUGGER_SUPPORT Comment cmnt(masm_, "[ DebuggerStatement"); SetStatementPosition(stmt); __ DebugBreak(); // Ignore the return value. #endif } void FullCodeGenerator::VisitConditional(Conditional* expr) { Comment cmnt(masm_, "[ Conditional"); Label true_case, false_case, done; VisitForControl(expr->condition(), &true_case, &false_case, &true_case); PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS); __ bind(&true_case); SetExpressionPosition(expr->then_expression(), expr->then_expression_position()); if (context()->IsTest()) { const TestContext* for_test = TestContext::cast(context()); VisitForControl(expr->then_expression(), for_test->true_label(), for_test->false_label(), NULL); } else { context()->HandleExpression(expr->then_expression()); __ jmp(&done); } PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS); __ bind(&false_case); if (context()->IsTest()) ForwardBailoutToChild(expr); SetExpressionPosition(expr->else_expression(), expr->else_expression_position()); context()->HandleExpression(expr->else_expression()); // If control flow falls through Visit, merge it with true case here. if (!context()->IsTest()) { __ bind(&done); } } void FullCodeGenerator::VisitLiteral(Literal* expr) { Comment cmnt(masm_, "[ Literal"); context()->Plug(expr->handle()); } void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle<SharedFunctionInfo> function_info = Compiler::BuildFunctionInfo(expr, script()); if (function_info.is_null()) { SetStackOverflow(); return; } EmitNewClosure(function_info, expr->pretenure()); } void FullCodeGenerator::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); EmitNewClosure(expr->shared_function_info(), false); } void FullCodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* expr) { // Call runtime routine to allocate the catch extension object and // assign the exception value to the catch variable. Comment cmnt(masm_, "[ CatchExtensionObject"); VisitForStackValue(expr->key()); VisitForStackValue(expr->value()); // Create catch extension object. __ CallRuntime(Runtime::kCreateCatchExtensionObject, 2); context()->Plug(result_register()); } void FullCodeGenerator::VisitThrow(Throw* expr) { Comment cmnt(masm_, "[ Throw"); VisitForStackValue(expr->exception()); __ CallRuntime(Runtime::kThrow, 1); // Never returns here. } int FullCodeGenerator::TryFinally::Exit(int stack_depth) { // The macros used here must preserve the result register. __ Drop(stack_depth); __ PopTryHandler(); __ Call(finally_entry_); return 0; } int FullCodeGenerator::TryCatch::Exit(int stack_depth) { // The macros used here must preserve the result register. __ Drop(stack_depth); __ PopTryHandler(); return 0; } #undef __ } } // namespace v8::internal