// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "bootstrapper.h" #include "code-stubs.h" #include "codegen-inl.h" #include "regexp-macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ToNumberStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void FastNewClosureStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void FastNewContextStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } // Takes a Smi and converts to an IEEE 64 bit floating point value in two // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a // scratch register. Destroys the source register. No GC occurs during this // stub so you don't have to set up the frame. class ConvertToDoubleStub : public CodeStub { public: ConvertToDoubleStub(Register result_reg_1, Register result_reg_2, Register source_reg, Register scratch_reg) : result1_(result_reg_1), result2_(result_reg_2), source_(source_reg), zeros_(scratch_reg) { } private: Register result1_; Register result2_; Register source_; Register zeros_; // Minor key encoding in 16 bits. class ModeBits: public BitField<OverwriteMode, 0, 2> {}; class OpBits: public BitField<Token::Value, 2, 14> {}; Major MajorKey() { return ConvertToDouble; } int MinorKey() { // Encode the parameters in a unique 16 bit value. return result1_.code() + (result2_.code() << 4) + (source_.code() << 8) + (zeros_.code() << 12); } void Generate(MacroAssembler* masm); const char* GetName() { return "ConvertToDoubleStub"; } #ifdef DEBUG void Print() { PrintF("ConvertToDoubleStub\n"); } #endif }; void ConvertToDoubleStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } class FloatingPointHelper : public AllStatic { public: enum Destination { kFPURegisters, kCoreRegisters }; // Loads smis from a0 and a1 (right and left in binary operations) into // floating point registers. Depending on the destination the values ends up // either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination // is floating point registers FPU must be supported. If core registers are // requested when FPU is supported f12 and f14 will be scratched. static void LoadSmis(MacroAssembler* masm, Destination destination, Register scratch1, Register scratch2); // Loads objects from a0 and a1 (right and left in binary operations) into // floating point registers. Depending on the destination the values ends up // either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination // is floating point registers FPU must be supported. If core registers are // requested when FPU is supported f12 and f14 will still be scratched. If // either a0 or a1 is not a number (not smi and not heap number object) the // not_number label is jumped to with a0 and a1 intact. static void LoadOperands(MacroAssembler* masm, FloatingPointHelper::Destination destination, Register heap_number_map, Register scratch1, Register scratch2, Label* not_number); // Loads the number from object into dst as a 32-bit integer if possible. If // the object is not a 32-bit integer control continues at the label // not_int32. If FPU is supported double_scratch is used but not scratch2. static void LoadNumberAsInteger(MacroAssembler* masm, Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, FPURegister double_scratch, Label* not_int32); private: static void LoadNumber(MacroAssembler* masm, FloatingPointHelper::Destination destination, Register object, FPURegister dst, Register dst1, Register dst2, Register heap_number_map, Register scratch1, Register scratch2, Label* not_number); }; void FloatingPointHelper::LoadSmis(MacroAssembler* masm, FloatingPointHelper::Destination destination, Register scratch1, Register scratch2) { UNIMPLEMENTED_MIPS(); } void FloatingPointHelper::LoadOperands( MacroAssembler* masm, FloatingPointHelper::Destination destination, Register heap_number_map, Register scratch1, Register scratch2, Label* slow) { UNIMPLEMENTED_MIPS(); } void FloatingPointHelper::LoadNumber(MacroAssembler* masm, Destination destination, Register object, FPURegister dst, Register dst1, Register dst2, Register heap_number_map, Register scratch1, Register scratch2, Label* not_number) { UNIMPLEMENTED_MIPS(); } void FloatingPointHelper::LoadNumberAsInteger(MacroAssembler* masm, Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, FPURegister double_scratch, Label* not_int32) { UNIMPLEMENTED_MIPS(); } // See comment for class, this does NOT work for int32's that are in Smi range. void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void EmitNanCheck(MacroAssembler* masm, Condition cc) { UNIMPLEMENTED_MIPS(); } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, Register scratch3, bool object_is_smi, Label* not_found) { UNIMPLEMENTED_MIPS(); } void NumberToStringStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } // On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared. // On exit, v0 is 0, positive, or negative (smi) to indicate the result // of the comparison. void CompareStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } // This stub does not handle the inlined cases (Smis, Booleans, undefined). // The stub returns zero for false, and a non-zero value for true. void ToBooleanStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } // We fall into this code if the operands were Smis, but the result was // not (eg. overflow). We branch into this code (to the not_smi label) if // the operands were not both Smi. The operands are in lhs and rhs. // To call the C-implemented binary fp operation routines we need to end up // with the double precision floating point operands in a0 and a1 (for the // value in a1) and a2 and a3 (for the value in a0). void GenericBinaryOpStub::HandleBinaryOpSlowCases(MacroAssembler* masm, Label* not_smi, Register lhs, Register rhs, const Builtins::JavaScript& builtin) { UNIMPLEMENTED_MIPS(); } // For bitwise ops where the inputs are not both Smis we here try to determine // whether both inputs are either Smis or at least heap numbers that can be // represented by a 32 bit signed value. We truncate towards zero as required // by the ES spec. If this is the case we do the bitwise op and see if the // result is a Smi. If so, great, otherwise we try to find a heap number to // write the answer into (either by allocating or by overwriting). // On entry the operands are in lhs (x) and rhs (y). (Result = x op y). // On exit the result is in v0. void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm, Register lhs, Register rhs) { UNIMPLEMENTED_MIPS(); } void GenericBinaryOpStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { GenericBinaryOpStub stub(key, type_info); return stub.GetCode(); } Handle<Code> GetTypeRecordingBinaryOpStub(int key, TRBinaryOpIC::TypeInfo type_info, TRBinaryOpIC::TypeInfo result_type_info) { TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); return stub.GetCode(); } void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( MacroAssembler* masm) { UNIMPLEMENTED(); } void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } const char* TypeRecordingBinaryOpStub::GetName() { UNIMPLEMENTED_MIPS(); return name_; } void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation( MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm, bool smi_operands, Label* not_numbers, Label* gc_required) { UNIMPLEMENTED_MIPS(); } // Generate the smi code. If the operation on smis are successful this return is // generated. If the result is not a smi and heap number allocation is not // requested the code falls through. If number allocation is requested but a // heap number cannot be allocated the code jumps to the lable gc_required. void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* gc_required, SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( MacroAssembler* masm, Register result, Register heap_number_map, Register scratch1, Register scratch2, Label* gc_required) { UNIMPLEMENTED_MIPS(); } void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { UNIMPLEMENTED_MIPS(); return Runtime::kAbort; } void StackCheckStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void GenericUnaryOpStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } bool CEntryStub::NeedsImmovableCode() { return true; } void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type) { UNIMPLEMENTED_MIPS(); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate) { UNIMPLEMENTED_MIPS(); } void CEntryStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { UNIMPLEMENTED_MIPS(); } // Uses registers a0 to t0. Expected input is // object in a0 (or at sp+1*kPointerSize) and function in // a1 (or at sp), depending on whether or not // args_in_registers() is true. void InstanceofStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void RegExpExecStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void RegExpConstructResultStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void CallFunctionStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. const char* CompareStub::GetName() { UNIMPLEMENTED_MIPS(); return name_; } int CompareStub::MinorKey() { UNIMPLEMENTED_MIPS(); return 0; } // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { UNIMPLEMENTED_MIPS(); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { UNIMPLEMENTED_MIPS(); } // ------------------------------------------------------------------------- // StringCharAtGenerator void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void StringCharAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { UNIMPLEMENTED_MIPS(); } class StringHelper : public AllStatic { public: // Generate code for copying characters using a simple loop. This should only // be used in places where the number of characters is small and the // additional setup and checking in GenerateCopyCharactersLong adds too much // overhead. Copying of overlapping regions is not supported. // Dest register ends at the position after the last character written. static void GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii); // Generate code for copying a large number of characters. This function // is allowed to spend extra time setting up conditions to make copying // faster. Copying of overlapping regions is not supported. // Dest register ends at the position after the last character written. static void GenerateCopyCharactersLong(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, int flags); // Probe the symbol table for a two character string. If the string is // not found by probing a jump to the label not_found is performed. This jump // does not guarantee that the string is not in the symbol table. If the // string is found the code falls through with the string in register r0. // Contents of both c1 and c2 registers are modified. At the exit c1 is // guaranteed to contain halfword with low and high bytes equal to // initial contents of c1 and c2 respectively. static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, Label* not_found); // Generate string hash. static void GenerateHashInit(MacroAssembler* masm, Register hash, Register character); static void GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character); static void GenerateHashGetHash(MacroAssembler* masm, Register hash); private: DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); }; void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { UNIMPLEMENTED_MIPS(); } enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, int flags) { UNIMPLEMENTED_MIPS(); } void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, Label* not_found) { UNIMPLEMENTED_MIPS(); } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character) { UNIMPLEMENTED_MIPS(); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character) { UNIMPLEMENTED_MIPS(); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash) { UNIMPLEMENTED_MIPS(); } void SubStringStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register right, Register left, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { UNIMPLEMENTED_MIPS(); } void StringCompareStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void StringAddStub::Generate(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { UNIMPLEMENTED_MIPS(); } void GenerateFastPixelArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements_map, Register elements, Register scratch1, Register scratch2, Register result, Label* not_pixel_array, Label* key_not_smi, Label* out_of_range) { UNIMPLEMENTED_MIPS(); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS