/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Dalvik.h" #include <cutils/atomic.h> /* * Quasi-atomic 64-bit operations, for platforms that lack the real thing. * * TODO: unify ARMv6/x86/sh implementations using the to-be-written * spin lock implementation. We don't want to rely on mutex innards, * and it would be great if all platforms were running the same code. */ #if defined(HAVE_MACOSX_IPC) #include <libkern/OSAtomic.h> #if defined(__ppc__) \ || defined(__PPC__) \ || defined(__powerpc__) \ || defined(__powerpc) \ || defined(__POWERPC__) \ || defined(_M_PPC) \ || defined(__PPC) #define NEED_QUASIATOMICS 1 #else int dvmQuasiAtomicCas64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { return OSAtomicCompareAndSwap64Barrier(oldvalue, newvalue, (int64_t*)addr) == 0; } static inline int64_t dvmQuasiAtomicSwap64Body(int64_t value, volatile int64_t* addr) { int64_t oldValue; do { oldValue = *addr; } while (dvmQuasiAtomicCas64(oldValue, value, addr)); return oldValue; } int64_t dvmQuasiAtomicSwap64(int64_t value, volatile int64_t* addr) { return dvmQuasiAtomicSwap64Body(value, addr); } int64_t dvmQuasiAtomicSwap64Sync(int64_t value, volatile int64_t* addr) { int64_t oldValue; ANDROID_MEMBAR_STORE(); oldValue = dvmQuasiAtomicSwap64Body(value, addr); /* TUNING: barriers can be avoided on some architectures */ ANDROID_MEMBAR_FULL(); return oldValue; } int64_t dvmQuasiAtomicRead64(volatile const int64_t* addr) { return OSAtomicAdd64Barrier(0, addr); } #endif #elif defined(__i386__) || defined(__x86_64__) #define NEED_QUASIATOMICS 1 #elif __arm__ #include <machine/cpu-features.h> #ifdef __ARM_HAVE_LDREXD static inline int64_t dvmQuasiAtomicSwap64Body(int64_t newvalue, volatile int64_t* addr) { int64_t prev; int status; do { __asm__ __volatile__ ("@ dvmQuasiAtomicSwap64\n" "ldrexd %0, %H0, [%3]\n" "strexd %1, %4, %H4, [%3]" : "=&r" (prev), "=&r" (status), "+m"(*addr) : "r" (addr), "r" (newvalue) : "cc"); } while (__builtin_expect(status != 0, 0)); return prev; } int64_t dvmQuasiAtomicSwap64(int64_t newvalue, volatile int64_t* addr) { return dvmQuasiAtomicSwap64Body(newvalue, addr); } int64_t dvmQuasiAtomicSwap64Sync(int64_t newvalue, volatile int64_t* addr) { int64_t prev; ANDROID_MEMBAR_STORE(); prev = dvmQuasiAtomicSwap64Body(newvalue, addr); ANDROID_MEMBAR_FULL(); return prev; } int dvmQuasiAtomicCas64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int64_t prev; int status; do { __asm__ __volatile__ ("@ dvmQuasiAtomicCas64\n" "ldrexd %0, %H0, [%3]\n" "mov %1, #0\n" "teq %0, %4\n" "teqeq %H0, %H4\n" "strexdeq %1, %5, %H5, [%3]" : "=&r" (prev), "=&r" (status), "+m"(*addr) : "r" (addr), "Ir" (oldvalue), "r" (newvalue) : "cc"); } while (__builtin_expect(status != 0, 0)); return prev != oldvalue; } int64_t dvmQuasiAtomicRead64(volatile const int64_t* addr) { int64_t value; __asm__ __volatile__ ("@ dvmQuasiAtomicRead64\n" "ldrexd %0, %H0, [%1]" : "=&r" (value) : "r" (addr)); return value; } #else // on the device, we implement the 64-bit atomic operations through // mutex locking. normally, this is bad because we must initialize // a pthread_mutex_t before being able to use it, and this means // having to do an initialization check on each function call, and // that's where really ugly things begin... // // BUT, as a special twist, we take advantage of the fact that in our // pthread library, a mutex is simply a volatile word whose value is always // initialized to 0. In other words, simply declaring a static mutex // object initializes it ! // // another twist is that we use a small array of mutexes to dispatch // the contention locks from different memory addresses // #include <pthread.h> #define SWAP_LOCK_COUNT 32U static pthread_mutex_t _swap_locks[SWAP_LOCK_COUNT]; #define SWAP_LOCK(addr) \ &_swap_locks[((unsigned)(void*)(addr) >> 3U) % SWAP_LOCK_COUNT] int64_t dvmQuasiAtomicSwap64(int64_t value, volatile int64_t* addr) { int64_t oldValue; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); oldValue = *addr; *addr = value; pthread_mutex_unlock(lock); return oldValue; } /* Same as dvmQuasiAtomicSwap64 - mutex handles barrier */ int64_t dvmQuasiAtomicSwap64Sync(int64_t value, volatile int64_t* addr) { return dvmQuasiAtomicSwap64(value, addr); } int dvmQuasiAtomicCas64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int result; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); if (*addr == oldvalue) { *addr = newvalue; result = 0; } else { result = 1; } pthread_mutex_unlock(lock); return result; } int64_t dvmQuasiAtomicRead64(volatile const int64_t* addr) { int64_t result; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); result = *addr; pthread_mutex_unlock(lock); return result; } #endif /*__ARM_HAVE_LDREXD*/ /*****************************************************************************/ #elif __sh__ #define NEED_QUASIATOMICS 1 #else #error "Unsupported atomic operations for this platform" #endif #if NEED_QUASIATOMICS /* Note that a spinlock is *not* a good idea in general * since they can introduce subtle issues. For example, * a real-time thread trying to acquire a spinlock already * acquired by another thread will never yeld, making the * CPU loop endlessly! * * However, this code is only used on the Linux simulator * so it's probably ok for us. * * The alternative is to use a pthread mutex, but * these must be initialized before being used, and * then you have the problem of lazily initializing * a mutex without any other synchronization primitive. * * TODO: these currently use sched_yield(), which is not guaranteed to * do anything at all. We need to use dvmIterativeSleep or a wait / * notify mechanism if the initial attempt fails. */ /* global spinlock for all 64-bit quasiatomic operations */ static int32_t quasiatomic_spinlock = 0; int dvmQuasiAtomicCas64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int result; while (android_atomic_acquire_cas(0, 1, &quasiatomic_spinlock)) { #ifdef HAVE_WIN32_THREADS Sleep(0); #else sched_yield(); #endif } if (*addr == oldvalue) { *addr = newvalue; result = 0; } else { result = 1; } android_atomic_release_store(0, &quasiatomic_spinlock); return result; } int64_t dvmQuasiAtomicRead64(volatile const int64_t* addr) { int64_t result; while (android_atomic_acquire_cas(0, 1, &quasiatomic_spinlock)) { #ifdef HAVE_WIN32_THREADS Sleep(0); #else sched_yield(); #endif } result = *addr; android_atomic_release_store(0, &quasiatomic_spinlock); return result; } int64_t dvmQuasiAtomicSwap64(int64_t value, volatile int64_t* addr) { int64_t result; while (android_atomic_acquire_cas(0, 1, &quasiatomic_spinlock)) { #ifdef HAVE_WIN32_THREADS Sleep(0); #else sched_yield(); #endif } result = *addr; *addr = value; android_atomic_release_store(0, &quasiatomic_spinlock); return result; } /* Same as dvmQuasiAtomicSwap64 - syscall handles barrier */ int64_t dvmQuasiAtomicSwap64Sync(int64_t value, volatile int64_t* addr) { return dvmQuasiAtomicSwap64(value, addr); } #endif /*NEED_QUASIATOMICS*/