/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Android's method call profiling goodies. */ #include "Dalvik.h" #include <interp/InterpDefs.h> #include <stdlib.h> #include <stddef.h> #include <string.h> #include <sys/time.h> #include <time.h> #include <sys/mman.h> #include <sched.h> #include <errno.h> #include <fcntl.h> #include <cutils/open_memstream.h> #ifdef HAVE_ANDROID_OS # define UPDATE_MAGIC_PAGE 1 #endif /* * File format: * header * record 0 * record 1 * ... * * Header format: * u4 magic ('SLOW') * u2 version * u2 offset to data * u8 start date/time in usec * u2 record size in bytes (version >= 2 only) * ... padding to 32 bytes * * Record format v1: * u1 thread ID * u4 method ID | method action * u4 time delta since start, in usec * * Record format v2: * u2 thread ID * u4 method ID | method action * u4 time delta since start, in usec * * Record format v3: * u2 thread ID * u4 method ID | method action * u4 time delta since start, in usec * u4 wall time since start, in usec (when clock == "dual" only) * * 32 bits of microseconds is 70 minutes. * * All values are stored in little-endian order. */ #define TRACE_REC_SIZE_SINGLE_CLOCK 10 // using v2 #define TRACE_REC_SIZE_DUAL_CLOCK 14 // using v3 with two timestamps #define TRACE_MAGIC 0x574f4c53 #define TRACE_HEADER_LEN 32 #define FILL_PATTERN 0xeeeeeeee /* * Returns true if the thread CPU clock should be used. */ static inline bool useThreadCpuClock() { #if defined(HAVE_POSIX_CLOCKS) return gDvm.profilerClockSource != kProfilerClockSourceWall; #else return false; #endif } /* * Returns true if the wall clock should be used. */ static inline bool useWallClock() { #if defined(HAVE_POSIX_CLOCKS) return gDvm.profilerClockSource != kProfilerClockSourceThreadCpu; #else return true; #endif } /* * Get the wall-clock date/time, in usec. */ static inline u8 getWallTimeInUsec() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000LL + tv.tv_usec; } #if defined(HAVE_POSIX_CLOCKS) /* * Get the thread-cpu time, in usec. * We use this clock when we can because it enables us to track the time that * a thread spends running and not blocked. */ static inline u8 getThreadCpuTimeInUsec() { struct timespec tm; clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm); if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) { LOGE("bad nsec: %ld", tm.tv_nsec); dvmAbort(); } return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000; } #endif /* * Get the clock used for stopwatch-like timing measurements on a single thread. */ static inline u8 getStopwatchClock() { #if defined(HAVE_POSIX_CLOCKS) return getThreadCpuTimeInUsec(); #else return getWallTimeInUsec(); #endif } /* * Write little-endian data. */ static inline void storeShortLE(u1* buf, u2 val) { *buf++ = (u1) val; *buf++ = (u1) (val >> 8); } static inline void storeIntLE(u1* buf, u4 val) { *buf++ = (u1) val; *buf++ = (u1) (val >> 8); *buf++ = (u1) (val >> 16); *buf++ = (u1) (val >> 24); } static inline void storeLongLE(u1* buf, u8 val) { *buf++ = (u1) val; *buf++ = (u1) (val >> 8); *buf++ = (u1) (val >> 16); *buf++ = (u1) (val >> 24); *buf++ = (u1) (val >> 32); *buf++ = (u1) (val >> 40); *buf++ = (u1) (val >> 48); *buf++ = (u1) (val >> 56); } /* * Boot-time init. */ bool dvmProfilingStartup() { /* * Initialize "dmtrace" method profiling. */ memset(&gDvm.methodTrace, 0, sizeof(gDvm.methodTrace)); dvmInitMutex(&gDvm.methodTrace.startStopLock); pthread_cond_init(&gDvm.methodTrace.threadExitCond, NULL); assert(!dvmCheckException(dvmThreadSelf())); /* * Allocate storage for instruction counters. */ gDvm.executedInstrCounts = (int*) malloc(kNumPackedOpcodes * sizeof(int)); if (gDvm.executedInstrCounts == NULL) return false; memset(gDvm.executedInstrCounts, 0, kNumPackedOpcodes * sizeof(int)); #ifdef UPDATE_MAGIC_PAGE /* * If we're running on the emulator, there's a magic page into which * we can put interpreted method information. This allows interpreted * methods to show up in the emulator's code traces. * * We could key this off of the "ro.kernel.qemu" property, but there's * no real harm in doing this on a real device. */ int fd = open("/dev/qemu_trace", O_RDWR); if (fd < 0) { LOGV("Unable to open /dev/qemu_trace"); } else { gDvm.emulatorTracePage = mmap(0, SYSTEM_PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); close(fd); if (gDvm.emulatorTracePage == MAP_FAILED) { LOGE("Unable to mmap /dev/qemu_trace"); gDvm.emulatorTracePage = NULL; } else { *(u4*) gDvm.emulatorTracePage = 0; } } #else assert(gDvm.emulatorTracePage == NULL); #endif return true; } /* * Free up profiling resources. */ void dvmProfilingShutdown() { #ifdef UPDATE_MAGIC_PAGE if (gDvm.emulatorTracePage != NULL) munmap(gDvm.emulatorTracePage, SYSTEM_PAGE_SIZE); #endif free(gDvm.executedInstrCounts); } /* * Update the set of active profilers */ static void updateActiveProfilers(ExecutionSubModes newMode, bool enable) { int oldValue, newValue; // Update global count do { oldValue = gDvm.activeProfilers; newValue = oldValue + (enable ? 1 : -1); if (newValue < 0) { LOGE("Can't have %d active profilers", newValue); dvmAbort(); } } while (android_atomic_release_cas(oldValue, newValue, &gDvm.activeProfilers) != 0); // Tell the threads if (enable) { dvmEnableAllSubMode(newMode); } else { dvmDisableAllSubMode(newMode); } #if defined(WITH_JIT) dvmCompilerUpdateGlobalState(); #endif LOGD("+++ active profiler count now %d", newValue); } /* * Reset the "cpuClockBase" field in all threads. */ static void resetCpuClockBase() { Thread* thread; dvmLockThreadList(NULL); for (thread = gDvm.threadList; thread != NULL; thread = thread->next) { thread->cpuClockBaseSet = false; thread->cpuClockBase = 0; } dvmUnlockThreadList(); } /* * Dump the thread list to the specified file. */ static void dumpThreadList(FILE* fp) { dvmLockThreadList(NULL); for (Thread* thread = gDvm.threadList; thread != NULL; thread = thread->next) { std::string threadName(dvmGetThreadName(thread)); fprintf(fp, "%d\t%s\n", thread->threadId, threadName.c_str()); } dvmUnlockThreadList(); } /* * This is a dvmHashForeach callback. */ static int dumpMarkedMethods(void* vclazz, void* vfp) { DexStringCache stringCache; ClassObject* clazz = (ClassObject*) vclazz; FILE* fp = (FILE*) vfp; Method* meth; char* name; int i; dexStringCacheInit(&stringCache); for (i = 0; i < clazz->virtualMethodCount; i++) { meth = &clazz->virtualMethods[i]; if (meth->inProfile) { name = dvmDescriptorToName(meth->clazz->descriptor); fprintf(fp, "0x%08x\t%s\t%s\t%s\t%s\t%d\n", (int) meth, name, meth->name, dexProtoGetMethodDescriptor(&meth->prototype, &stringCache), dvmGetMethodSourceFile(meth), dvmLineNumFromPC(meth, 0)); meth->inProfile = false; free(name); } } for (i = 0; i < clazz->directMethodCount; i++) { meth = &clazz->directMethods[i]; if (meth->inProfile) { name = dvmDescriptorToName(meth->clazz->descriptor); fprintf(fp, "0x%08x\t%s\t%s\t%s\t%s\t%d\n", (int) meth, name, meth->name, dexProtoGetMethodDescriptor(&meth->prototype, &stringCache), dvmGetMethodSourceFile(meth), dvmLineNumFromPC(meth, 0)); meth->inProfile = false; free(name); } } dexStringCacheRelease(&stringCache); return 0; } /* * Dump the list of "marked" methods to the specified file. */ static void dumpMethodList(FILE* fp) { dvmHashTableLock(gDvm.loadedClasses); dvmHashForeach(gDvm.loadedClasses, dumpMarkedMethods, (void*) fp); dvmHashTableUnlock(gDvm.loadedClasses); } /* * Start method tracing. Method tracing is global to the VM (i.e. we * trace all threads). * * This opens the output file (if an already open fd has not been supplied, * and we're not going direct to DDMS) and allocates the data buffer. This * takes ownership of the file descriptor, closing it on completion. * * On failure, we throw an exception and return. */ void dvmMethodTraceStart(const char* traceFileName, int traceFd, int bufferSize, int flags, bool directToDdms) { MethodTraceState* state = &gDvm.methodTrace; assert(bufferSize > 0); dvmLockMutex(&state->startStopLock); while (state->traceEnabled != 0) { LOGI("TRACE start requested, but already in progress; stopping"); dvmUnlockMutex(&state->startStopLock); dvmMethodTraceStop(); dvmLockMutex(&state->startStopLock); } LOGI("TRACE STARTED: '%s' %dKB", traceFileName, bufferSize / 1024); /* * Allocate storage and open files. * * We don't need to initialize the buffer, but doing so might remove * some fault overhead if the pages aren't mapped until touched. */ state->buf = (u1*) malloc(bufferSize); if (state->buf == NULL) { dvmThrowInternalError("buffer alloc failed"); goto fail; } if (!directToDdms) { if (traceFd < 0) { state->traceFile = fopen(traceFileName, "w"); } else { state->traceFile = fdopen(traceFd, "w"); } if (state->traceFile == NULL) { int err = errno; LOGE("Unable to open trace file '%s': %s", traceFileName, strerror(err)); dvmThrowExceptionFmt(gDvm.exRuntimeException, "Unable to open trace file '%s': %s", traceFileName, strerror(err)); goto fail; } } traceFd = -1; memset(state->buf, (char)FILL_PATTERN, bufferSize); state->directToDdms = directToDdms; state->bufferSize = bufferSize; state->overflow = false; /* * Enable alloc counts if we've been requested to do so. */ state->flags = flags; if ((flags & TRACE_ALLOC_COUNTS) != 0) dvmStartAllocCounting(); /* reset our notion of the start time for all CPU threads */ resetCpuClockBase(); state->startWhen = getWallTimeInUsec(); if (useThreadCpuClock() && useWallClock()) { state->traceVersion = 3; state->recordSize = TRACE_REC_SIZE_DUAL_CLOCK; } else { state->traceVersion = 2; state->recordSize = TRACE_REC_SIZE_SINGLE_CLOCK; } /* * Output the header. */ memset(state->buf, 0, TRACE_HEADER_LEN); storeIntLE(state->buf + 0, TRACE_MAGIC); storeShortLE(state->buf + 4, state->traceVersion); storeShortLE(state->buf + 6, TRACE_HEADER_LEN); storeLongLE(state->buf + 8, state->startWhen); if (state->traceVersion >= 3) { storeShortLE(state->buf + 16, state->recordSize); } state->curOffset = TRACE_HEADER_LEN; /* * Set the "enabled" flag. Once we do this, threads will wait to be * signaled before exiting, so we have to make sure we wake them up. */ android_atomic_release_store(true, &state->traceEnabled); /* * ENHANCEMENT: To trace just a single thread, modify the * following to take a Thread* argument, and set the appropriate * interpBreak flags only on the target thread. */ updateActiveProfilers(kSubModeMethodTrace, true); dvmUnlockMutex(&state->startStopLock); return; fail: if (state->traceFile != NULL) { fclose(state->traceFile); state->traceFile = NULL; } if (state->buf != NULL) { free(state->buf); state->buf = NULL; } if (traceFd >= 0) close(traceFd); dvmUnlockMutex(&state->startStopLock); } /* * Run through the data buffer and pull out the methods that were visited. * Set a mark so that we know which ones to output. */ static void markTouchedMethods(int endOffset) { u1* ptr = gDvm.methodTrace.buf + TRACE_HEADER_LEN; u1* end = gDvm.methodTrace.buf + endOffset; size_t recordSize = gDvm.methodTrace.recordSize; unsigned int methodVal; Method* method; while (ptr < end) { methodVal = ptr[2] | (ptr[3] << 8) | (ptr[4] << 16) | (ptr[5] << 24); method = (Method*) METHOD_ID(methodVal); method->inProfile = true; ptr += recordSize; } } /* * Exercises the clocks in the same way they will be during profiling. */ static inline void measureClockOverhead() { #if defined(HAVE_POSIX_CLOCKS) if (useThreadCpuClock()) { getThreadCpuTimeInUsec(); } #endif if (useWallClock()) { getWallTimeInUsec(); } } /* * Compute the amount of overhead in a clock call, in nsec. * * This value is going to vary depending on what else is going on in the * system. When examined across several runs a pattern should emerge. */ static u4 getClockOverhead() { u8 calStart, calElapsed; int i; calStart = getStopwatchClock(); for (i = 1000 * 4; i > 0; i--) { measureClockOverhead(); measureClockOverhead(); measureClockOverhead(); measureClockOverhead(); measureClockOverhead(); measureClockOverhead(); measureClockOverhead(); measureClockOverhead(); } calElapsed = getStopwatchClock() - calStart; return (int) (calElapsed / (8*4)); } /* * Returns "true" if method tracing is currently active. */ bool dvmIsMethodTraceActive() { const MethodTraceState* state = &gDvm.methodTrace; return state->traceEnabled; } /* * Stop method tracing. We write the buffer to disk and generate a key * file so we can interpret it. */ void dvmMethodTraceStop() { MethodTraceState* state = &gDvm.methodTrace; u8 elapsed; /* * We need this to prevent somebody from starting a new trace while * we're in the process of stopping the old. */ dvmLockMutex(&state->startStopLock); if (!state->traceEnabled) { /* somebody already stopped it, or it was never started */ LOGD("TRACE stop requested, but not running"); dvmUnlockMutex(&state->startStopLock); return; } else { updateActiveProfilers(kSubModeMethodTrace, false); } /* compute elapsed time */ elapsed = getWallTimeInUsec() - state->startWhen; /* * Globally disable it, and allow other threads to notice. We want * to stall here for at least as long as dvmMethodTraceAdd needs * to finish. There's no real risk though -- it will take a while to * write the data to disk, and we don't clear the buffer pointer until * after that completes. */ state->traceEnabled = false; ANDROID_MEMBAR_FULL(); sched_yield(); usleep(250 * 1000); if ((state->flags & TRACE_ALLOC_COUNTS) != 0) dvmStopAllocCounting(); /* * It's possible under some circumstances for a thread to have advanced * the data pointer but not written the method value. It's possible * (though less likely) for the data pointer to be advanced, or partial * data written, while we're doing work here. * * To avoid seeing partially-written data, we grab state->curOffset here, * and use our local copy from here on. We then scan through what's * already written. If we see the fill pattern in what should be the * method pointer, we cut things off early. (If we don't, we'll fail * when we dereference the pointer.) * * There's a theoretical possibility of interrupting another thread * after it has partially written the method pointer, in which case * we'll likely crash when we dereference it. The possibility of * this actually happening should be at or near zero. Fixing it * completely could be done by writing the thread number last and * using a sentinel value to indicate a partially-written record, * but that requires memory barriers. */ int finalCurOffset = state->curOffset; size_t recordSize = state->recordSize; if (finalCurOffset > TRACE_HEADER_LEN) { u4 fillVal = METHOD_ID(FILL_PATTERN); u1* scanPtr = state->buf + TRACE_HEADER_LEN; while (scanPtr < state->buf + finalCurOffset) { u4 methodVal = scanPtr[2] | (scanPtr[3] << 8) | (scanPtr[4] << 16) | (scanPtr[5] << 24); if (METHOD_ID(methodVal) == fillVal) { u1* scanBase = state->buf + TRACE_HEADER_LEN; LOGW("Found unfilled record at %d (of %d)", (scanPtr - scanBase) / recordSize, (finalCurOffset - TRACE_HEADER_LEN) / recordSize); finalCurOffset = scanPtr - state->buf; break; } scanPtr += recordSize; } } LOGI("TRACE STOPPED%s: writing %d records", state->overflow ? " (NOTE: overflowed buffer)" : "", (finalCurOffset - TRACE_HEADER_LEN) / recordSize); if (gDvm.debuggerActive) { LOGW("WARNING: a debugger is active; method-tracing results " "will be skewed"); } /* * Do a quick calibration test to see how expensive our clock call is. */ u4 clockNsec = getClockOverhead(); markTouchedMethods(finalCurOffset); char* memStreamPtr; size_t memStreamSize; if (state->directToDdms) { assert(state->traceFile == NULL); state->traceFile = open_memstream(&memStreamPtr, &memStreamSize); if (state->traceFile == NULL) { /* not expected */ LOGE("Unable to open memstream"); dvmAbort(); } } assert(state->traceFile != NULL); fprintf(state->traceFile, "%cversion\n", TOKEN_CHAR); fprintf(state->traceFile, "%d\n", state->traceVersion); fprintf(state->traceFile, "data-file-overflow=%s\n", state->overflow ? "true" : "false"); if (useThreadCpuClock()) { if (useWallClock()) { fprintf(state->traceFile, "clock=dual\n"); } else { fprintf(state->traceFile, "clock=thread-cpu\n"); } } else { fprintf(state->traceFile, "clock=wall\n"); } fprintf(state->traceFile, "elapsed-time-usec=%llu\n", elapsed); fprintf(state->traceFile, "num-method-calls=%d\n", (finalCurOffset - TRACE_HEADER_LEN) / state->recordSize); fprintf(state->traceFile, "clock-call-overhead-nsec=%d\n", clockNsec); fprintf(state->traceFile, "vm=dalvik\n"); if ((state->flags & TRACE_ALLOC_COUNTS) != 0) { fprintf(state->traceFile, "alloc-count=%d\n", gDvm.allocProf.allocCount); fprintf(state->traceFile, "alloc-size=%d\n", gDvm.allocProf.allocSize); fprintf(state->traceFile, "gc-count=%d\n", gDvm.allocProf.gcCount); } fprintf(state->traceFile, "%cthreads\n", TOKEN_CHAR); dumpThreadList(state->traceFile); fprintf(state->traceFile, "%cmethods\n", TOKEN_CHAR); dumpMethodList(state->traceFile); fprintf(state->traceFile, "%cend\n", TOKEN_CHAR); if (state->directToDdms) { /* * Data is in two places: memStreamPtr and state->buf. Send * the whole thing to DDMS, wrapped in an MPSE packet. */ fflush(state->traceFile); struct iovec iov[2]; iov[0].iov_base = memStreamPtr; iov[0].iov_len = memStreamSize; iov[1].iov_base = state->buf; iov[1].iov_len = finalCurOffset; dvmDbgDdmSendChunkV(CHUNK_TYPE("MPSE"), iov, 2); } else { /* append the profiling data */ if (fwrite(state->buf, finalCurOffset, 1, state->traceFile) != 1) { int err = errno; LOGE("trace fwrite(%d) failed: %s", finalCurOffset, strerror(err)); dvmThrowExceptionFmt(gDvm.exRuntimeException, "Trace data write failed: %s", strerror(err)); } } /* done! */ free(state->buf); state->buf = NULL; fclose(state->traceFile); state->traceFile = NULL; /* wake any threads that were waiting for profiling to complete */ dvmBroadcastCond(&state->threadExitCond); dvmUnlockMutex(&state->startStopLock); } /* * We just did something with a method. Emit a record. * * Multiple threads may be banging on this all at once. We use atomic ops * rather than mutexes for speed. */ void dvmMethodTraceAdd(Thread* self, const Method* method, int action) { MethodTraceState* state = &gDvm.methodTrace; u4 methodVal; int oldOffset, newOffset; u1* ptr; assert(method != NULL); #if defined(HAVE_POSIX_CLOCKS) /* * We can only access the per-thread CPU clock from within the * thread, so we have to initialize the base time on the first use. * (Looks like pthread_getcpuclockid(thread, &id) will do what we * want, but it doesn't appear to be defined on the device.) */ if (!self->cpuClockBaseSet) { self->cpuClockBase = getThreadCpuTimeInUsec(); self->cpuClockBaseSet = true; //LOGI("thread base id=%d 0x%llx", // self->threadId, self->cpuClockBase); } #endif /* * Advance "curOffset" atomically. */ do { oldOffset = state->curOffset; newOffset = oldOffset + state->recordSize; if (newOffset > state->bufferSize) { state->overflow = true; return; } } while (android_atomic_release_cas(oldOffset, newOffset, &state->curOffset) != 0); //assert(METHOD_ACTION((u4) method) == 0); methodVal = METHOD_COMBINE((u4) method, action); /* * Write data into "oldOffset". */ ptr = state->buf + oldOffset; *ptr++ = (u1) self->threadId; *ptr++ = (u1) (self->threadId >> 8); *ptr++ = (u1) methodVal; *ptr++ = (u1) (methodVal >> 8); *ptr++ = (u1) (methodVal >> 16); *ptr++ = (u1) (methodVal >> 24); #if defined(HAVE_POSIX_CLOCKS) if (useThreadCpuClock()) { u4 cpuClockDiff = (u4) (getThreadCpuTimeInUsec() - self->cpuClockBase); *ptr++ = (u1) cpuClockDiff; *ptr++ = (u1) (cpuClockDiff >> 8); *ptr++ = (u1) (cpuClockDiff >> 16); *ptr++ = (u1) (cpuClockDiff >> 24); } #endif if (useWallClock()) { u4 wallClockDiff = (u4) (getWallTimeInUsec() - state->startWhen); *ptr++ = (u1) wallClockDiff; *ptr++ = (u1) (wallClockDiff >> 8); *ptr++ = (u1) (wallClockDiff >> 16); *ptr++ = (u1) (wallClockDiff >> 24); } } /* * Register the METHOD_TRACE_ENTER action for the fast interpreter and * JIT'ed code. */ void dvmFastMethodTraceEnter(const Method* method, Thread* self) { if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) { dvmMethodTraceAdd(self, method, METHOD_TRACE_ENTER); } } /* * Register the METHOD_TRACE_EXIT action for the fast interpreter and * JIT'ed code for methods. The about-to-return callee method can be * retrieved from self->interpSave.method. */ void dvmFastMethodTraceExit(Thread* self) { if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) { dvmMethodTraceAdd(self, self->interpSave.method, METHOD_TRACE_EXIT); } } /* * Register the METHOD_TRACE_EXIT action for the fast interpreter and * JIT'ed code for JNI methods. The about-to-return JNI callee method is passed * in explicitly. Also used for inline-execute. */ void dvmFastNativeMethodTraceExit(const Method* method, Thread* self) { if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) { dvmMethodTraceAdd(self, method, METHOD_TRACE_EXIT); } } /* * We just did something with a method. Emit a record by setting a value * in a magic memory location. */ void dvmEmitEmulatorTrace(const Method* method, int action) { #ifdef UPDATE_MAGIC_PAGE /* * We store the address of the Dalvik bytecodes to the memory-mapped * trace page for normal methods. We also trace calls to native * functions by storing the address of the native function to the * trace page. * Abstract methods don't have any bytecodes, so we don't trace them. * (Abstract methods are never called, but in Dalvik they can be * because we do a "late trap" to a native method to generate the * abstract method exception.) */ if (dvmIsAbstractMethod(method)) return; u4* pMagic = (u4*) gDvm.emulatorTracePage; u4 addr; if (dvmIsNativeMethod(method)) { /* * The "action" parameter is one of: * 0 = ENTER * 1 = EXIT * 2 = UNROLL * To help the trace tools reconstruct the runtime stack containing * a mix of normal plus native methods, we add 4 to the action if this * is a native method. */ action += 4; /* * Get the address of the native function. * This isn't the right address -- how do I get it? * Fortunately, the trace tools can get by without the address, but * it would be nice to fix this. */ addr = (u4) method->nativeFunc; } else { /* * The dexlist output shows the &DexCode.insns offset value, which * is offset from the start of the base DEX header. Method.insns * is the absolute address, effectively offset from the start of * the optimized DEX header. We either need to return the * optimized DEX base file address offset by the right amount, or * take the "real" address and subtract off the size of the * optimized DEX header. * * Would be nice to factor this out at dexlist time, but we can't count * on having access to the correct optimized DEX file. */ assert(method->insns != NULL); const DexOptHeader* pOptHdr = method->clazz->pDvmDex->pDexFile->pOptHeader; addr = (u4) method->insns - pOptHdr->dexOffset; } *(pMagic+action) = addr; LOGVV("Set %p = 0x%08x (%s.%s)", pMagic+action, addr, method->clazz->descriptor, method->name); #endif } /* * The GC calls this when it's about to start. We add a marker to the * trace output so the tool can exclude the GC cost from the results. */ void dvmMethodTraceGCBegin() { TRACE_METHOD_ENTER(dvmThreadSelf(), gDvm.methodTraceGcMethod); } void dvmMethodTraceGCEnd() { TRACE_METHOD_EXIT(dvmThreadSelf(), gDvm.methodTraceGcMethod); } /* * The class loader calls this when it's loading or initializing a class. */ void dvmMethodTraceClassPrepBegin() { TRACE_METHOD_ENTER(dvmThreadSelf(), gDvm.methodTraceClassPrepMethod); } void dvmMethodTraceClassPrepEnd() { TRACE_METHOD_EXIT(dvmThreadSelf(), gDvm.methodTraceClassPrepMethod); } /* * Enable emulator trace info. */ void dvmEmulatorTraceStart() { /* If we could not map the emulator trace page, then do not enable tracing */ if (gDvm.emulatorTracePage == NULL) return; /* in theory we should make this an atomic inc; in practice not important */ gDvm.emulatorTraceEnableCount++; if (gDvm.emulatorTraceEnableCount == 1) LOGD("--- emulator method traces enabled"); updateActiveProfilers(kSubModeEmulatorTrace, true); } /* * Disable emulator trace info. */ void dvmEmulatorTraceStop() { if (gDvm.emulatorTraceEnableCount == 0) { LOGE("ERROR: emulator tracing not enabled"); return; } /* in theory we should make this an atomic inc; in practice not important */ gDvm.emulatorTraceEnableCount--; if (gDvm.emulatorTraceEnableCount == 0) LOGD("--- emulator method traces disabled"); updateActiveProfilers(kSubModeEmulatorTrace, (gDvm.emulatorTraceEnableCount != 0)); } /* * Start instruction counting. */ void dvmStartInstructionCounting() { /* in theory we should make this an atomic inc; in practice not important */ gDvm.instructionCountEnableCount++; updateActiveProfilers(kSubModeInstCounting, true); } /* * Stop instruction counting. */ void dvmStopInstructionCounting() { if (gDvm.instructionCountEnableCount == 0) { LOGE("ERROR: instruction counting not enabled"); dvmAbort(); } gDvm.instructionCountEnableCount--; updateActiveProfilers(kSubModeInstCounting, (gDvm.instructionCountEnableCount != 0)); } /* * Start alloc counting. Note this doesn't affect the "active profilers" * count, since the interpreter loop is not involved. */ void dvmStartAllocCounting() { gDvm.allocProf.enabled = true; } /* * Stop alloc counting. */ void dvmStopAllocCounting() { gDvm.allocProf.enabled = false; }