// <mutex> -*- C++ -*- // Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file mutex * This is a Standard C++ Library header. */ #ifndef _GLIBCXX_MUTEX #define _GLIBCXX_MUTEX 1 #pragma GCC system_header #ifndef __GXX_EXPERIMENTAL_CXX0X__ # include <c++0x_warning.h> #else #include <tuple> #include <cstddef> #include <chrono> #include <exception> #include <type_traits> #include <functional> #include <system_error> #include <bits/functexcept.h> #include <bits/gthr.h> #include <bits/move.h> // for std::swap #if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) namespace std { /** * @defgroup mutexes Mutexes * @ingroup concurrency * * Classes for mutex support. * @{ */ /// mutex class mutex { typedef __gthread_mutex_t __native_type; __native_type _M_mutex; public: typedef __native_type* native_handle_type; mutex() { // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may) #ifdef __GTHREAD_MUTEX_INIT __native_type __tmp = __GTHREAD_MUTEX_INIT; _M_mutex = __tmp; #else __GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex); #endif } mutex(const mutex&) = delete; mutex& operator=(const mutex&) = delete; void lock() { int __e = __gthread_mutex_lock(&_M_mutex); // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may) if (__e) __throw_system_error(__e); } bool try_lock() { // XXX EINVAL, EAGAIN, EBUSY return !__gthread_mutex_trylock(&_M_mutex); } void unlock() { // XXX EINVAL, EAGAIN, EPERM __gthread_mutex_unlock(&_M_mutex); } native_handle_type native_handle() { return &_M_mutex; } }; /// recursive_mutex class recursive_mutex { typedef __gthread_recursive_mutex_t __native_type; __native_type _M_mutex; public: typedef __native_type* native_handle_type; recursive_mutex() { // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may) #ifdef __GTHREAD_RECURSIVE_MUTEX_INIT __native_type __tmp = __GTHREAD_RECURSIVE_MUTEX_INIT; _M_mutex = __tmp; #else __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex); #endif } recursive_mutex(const recursive_mutex&) = delete; recursive_mutex& operator=(const recursive_mutex&) = delete; void lock() { int __e = __gthread_recursive_mutex_lock(&_M_mutex); // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may) if (__e) __throw_system_error(__e); } bool try_lock() { // XXX EINVAL, EAGAIN, EBUSY return !__gthread_recursive_mutex_trylock(&_M_mutex); } void unlock() { // XXX EINVAL, EAGAIN, EBUSY __gthread_recursive_mutex_unlock(&_M_mutex); } native_handle_type native_handle() { return &_M_mutex; } }; /// timed_mutex class timed_mutex { typedef __gthread_mutex_t __native_type; #ifdef _GLIBCXX_USE_CLOCK_MONOTONIC typedef chrono::monotonic_clock __clock_t; #else typedef chrono::high_resolution_clock __clock_t; #endif __native_type _M_mutex; public: typedef __native_type* native_handle_type; timed_mutex() { #ifdef __GTHREAD_MUTEX_INIT __native_type __tmp = __GTHREAD_MUTEX_INIT; _M_mutex = __tmp; #else __GTHREAD_MUTEX_INIT_FUNCTION(&_M_mutex); #endif } timed_mutex(const timed_mutex&) = delete; timed_mutex& operator=(const timed_mutex&) = delete; void lock() { int __e = __gthread_mutex_lock(&_M_mutex); // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may) if (__e) __throw_system_error(__e); } bool try_lock() { // XXX EINVAL, EAGAIN, EBUSY return !__gthread_mutex_trylock(&_M_mutex); } template <class _Rep, class _Period> bool try_lock_for(const chrono::duration<_Rep, _Period>& __rtime) { return __try_lock_for_impl(__rtime); } template <class _Clock, class _Duration> bool try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime) { chrono::time_point<_Clock, chrono::seconds> __s = chrono::time_point_cast<chrono::seconds>(__atime); chrono::nanoseconds __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s); __gthread_time_t __ts = { static_cast<std::time_t>(__s.time_since_epoch().count()), static_cast<long>(__ns.count()) }; return !__gthread_mutex_timedlock(&_M_mutex, &__ts); } void unlock() { // XXX EINVAL, EAGAIN, EBUSY __gthread_mutex_unlock(&_M_mutex); } native_handle_type native_handle() { return &_M_mutex; } private: template<typename _Rep, typename _Period> typename enable_if< ratio_less_equal<__clock_t::period, _Period>::value, bool>::type __try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime) { __clock_t::time_point __atime = __clock_t::now() + chrono::duration_cast<__clock_t::duration>(__rtime); return try_lock_until(__atime); } template <typename _Rep, typename _Period> typename enable_if< !ratio_less_equal<__clock_t::period, _Period>::value, bool>::type __try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime) { __clock_t::time_point __atime = __clock_t::now() + ++chrono::duration_cast<__clock_t::duration>(__rtime); return try_lock_until(__atime); } }; /// recursive_timed_mutex class recursive_timed_mutex { typedef __gthread_recursive_mutex_t __native_type; #ifdef _GLIBCXX_USE_CLOCK_MONOTONIC typedef chrono::monotonic_clock __clock_t; #else typedef chrono::high_resolution_clock __clock_t; #endif __native_type _M_mutex; public: typedef __native_type* native_handle_type; recursive_timed_mutex() { // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may) #ifdef __GTHREAD_RECURSIVE_MUTEX_INIT __native_type __tmp = __GTHREAD_RECURSIVE_MUTEX_INIT; _M_mutex = __tmp; #else __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex); #endif } recursive_timed_mutex(const recursive_timed_mutex&) = delete; recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete; void lock() { int __e = __gthread_recursive_mutex_lock(&_M_mutex); // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may) if (__e) __throw_system_error(__e); } bool try_lock() { // XXX EINVAL, EAGAIN, EBUSY return !__gthread_recursive_mutex_trylock(&_M_mutex); } template <class _Rep, class _Period> bool try_lock_for(const chrono::duration<_Rep, _Period>& __rtime) { return __try_lock_for_impl(__rtime); } template <class _Clock, class _Duration> bool try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime) { chrono::time_point<_Clock, chrono::seconds> __s = chrono::time_point_cast<chrono::seconds>(__atime); chrono::nanoseconds __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s); __gthread_time_t __ts = { static_cast<std::time_t>(__s.time_since_epoch().count()), static_cast<long>(__ns.count()) }; return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts); } void unlock() { // XXX EINVAL, EAGAIN, EBUSY __gthread_recursive_mutex_unlock(&_M_mutex); } native_handle_type native_handle() { return &_M_mutex; } private: template<typename _Rep, typename _Period> typename enable_if< ratio_less_equal<__clock_t::period, _Period>::value, bool>::type __try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime) { __clock_t::time_point __atime = __clock_t::now() + chrono::duration_cast<__clock_t::duration>(__rtime); return try_lock_until(__atime); } template <typename _Rep, typename _Period> typename enable_if< !ratio_less_equal<__clock_t::period, _Period>::value, bool>::type __try_lock_for_impl(const chrono::duration<_Rep, _Period>& __rtime) { __clock_t::time_point __atime = __clock_t::now() + ++chrono::duration_cast<__clock_t::duration>(__rtime); return try_lock_until(__atime); } }; /// Do not acquire ownership of the mutex. struct defer_lock_t { }; /// Try to acquire ownership of the mutex without blocking. struct try_to_lock_t { }; /// Assume the calling thread has already obtained mutex ownership /// and manage it. struct adopt_lock_t { }; extern const defer_lock_t defer_lock; extern const try_to_lock_t try_to_lock; extern const adopt_lock_t adopt_lock; /** * @brief Thrown to indicate errors with lock operations. * * @ingroup exceptions */ class lock_error : public exception { public: virtual const char* what() const throw(); }; /// @brief Scoped lock idiom. // Acquire the mutex here with a constructor call, then release with // the destructor call in accordance with RAII style. template<typename _Mutex> class lock_guard { public: typedef _Mutex mutex_type; explicit lock_guard(mutex_type& __m) : _M_device(__m) { _M_device.lock(); } lock_guard(mutex_type& __m, adopt_lock_t __a) : _M_device(__m) { _M_device.lock(); } ~lock_guard() { _M_device.unlock(); } lock_guard(const lock_guard&) = delete; lock_guard& operator=(const lock_guard&) = delete; private: mutex_type& _M_device; }; /// unique_lock template<typename _Mutex> class unique_lock { public: typedef _Mutex mutex_type; unique_lock() : _M_device(0), _M_owns(false) { } explicit unique_lock(mutex_type& __m) : _M_device(&__m), _M_owns(false) { lock(); _M_owns = true; } unique_lock(mutex_type& __m, defer_lock_t) : _M_device(&__m), _M_owns(false) { } unique_lock(mutex_type& __m, try_to_lock_t) : _M_device(&__m), _M_owns(_M_device->try_lock()) { } unique_lock(mutex_type& __m, adopt_lock_t) : _M_device(&__m), _M_owns(true) { // XXX calling thread owns mutex } template<typename _Clock, typename _Duration> unique_lock(mutex_type& __m, const chrono::time_point<_Clock, _Duration>& __atime) : _M_device(&__m), _M_owns(_M_device->try_lock_until(__atime)) { } template<typename _Rep, typename _Period> unique_lock(mutex_type& __m, const chrono::duration<_Rep, _Period>& __rtime) : _M_device(&__m), _M_owns(_M_device->try_lock_for(__rtime)) { } ~unique_lock() { if (_M_owns) unlock(); } unique_lock(const unique_lock&) = delete; unique_lock& operator=(const unique_lock&) = delete; unique_lock(unique_lock&& __u) : _M_device(__u._M_device), _M_owns(__u._M_owns) { __u._M_device = 0; __u._M_owns = false; } unique_lock& operator=(unique_lock&& __u) { if(_M_owns) unlock(); unique_lock(std::move(__u)).swap(*this); __u._M_device = 0; __u._M_owns = false; return *this; } void lock() { if (!_M_device) __throw_system_error(int(errc::operation_not_permitted)); else if (_M_owns) __throw_system_error(int(errc::resource_deadlock_would_occur)); else { _M_device->lock(); _M_owns = true; } } bool try_lock() { if (!_M_device) __throw_system_error(int(errc::operation_not_permitted)); else if (_M_owns) __throw_system_error(int(errc::resource_deadlock_would_occur)); else { _M_owns = _M_device->try_lock(); return _M_owns; } } template<typename _Clock, typename _Duration> bool try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime) { if (!_M_device) __throw_system_error(int(errc::operation_not_permitted)); else if (_M_owns) __throw_system_error(int(errc::resource_deadlock_would_occur)); else { _M_owns = _M_device->try_lock_until(__atime); return _M_owns; } } template<typename _Rep, typename _Period> bool try_lock_for(const chrono::duration<_Rep, _Period>& __rtime) { if (!_M_device) __throw_system_error(int(errc::operation_not_permitted)); else if (_M_owns) __throw_system_error(int(errc::resource_deadlock_would_occur)); else { _M_owns = _M_device->try_lock_for(__rtime); return _M_owns; } } void unlock() { if (!_M_owns) __throw_system_error(int(errc::operation_not_permitted)); else if (_M_device) { _M_device->unlock(); _M_owns = false; } } void swap(unique_lock&& __u) { std::swap(_M_device, __u._M_device); std::swap(_M_owns, __u._M_owns); } mutex_type* release() { mutex_type* __ret = _M_device; _M_device = 0; _M_owns = false; return __ret; } bool owns_lock() const { return _M_owns; } /* explicit */ operator bool () const { return owns_lock(); } mutex_type* mutex() const { return _M_device; } private: mutex_type* _M_device; bool _M_owns; // XXX use atomic_bool }; template<typename _Mutex> inline void swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>& __y) { __x.swap(__y); } template<typename _Mutex> inline void swap(unique_lock<_Mutex>&& __x, unique_lock<_Mutex>& __y) { __x.swap(__y); } template<typename _Mutex> inline void swap(unique_lock<_Mutex>& __x, unique_lock<_Mutex>&& __y) { __x.swap(__y); } template<int _Idx> struct __unlock_impl { template<typename... _Lock> static void __do_unlock(tuple<_Lock&...>& __locks) { std::get<_Idx>(__locks).unlock(); __unlock_impl<_Idx - 1>::__do_unlock(__locks); } }; template<> struct __unlock_impl<-1> { template<typename... _Lock> static void __do_unlock(tuple<_Lock&...>&) { } }; template<int _Idx, bool _Continue = true> struct __try_lock_impl { template<typename... _Lock> static int __do_try_lock(tuple<_Lock&...>& __locks) { if(std::get<_Idx>(__locks).try_lock()) { return __try_lock_impl<_Idx + 1, _Idx + 2 < sizeof...(_Lock)>::__do_try_lock(__locks); } else { __unlock_impl<_Idx>::__do_unlock(__locks); return _Idx; } } }; template<int _Idx> struct __try_lock_impl<_Idx, false> { template<typename... _Lock> static int __do_try_lock(tuple<_Lock&...>& __locks) { if(std::get<_Idx>(__locks).try_lock()) return -1; else { __unlock_impl<_Idx>::__do_unlock(__locks); return _Idx; } } }; /** @brief Generic try_lock. * @param __l1 Meets Mutex requirements (try_lock() may throw). * @param __l2 Meets Mutex requirements (try_lock() may throw). * @param __l3 Meets Mutex requirements (try_lock() may throw). * @return Returns -1 if all try_lock() calls return true. Otherwise returns * a 0-based index corresponding to the argument that returned false. * @post Either all arguments are locked, or none will be. * * Sequentially calls try_lock() on each argument. */ template<typename _Lock1, typename _Lock2, typename... _Lock3> int try_lock(_Lock1& __l1, _Lock2& __l2, _Lock3&... __l3) { tuple<_Lock1&, _Lock2&, _Lock3&...> __locks(__l1, __l2, __l3...); return __try_lock_impl<0>::__do_try_lock(__locks); } /// lock template<typename _L1, typename _L2, typename ..._L3> void lock(_L1&, _L2&, _L3&...); /// once_flag struct once_flag { private: typedef __gthread_once_t __native_type; __native_type _M_once; public: once_flag() { __native_type __tmp = __GTHREAD_ONCE_INIT; _M_once = __tmp; } once_flag(const once_flag&) = delete; once_flag& operator=(const once_flag&) = delete; template<typename _Callable, typename... _Args> friend void call_once(once_flag& __once, _Callable __f, _Args&&... __args); }; #ifdef _GLIBCXX_HAVE_TLS extern __thread void* __once_callable; extern __thread void (*__once_call)(); template<typename _Callable> inline void __once_call_impl() { (*(_Callable*)__once_callable)(); } #else extern function<void()> __once_functor; extern void __set_once_functor_lock_ptr(unique_lock<mutex>*); extern mutex& __get_once_mutex(); #endif extern "C" void __once_proxy(); /// call_once template<typename _Callable, typename... _Args> void call_once(once_flag& __once, _Callable __f, _Args&&... __args) { #ifdef _GLIBCXX_HAVE_TLS auto __bound_functor = bind(__f, __args...); __once_callable = &__bound_functor; __once_call = &__once_call_impl<decltype(__bound_functor)>; #else unique_lock<mutex> __functor_lock(__get_once_mutex()); __once_functor = bind(__f, __args...); __set_once_functor_lock_ptr(&__functor_lock); #endif int __e = __gthread_once(&(__once._M_once), &__once_proxy); #ifndef _GLIBCXX_HAVE_TLS if (__functor_lock) __set_once_functor_lock_ptr(0); #endif if (__e) __throw_system_error(__e); } // @} group mutexes } #endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1 #endif // __GXX_EXPERIMENTAL_CXX0X__ #endif // _GLIBCXX_MUTEX