/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2000-2001 Qualcomm Incorporated * Copyright (C) 2002-2003 Maxim Krasnyansky <maxk@qualcomm.com> * Copyright (C) 2002-2010 Marcel Holtmann <marcel@holtmann.org> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #define _GNU_SOURCE #include <stdio.h> #include <errno.h> #include <fcntl.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <signal.h> #include <syslog.h> #include <termios.h> #include <time.h> #include <sys/time.h> #include <sys/poll.h> #include <sys/param.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <sys/uio.h> #include <bluetooth/bluetooth.h> #include <bluetooth/hci.h> #include <bluetooth/hci_lib.h> #include "hciattach.h" #include "ppoll.h" struct uart_t { char *type; int m_id; int p_id; int proto; int init_speed; int speed; int flags; int pm; char *bdaddr; int (*init) (int fd, struct uart_t *u, struct termios *ti); int (*post) (int fd, struct uart_t *u, struct termios *ti); }; #define FLOW_CTL 0x0001 #define ENABLE_PM 1 #define DISABLE_PM 0 static volatile sig_atomic_t __io_canceled = 0; static void sig_hup(int sig) { } static void sig_term(int sig) { __io_canceled = 1; } static void sig_alarm(int sig) { fprintf(stderr, "Initialization timed out.\n"); exit(1); } static int uart_speed(int s) { switch (s) { case 9600: return B9600; case 19200: return B19200; case 38400: return B38400; case 57600: return B57600; case 115200: return B115200; case 230400: return B230400; case 460800: return B460800; case 500000: return B500000; case 576000: return B576000; case 921600: return B921600; case 1000000: return B1000000; case 1152000: return B1152000; case 1500000: return B1500000; case 2000000: return B2000000; #ifdef B2500000 case 2500000: return B2500000; #endif #ifdef B3000000 case 3000000: return B3000000; #endif #ifdef B3500000 case 3500000: return B3500000; #endif #ifdef B4000000 case 4000000: return B4000000; #endif default: return B57600; } } int set_speed(int fd, struct termios *ti, int speed) { if (cfsetospeed(ti, uart_speed(speed)) < 0) return -errno; if (cfsetispeed(ti, uart_speed(speed)) < 0) return -errno; if (tcsetattr(fd, TCSANOW, ti) < 0) return -errno; return 0; } /* * Read an HCI event from the given file descriptor. */ int read_hci_event(int fd, unsigned char* buf, int size) { int remain, r; int count = 0; if (size <= 0) return -1; /* The first byte identifies the packet type. For HCI event packets, it * should be 0x04, so we read until we get to the 0x04. */ while (1) { r = read(fd, buf, 1); if (r <= 0) return -1; if (buf[0] == 0x04) break; } count++; /* The next two bytes are the event code and parameter total length. */ while (count < 3) { r = read(fd, buf + count, 3 - count); if (r <= 0) return -1; count += r; } /* Now we read the parameters. */ if (buf[2] < (size - 3)) remain = buf[2]; else remain = size - 3; while ((count - 3) < remain) { r = read(fd, buf + count, remain - (count - 3)); if (r <= 0) return -1; count += r; } return count; } /* * Ericsson specific initialization */ static int ericsson(int fd, struct uart_t *u, struct termios *ti) { struct timespec tm = {0, 50000}; char cmd[5]; cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x09; cmd[2] = 0xfc; cmd[3] = 0x01; switch (u->speed) { case 57600: cmd[4] = 0x03; break; case 115200: cmd[4] = 0x02; break; case 230400: cmd[4] = 0x01; break; case 460800: cmd[4] = 0x00; break; case 921600: cmd[4] = 0x20; break; case 2000000: cmd[4] = 0x25; break; case 3000000: cmd[4] = 0x27; break; case 4000000: cmd[4] = 0x2B; break; default: cmd[4] = 0x03; u->speed = 57600; fprintf(stderr, "Invalid speed requested, using %d bps instead\n", u->speed); break; } /* Send initialization command */ if (write(fd, cmd, 5) != 5) { perror("Failed to write init command"); return -1; } nanosleep(&tm, NULL); return 0; } /* * Digianswer specific initialization */ static int digi(int fd, struct uart_t *u, struct termios *ti) { struct timespec tm = {0, 50000}; char cmd[5]; /* DigiAnswer set baud rate command */ cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x07; cmd[2] = 0xfc; cmd[3] = 0x01; switch (u->speed) { case 57600: cmd[4] = 0x08; break; case 115200: cmd[4] = 0x09; break; default: cmd[4] = 0x09; u->speed = 115200; break; } /* Send initialization command */ if (write(fd, cmd, 5) != 5) { perror("Failed to write init command"); return -1; } nanosleep(&tm, NULL); return 0; } static int texas(int fd, struct uart_t *u, struct termios *ti) { return texas_init(fd, ti); } static int texas2(int fd, struct uart_t *u, struct termios *ti) { return texas_post(fd, ti); } static int texasalt(int fd, struct uart_t *u, struct termios *ti) { return texasalt_init(fd, u->speed, ti); } static int ath3k_ps(int fd, struct uart_t *u, struct termios *ti) { return ath3k_init(fd, u->speed, u->init_speed, u->bdaddr, ti); } static int ath3k_pm(int fd, struct uart_t *u, struct termios *ti) { return ath3k_post(fd, u->pm); } static int qualcomm(int fd, struct uart_t *u, struct termios *ti) { return qualcomm_init(fd, u->speed, ti, u->bdaddr); } static int read_check(int fd, void *buf, int count) { int res; do { res = read(fd, buf, count); if (res != -1) { buf += res; count -= res; } } while (count && (errno == 0 || errno == EINTR)); if (count) return -1; return 0; } /* * BCSP specific initialization */ static int serial_fd; static int bcsp_max_retries = 10; static void bcsp_tshy_sig_alarm(int sig) { unsigned char bcsp_sync_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xda,0xdc,0xed,0xed,0xc0}; static int retries = 0; if (retries < bcsp_max_retries) { retries++; if (write(serial_fd, &bcsp_sync_pkt, 10) < 0) return; alarm(1); return; } tcflush(serial_fd, TCIOFLUSH); fprintf(stderr, "BCSP initialization timed out\n"); exit(1); } static void bcsp_tconf_sig_alarm(int sig) { unsigned char bcsp_conf_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xad,0xef,0xac,0xed,0xc0}; static int retries = 0; if (retries < bcsp_max_retries){ retries++; if (write(serial_fd, &bcsp_conf_pkt, 10) < 0) return; alarm(1); return; } tcflush(serial_fd, TCIOFLUSH); fprintf(stderr, "BCSP initialization timed out\n"); exit(1); } static int bcsp(int fd, struct uart_t *u, struct termios *ti) { unsigned char byte, bcsph[4], bcspp[4], bcsp_sync_resp_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xac,0xaf,0xef,0xee,0xc0}, bcsp_conf_resp_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xde,0xad,0xd0,0xd0,0xc0}, bcspsync[4] = {0xda, 0xdc, 0xed, 0xed}, bcspsyncresp[4] = {0xac,0xaf,0xef,0xee}, bcspconf[4] = {0xad,0xef,0xac,0xed}, bcspconfresp[4] = {0xde,0xad,0xd0,0xd0}; struct sigaction sa; int len; if (set_speed(fd, ti, u->speed) < 0) { perror("Can't set default baud rate"); return -1; } ti->c_cflag |= PARENB; ti->c_cflag &= ~(PARODD); if (tcsetattr(fd, TCSANOW, ti) < 0) { perror("Can't set port settings"); return -1; } alarm(0); serial_fd = fd; memset(&sa, 0, sizeof(sa)); sa.sa_flags = SA_NOCLDSTOP; sa.sa_handler = bcsp_tshy_sig_alarm; sigaction(SIGALRM, &sa, NULL); /* State = shy */ bcsp_tshy_sig_alarm(0); while (1) { do { if (read_check(fd, &byte, 1) == -1){ perror("Failed to read"); return -1; } } while (byte != 0xC0); do { if ( read_check(fd, &bcsph[0], 1) == -1){ perror("Failed to read"); return -1; } } while (bcsph[0] == 0xC0); if ( read_check(fd, &bcsph[1], 3) == -1){ perror("Failed to read"); return -1; } if (((bcsph[0] + bcsph[1] + bcsph[2]) & 0xFF) != (unsigned char)~bcsph[3]) continue; if (bcsph[1] != 0x41 || bcsph[2] != 0x00) continue; if (read_check(fd, &bcspp, 4) == -1){ perror("Failed to read"); return -1; } if (!memcmp(bcspp, bcspsync, 4)) { if (write(fd, &bcsp_sync_resp_pkt,10) < 0) return -1; } else if (!memcmp(bcspp, bcspsyncresp, 4)) break; } /* State = curious */ alarm(0); sa.sa_handler = bcsp_tconf_sig_alarm; sigaction(SIGALRM, &sa, NULL); alarm(1); while (1) { do { if (read_check(fd, &byte, 1) == -1){ perror("Failed to read"); return -1; } } while (byte != 0xC0); do { if (read_check(fd, &bcsph[0], 1) == -1){ perror("Failed to read"); return -1; } } while (bcsph[0] == 0xC0); if (read_check(fd, &bcsph[1], 3) == -1){ perror("Failed to read"); return -1; } if (((bcsph[0] + bcsph[1] + bcsph[2]) & 0xFF) != (unsigned char)~bcsph[3]) continue; if (bcsph[1] != 0x41 || bcsph[2] != 0x00) continue; if (read_check(fd, &bcspp, 4) == -1){ perror("Failed to read"); return -1; } if (!memcmp(bcspp, bcspsync, 4)) len = write(fd, &bcsp_sync_resp_pkt, 10); else if (!memcmp(bcspp, bcspconf, 4)) len = write(fd, &bcsp_conf_resp_pkt, 10); else if (!memcmp(bcspp, bcspconfresp, 4)) break; else continue; if (len < 0) return -errno; } /* State = garrulous */ return 0; } /* * CSR specific initialization * Inspired strongly by code in OpenBT and experimentations with Brainboxes * Pcmcia card. * Jean Tourrilhes <jt@hpl.hp.com> - 14.11.01 */ static int csr(int fd, struct uart_t *u, struct termios *ti) { struct timespec tm = {0, 10000000}; /* 10ms - be generous */ unsigned char cmd[30]; /* Command */ unsigned char resp[30]; /* Response */ int clen = 0; /* Command len */ static int csr_seq = 0; /* Sequence number of command */ int divisor; /* It seems that if we set the CSR UART speed straight away, it * won't work, the CSR UART gets into a state where we can't talk * to it anymore. * On the other hand, doing a read before setting the CSR speed * seems to be ok. * Therefore, the strategy is to read the build ID (useful for * debugging) and only then set the CSR UART speed. Doing like * this is more complex but at least it works ;-) * The CSR UART control may be slow to wake up or something because * every time I read its speed, its bogus... * Jean II */ /* Try to read the build ID of the CSR chip */ clen = 5 + (5 + 6) * 2; /* HCI header */ cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x00; /* CSR command */ cmd[2] = 0xfc; /* MANUFACTURER_SPEC */ cmd[3] = 1 + (5 + 6) * 2; /* len */ /* CSR MSG header */ cmd[4] = 0xC2; /* first+last+channel=BCC */ /* CSR BCC header */ cmd[5] = 0x00; /* type = GET-REQ */ cmd[6] = 0x00; /* - msB */ cmd[7] = 5 + 4; /* len */ cmd[8] = 0x00; /* - msB */ cmd[9] = csr_seq & 0xFF;/* seq num */ cmd[10] = (csr_seq >> 8) & 0xFF; /* - msB */ csr_seq++; cmd[11] = 0x19; /* var_id = CSR_CMD_BUILD_ID */ cmd[12] = 0x28; /* - msB */ cmd[13] = 0x00; /* status = STATUS_OK */ cmd[14] = 0x00; /* - msB */ /* CSR BCC payload */ memset(cmd + 15, 0, 6 * 2); /* Send command */ do { if (write(fd, cmd, clen) != clen) { perror("Failed to write init command (GET_BUILD_ID)"); return -1; } /* Read reply. */ if (read_hci_event(fd, resp, 100) < 0) { perror("Failed to read init response (GET_BUILD_ID)"); return -1; } /* Event code 0xFF is for vendor-specific events, which is * what we're looking for. */ } while (resp[1] != 0xFF); #ifdef CSR_DEBUG { char temp[512]; int i; for (i=0; i < rlen; i++) sprintf(temp + (i*3), "-%02X", resp[i]); fprintf(stderr, "Reading CSR build ID %d [%s]\n", rlen, temp + 1); // In theory, it should look like : // 04-FF-13-FF-01-00-09-00-00-00-19-28-00-00-73-00-00-00-00-00-00-00 } #endif /* Display that to user */ fprintf(stderr, "CSR build ID 0x%02X-0x%02X\n", resp[15] & 0xFF, resp[14] & 0xFF); /* Try to read the current speed of the CSR chip */ clen = 5 + (5 + 4)*2; /* -- HCI header */ cmd[3] = 1 + (5 + 4)*2; /* len */ /* -- CSR BCC header -- */ cmd[9] = csr_seq & 0xFF; /* seq num */ cmd[10] = (csr_seq >> 8) & 0xFF; /* - msB */ csr_seq++; cmd[11] = 0x02; /* var_id = CONFIG_UART */ cmd[12] = 0x68; /* - msB */ #ifdef CSR_DEBUG /* Send command */ do { if (write(fd, cmd, clen) != clen) { perror("Failed to write init command (GET_BUILD_ID)"); return -1; } /* Read reply. */ if (read_hci_event(fd, resp, 100) < 0) { perror("Failed to read init response (GET_BUILD_ID)"); return -1; } /* Event code 0xFF is for vendor-specific events, which is * what we're looking for. */ } while (resp[1] != 0xFF); { char temp[512]; int i; for (i=0; i < rlen; i++) sprintf(temp + (i*3), "-%02X", resp[i]); fprintf(stderr, "Reading CSR UART speed %d [%s]\n", rlen, temp+1); } #endif if (u->speed > 1500000) { fprintf(stderr, "Speed %d too high. Remaining at %d baud\n", u->speed, u->init_speed); u->speed = u->init_speed; } else if (u->speed != 57600 && uart_speed(u->speed) == B57600) { /* Unknown speed. Why oh why can't we just pass an int to the kernel? */ fprintf(stderr, "Speed %d unrecognised. Remaining at %d baud\n", u->speed, u->init_speed); u->speed = u->init_speed; } if (u->speed == u->init_speed) return 0; /* Now, create the command that will set the UART speed */ /* CSR BCC header */ cmd[5] = 0x02; /* type = SET-REQ */ cmd[6] = 0x00; /* - msB */ cmd[9] = csr_seq & 0xFF; /* seq num */ cmd[10] = (csr_seq >> 8) & 0xFF;/* - msB */ csr_seq++; divisor = (u->speed*64+7812)/15625; /* No parity, one stop bit -> divisor |= 0x0000; */ cmd[15] = (divisor) & 0xFF; /* divider */ cmd[16] = (divisor >> 8) & 0xFF; /* - msB */ /* The rest of the payload will be 0x00 */ #ifdef CSR_DEBUG { char temp[512]; int i; for(i = 0; i < clen; i++) sprintf(temp + (i*3), "-%02X", cmd[i]); fprintf(stderr, "Writing CSR UART speed %d [%s]\n", clen, temp + 1); // In theory, it should look like : // 01-00-FC-13-C2-02-00-09-00-03-00-02-68-00-00-BF-0E-00-00-00-00-00-00 // 01-00-FC-13-C2-02-00-09-00-01-00-02-68-00-00-D8-01-00-00-00-00-00-00 } #endif /* Send the command to set the CSR UART speed */ if (write(fd, cmd, clen) != clen) { perror("Failed to write init command (SET_UART_SPEED)"); return -1; } nanosleep(&tm, NULL); return 0; } /* * Silicon Wave specific initialization * Thomas Moser <thomas.moser@tmoser.ch> */ static int swave(int fd, struct uart_t *u, struct termios *ti) { struct timespec tm = { 0, 500000 }; char cmd[10], rsp[100]; int r; // Silicon Wave set baud rate command // see HCI Vendor Specific Interface from Silicon Wave // first send a "param access set" command to set the // appropriate data fields in RAM. Then send a "HCI Reset // Subcommand", e.g. "soft reset" to make the changes effective. cmd[0] = HCI_COMMAND_PKT; // it's a command packet cmd[1] = 0x0B; // OCF 0x0B = param access set cmd[2] = 0xfc; // OGF bx111111 = vendor specific cmd[3] = 0x06; // 6 bytes of data following cmd[4] = 0x01; // param sub command cmd[5] = 0x11; // tag 17 = 0x11 = HCI Transport Params cmd[6] = 0x03; // length of the parameter following cmd[7] = 0x01; // HCI Transport flow control enable cmd[8] = 0x01; // HCI Transport Type = UART switch (u->speed) { case 19200: cmd[9] = 0x03; break; case 38400: cmd[9] = 0x02; break; case 57600: cmd[9] = 0x01; break; case 115200: cmd[9] = 0x00; break; default: u->speed = 115200; cmd[9] = 0x00; break; } /* Send initialization command */ if (write(fd, cmd, 10) != 10) { perror("Failed to write init command"); return -1; } // We should wait for a "GET Event" to confirm the success of // the baud rate setting. Wait some time before reading. Better: // read with timeout, parse data // until correct answer, else error handling ... todo ... nanosleep(&tm, NULL); r = read(fd, rsp, sizeof(rsp)); if (r > 0) { // guess it's okay, but we should parse the reply. But since // I don't react on an error anyway ... todo // Response packet format: // 04 Event // FF Vendor specific // 07 Parameter length // 0B Subcommand // 01 Setevent // 11 Tag specifying HCI Transport Layer Parameter // 03 length // 01 flow on // 01 Hci Transport type = Uart // xx Baud rate set (see above) } else { // ups, got error. return -1; } // we probably got the reply. Now we must send the "soft reset" // which is standard HCI RESET. cmd[0] = HCI_COMMAND_PKT; // it's a command packet cmd[1] = 0x03; cmd[2] = 0x0c; cmd[3] = 0x00; /* Send reset command */ if (write(fd, cmd, 4) != 4) { perror("Can't write Silicon Wave reset cmd."); return -1; } nanosleep(&tm, NULL); // now the uart baud rate on the silicon wave module is set and effective. // change our own baud rate as well. Then there is a reset event comming in // on the *new* baud rate. This is *undocumented*! The packet looks like this: // 04 FF 01 0B (which would make that a confirmation of 0x0B = "Param // subcommand class". So: change to new baud rate, read with timeout, parse // data, error handling. BTW: all param access in Silicon Wave is done this way. // Maybe this code would belong in a seperate file, or at least code reuse... return 0; } /* * ST Microelectronics specific initialization * Marcel Holtmann <marcel@holtmann.org> */ static int st(int fd, struct uart_t *u, struct termios *ti) { struct timespec tm = {0, 50000}; char cmd[5]; /* ST Microelectronics set baud rate command */ cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x46; // OCF = Hci_Cmd_ST_Set_Uart_Baud_Rate cmd[2] = 0xfc; // OGF = Vendor specific cmd[3] = 0x01; switch (u->speed) { case 9600: cmd[4] = 0x09; break; case 19200: cmd[4] = 0x0b; break; case 38400: cmd[4] = 0x0d; break; case 57600: cmd[4] = 0x0e; break; case 115200: cmd[4] = 0x10; break; case 230400: cmd[4] = 0x12; break; case 460800: cmd[4] = 0x13; break; case 921600: cmd[4] = 0x14; break; default: cmd[4] = 0x10; u->speed = 115200; break; } /* Send initialization command */ if (write(fd, cmd, 5) != 5) { perror("Failed to write init command"); return -1; } nanosleep(&tm, NULL); return 0; } static int stlc2500(int fd, struct uart_t *u, struct termios *ti) { bdaddr_t bdaddr; unsigned char resp[10]; int n; int rvalue; /* STLC2500 has an ericsson core */ rvalue = ericsson(fd, u, ti); if (rvalue != 0) return rvalue; #ifdef STLC2500_DEBUG fprintf(stderr, "Setting speed\n"); #endif if (set_speed(fd, ti, u->speed) < 0) { perror("Can't set baud rate"); return -1; } #ifdef STLC2500_DEBUG fprintf(stderr, "Speed set...\n"); #endif /* Read reply */ if ((n = read_hci_event(fd, resp, 10)) < 0) { fprintf(stderr, "Failed to set baud rate on chip\n"); return -1; } #ifdef STLC2500_DEBUG for (i = 0; i < n; i++) { fprintf(stderr, "resp[%d] = %02x\n", i, resp[i]); } #endif str2ba(u->bdaddr, &bdaddr); return stlc2500_init(fd, &bdaddr); } static int bgb2xx(int fd, struct uart_t *u, struct termios *ti) { bdaddr_t bdaddr; str2ba(u->bdaddr, &bdaddr); return bgb2xx_init(fd, &bdaddr); } /* * Broadcom specific initialization * Extracted from Jungo openrg */ static int bcm2035(int fd, struct uart_t *u, struct termios *ti) { int n; unsigned char cmd[30], resp[30]; /* Reset the BT Chip */ memset(cmd, 0, sizeof(cmd)); memset(resp, 0, sizeof(resp)); cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x03; cmd[2] = 0x0c; cmd[3] = 0x00; /* Send command */ if (write(fd, cmd, 4) != 4) { fprintf(stderr, "Failed to write reset command\n"); return -1; } /* Read reply */ if ((n = read_hci_event(fd, resp, 4)) < 0) { fprintf(stderr, "Failed to reset chip\n"); return -1; } if (u->bdaddr != NULL) { /* Set BD_ADDR */ memset(cmd, 0, sizeof(cmd)); memset(resp, 0, sizeof(resp)); cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x01; cmd[2] = 0xfc; cmd[3] = 0x06; str2ba(u->bdaddr, (bdaddr_t *) (cmd + 4)); /* Send command */ if (write(fd, cmd, 10) != 10) { fprintf(stderr, "Failed to write BD_ADDR command\n"); return -1; } /* Read reply */ if ((n = read_hci_event(fd, resp, 10)) < 0) { fprintf(stderr, "Failed to set BD_ADDR\n"); return -1; } } /* Read the local version info */ memset(cmd, 0, sizeof(cmd)); memset(resp, 0, sizeof(resp)); cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x01; cmd[2] = 0x10; cmd[3] = 0x00; /* Send command */ if (write(fd, cmd, 4) != 4) { fprintf(stderr, "Failed to write \"read local version\" " "command\n"); return -1; } /* Read reply */ if ((n = read_hci_event(fd, resp, 4)) < 0) { fprintf(stderr, "Failed to read local version\n"); return -1; } /* Read the local supported commands info */ memset(cmd, 0, sizeof(cmd)); memset(resp, 0, sizeof(resp)); cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x02; cmd[2] = 0x10; cmd[3] = 0x00; /* Send command */ if (write(fd, cmd, 4) != 4) { fprintf(stderr, "Failed to write \"read local supported " "commands\" command\n"); return -1; } /* Read reply */ if ((n = read_hci_event(fd, resp, 4)) < 0) { fprintf(stderr, "Failed to read local supported commands\n"); return -1; } /* Set the baud rate */ memset(cmd, 0, sizeof(cmd)); memset(resp, 0, sizeof(resp)); cmd[0] = HCI_COMMAND_PKT; cmd[1] = 0x18; cmd[2] = 0xfc; cmd[3] = 0x02; switch (u->speed) { case 57600: cmd[4] = 0x00; cmd[5] = 0xe6; break; case 230400: cmd[4] = 0x22; cmd[5] = 0xfa; break; case 460800: cmd[4] = 0x22; cmd[5] = 0xfd; break; case 921600: cmd[4] = 0x55; cmd[5] = 0xff; break; default: /* Default is 115200 */ cmd[4] = 0x00; cmd[5] = 0xf3; break; } fprintf(stderr, "Baud rate parameters: DHBR=0x%2x,DLBR=0x%2x\n", cmd[4], cmd[5]); /* Send command */ if (write(fd, cmd, 6) != 6) { fprintf(stderr, "Failed to write \"set baud rate\" command\n"); return -1; } if ((n = read_hci_event(fd, resp, 6)) < 0) { fprintf(stderr, "Failed to set baud rate\n"); return -1; } return 0; } struct uart_t uart[] = { { "any", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, NULL }, { "ericsson", 0x0000, 0x0000, HCI_UART_H4, 57600, 115200, FLOW_CTL, DISABLE_PM, NULL, ericsson }, { "digi", 0x0000, 0x0000, HCI_UART_H4, 9600, 115200, FLOW_CTL, DISABLE_PM, NULL, digi }, { "bcsp", 0x0000, 0x0000, HCI_UART_BCSP, 115200, 115200, 0, DISABLE_PM, NULL, bcsp }, /* Xircom PCMCIA cards: Credit Card Adapter and Real Port Adapter */ { "xircom", 0x0105, 0x080a, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, NULL }, /* CSR Casira serial adapter or BrainBoxes serial dongle (BL642) */ { "csr", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, csr }, /* BrainBoxes PCMCIA card (BL620) */ { "bboxes", 0x0160, 0x0002, HCI_UART_H4, 115200, 460800, FLOW_CTL, DISABLE_PM, NULL, csr }, /* Silicon Wave kits */ { "swave", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, swave }, /* Texas Instruments Bluelink (BRF) modules */ { "texas", 0x0000, 0x0000, HCI_UART_LL, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, texas, texas2 }, { "texasalt", 0x0000, 0x0000, HCI_UART_LL, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, texasalt, NULL }, /* ST Microelectronics minikits based on STLC2410/STLC2415 */ { "st", 0x0000, 0x0000, HCI_UART_H4, 57600, 115200, FLOW_CTL, DISABLE_PM, NULL, st }, /* ST Microelectronics minikits based on STLC2500 */ { "stlc2500", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, "00:80:E1:00:AB:BA", stlc2500 }, /* Philips generic Ericsson IP core based */ { "philips", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, NULL }, /* Philips BGB2xx Module */ { "bgb2xx", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, "BD:B2:10:00:AB:BA", bgb2xx }, /* Sphinx Electronics PICO Card */ { "picocard", 0x025e, 0x1000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, NULL }, /* Inventel BlueBird Module */ { "inventel", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, NULL }, /* COM One Platinium Bluetooth PC Card */ { "comone", 0xffff, 0x0101, HCI_UART_BCSP, 115200, 115200, 0, DISABLE_PM, NULL, bcsp }, /* TDK Bluetooth PC Card and IBM Bluetooth PC Card II */ { "tdk", 0x0105, 0x4254, HCI_UART_BCSP, 115200, 115200, 0, DISABLE_PM, NULL, bcsp }, /* Socket Bluetooth CF Card (Rev G) */ { "socket", 0x0104, 0x0096, HCI_UART_BCSP, 230400, 230400, 0, DISABLE_PM, NULL, bcsp }, /* 3Com Bluetooth Card (Version 3.0) */ { "3com", 0x0101, 0x0041, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, csr }, /* AmbiCom BT2000C Bluetooth PC/CF Card */ { "bt2000c", 0x022d, 0x2000, HCI_UART_H4, 57600, 460800, FLOW_CTL, DISABLE_PM, NULL, csr }, /* Zoom Bluetooth PCMCIA Card */ { "zoom", 0x0279, 0x950b, HCI_UART_BCSP, 115200, 115200, 0, DISABLE_PM, NULL, bcsp }, /* Sitecom CN-504 PCMCIA Card */ { "sitecom", 0x0279, 0x950b, HCI_UART_BCSP, 115200, 115200, 0, DISABLE_PM, NULL, bcsp }, /* Billionton PCBTC1 PCMCIA Card */ { "billionton", 0x0279, 0x950b, HCI_UART_BCSP, 115200, 115200, 0, DISABLE_PM, NULL, bcsp }, /* Broadcom BCM2035 */ { "bcm2035", 0x0A5C, 0x2035, HCI_UART_H4, 115200, 460800, FLOW_CTL, DISABLE_PM, NULL, bcm2035 }, { "ath3k", 0x0000, 0x0000, HCI_UART_ATH3K, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, ath3k_ps, ath3k_pm }, /* QUALCOMM BTS */ { "qualcomm", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200, FLOW_CTL, DISABLE_PM, NULL, qualcomm, NULL }, { NULL, 0 } }; static struct uart_t * get_by_id(int m_id, int p_id) { int i; for (i = 0; uart[i].type; i++) { if (uart[i].m_id == m_id && uart[i].p_id == p_id) return &uart[i]; } return NULL; } static struct uart_t * get_by_type(char *type) { int i; for (i = 0; uart[i].type; i++) { if (!strcmp(uart[i].type, type)) return &uart[i]; } return NULL; } /* Initialize UART driver */ static int init_uart(char *dev, struct uart_t *u, int send_break, int raw) { struct termios ti; int fd, i; unsigned long flags = 0; if (raw) flags |= 1 << HCI_UART_RAW_DEVICE; fd = open(dev, O_RDWR | O_NOCTTY); if (fd < 0) { perror("Can't open serial port"); return -1; } tcflush(fd, TCIOFLUSH); if (tcgetattr(fd, &ti) < 0) { perror("Can't get port settings"); return -1; } cfmakeraw(&ti); ti.c_cflag |= CLOCAL; if (u->flags & FLOW_CTL) ti.c_cflag |= CRTSCTS; else ti.c_cflag &= ~CRTSCTS; if (tcsetattr(fd, TCSANOW, &ti) < 0) { perror("Can't set port settings"); return -1; } /* Set initial baudrate */ if (set_speed(fd, &ti, u->init_speed) < 0) { perror("Can't set initial baud rate"); return -1; } tcflush(fd, TCIOFLUSH); if (send_break) { tcsendbreak(fd, 0); usleep(500000); } if (u->init && u->init(fd, u, &ti) < 0) return -1; tcflush(fd, TCIOFLUSH); /* Set actual baudrate */ if (set_speed(fd, &ti, u->speed) < 0) { perror("Can't set baud rate"); return -1; } /* Set TTY to N_HCI line discipline */ i = N_HCI; if (ioctl(fd, TIOCSETD, &i) < 0) { perror("Can't set line discipline"); return -1; } if (flags && ioctl(fd, HCIUARTSETFLAGS, flags) < 0) { perror("Can't set UART flags"); return -1; } if (ioctl(fd, HCIUARTSETPROTO, u->proto) < 0) { perror("Can't set device"); return -1; } if (u->post && u->post(fd, u, &ti) < 0) return -1; return fd; } static void usage(void) { printf("hciattach - HCI UART driver initialization utility\n"); printf("Usage:\n"); printf("\thciattach [-n] [-p] [-b] [-r] [-t timeout] [-s initial_speed] <tty> <type | id> [speed] [flow|noflow] [bdaddr]\n"); printf("\thciattach -l\n"); } int main(int argc, char *argv[]) { struct uart_t *u = NULL; int detach, printpid, raw, opt, i, n, ld, err; int to = 10; int init_speed = 0; int send_break = 0; pid_t pid; struct sigaction sa; struct pollfd p; sigset_t sigs; char dev[PATH_MAX]; detach = 1; printpid = 0; raw = 0; while ((opt=getopt(argc, argv, "bnpt:s:lr")) != EOF) { switch(opt) { case 'b': send_break = 1; break; case 'n': detach = 0; break; case 'p': printpid = 1; break; case 't': to = atoi(optarg); break; case 's': init_speed = atoi(optarg); break; case 'l': for (i = 0; uart[i].type; i++) { printf("%-10s0x%04x,0x%04x\n", uart[i].type, uart[i].m_id, uart[i].p_id); } exit(0); case 'r': raw = 1; break; default: usage(); exit(1); } } n = argc - optind; if (n < 2) { usage(); exit(1); } for (n = 0; optind < argc; n++, optind++) { char *opt; opt = argv[optind]; switch(n) { case 0: dev[0] = 0; if (!strchr(opt, '/')) strcpy(dev, "/dev/"); strcat(dev, opt); break; case 1: if (strchr(argv[optind], ',')) { int m_id, p_id; sscanf(argv[optind], "%x,%x", &m_id, &p_id); u = get_by_id(m_id, p_id); } else { u = get_by_type(opt); } if (!u) { fprintf(stderr, "Unknown device type or id\n"); exit(1); } break; case 2: u->speed = atoi(argv[optind]); break; case 3: if (!strcmp("flow", argv[optind])) u->flags |= FLOW_CTL; else u->flags &= ~FLOW_CTL; break; case 4: if (!strcmp("sleep", argv[optind])) u->pm = ENABLE_PM; else u->pm = DISABLE_PM; break; case 5: u->bdaddr = argv[optind]; break; } } if (!u) { fprintf(stderr, "Unknown device type or id\n"); exit(1); } /* If user specified a initial speed, use that instead of the hardware's default */ if (init_speed) u->init_speed = init_speed; memset(&sa, 0, sizeof(sa)); sa.sa_flags = SA_NOCLDSTOP; sa.sa_handler = sig_alarm; sigaction(SIGALRM, &sa, NULL); /* 10 seconds should be enough for initialization */ alarm(to); bcsp_max_retries = to; n = init_uart(dev, u, send_break, raw); if (n < 0) { perror("Can't initialize device"); exit(1); } printf("Device setup complete\n"); alarm(0); memset(&sa, 0, sizeof(sa)); sa.sa_flags = SA_NOCLDSTOP; sa.sa_handler = SIG_IGN; sigaction(SIGCHLD, &sa, NULL); sigaction(SIGPIPE, &sa, NULL); sa.sa_handler = sig_term; sigaction(SIGTERM, &sa, NULL); sigaction(SIGINT, &sa, NULL); sa.sa_handler = sig_hup; sigaction(SIGHUP, &sa, NULL); if (detach) { if ((pid = fork())) { if (printpid) printf("%d\n", pid); return 0; } for (i = 0; i < 20; i++) if (i != n) close(i); } p.fd = n; p.events = POLLERR | POLLHUP; sigfillset(&sigs); sigdelset(&sigs, SIGCHLD); sigdelset(&sigs, SIGPIPE); sigdelset(&sigs, SIGTERM); sigdelset(&sigs, SIGINT); sigdelset(&sigs, SIGHUP); while (!__io_canceled) { p.revents = 0; err = ppoll(&p, 1, NULL, &sigs); if (err < 0 && errno == EINTR) continue; if (err) break; } /* Restore TTY line discipline */ ld = N_TTY; if (ioctl(n, TIOCSETD, &ld) < 0) { perror("Can't restore line discipline"); exit(1); } return 0; }