// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/browser/net/predictor.h" #include <algorithm> #include <cmath> #include <set> #include <sstream> #include "base/compiler_specific.h" #include "base/metrics/histogram.h" #include "base/string_util.h" #include "base/time.h" #include "base/values.h" #include "chrome/browser/net/preconnect.h" #include "content/browser/browser_thread.h" #include "net/base/address_list.h" #include "net/base/completion_callback.h" #include "net/base/host_port_pair.h" #include "net/base/host_resolver.h" #include "net/base/net_errors.h" #include "net/base/net_log.h" using base::TimeDelta; namespace chrome_browser_net { // static const double Predictor::kPreconnectWorthyExpectedValue = 0.8; // static const double Predictor::kDNSPreresolutionWorthyExpectedValue = 0.1; // static const double Predictor::kDiscardableExpectedValue = 0.05; // The goal is of trimming is to to reduce the importance (number of expected // subresources needed) by a factor of 2 after about 24 hours of uptime. We will // trim roughly once-an-hour of uptime. The ratio to use in each trim operation // is then the 24th root of 0.5. If a user only surfs for 4 hours a day, then // after about 6 days they will have halved all their estimates of subresource // connections. Once this falls below kDiscardableExpectedValue the referrer // will be discarded. // TODO(jar): Measure size of referrer lists in the field. Consider an adaptive // system that uses a higher trim ratio when the list is large. // static const double Predictor::kReferrerTrimRatio = 0.97153; // static const TimeDelta Predictor::kDurationBetweenTrimmings = TimeDelta::FromHours(1); // static const TimeDelta Predictor::kDurationBetweenTrimmingIncrements = TimeDelta::FromSeconds(15); // static const size_t Predictor::kUrlsTrimmedPerIncrement = 5u; class Predictor::LookupRequest { public: LookupRequest(Predictor* predictor, net::HostResolver* host_resolver, const GURL& url) : ALLOW_THIS_IN_INITIALIZER_LIST( net_callback_(this, &LookupRequest::OnLookupFinished)), predictor_(predictor), url_(url), resolver_(host_resolver) { } // Return underlying network resolver status. // net::OK ==> Host was found synchronously. // net:ERR_IO_PENDING ==> Network will callback later with result. // anything else ==> Host was not found synchronously. int Start() { net::HostResolver::RequestInfo resolve_info( net::HostPortPair::FromURL(url_)); // Make a note that this is a speculative resolve request. This allows us // to separate it from real navigations in the observer's callback, and // lets the HostResolver know it can de-prioritize it. resolve_info.set_is_speculative(true); return resolver_.Resolve( resolve_info, &addresses_, &net_callback_, net::BoundNetLog()); } private: void OnLookupFinished(int result) { predictor_->OnLookupFinished(this, url_, result == net::OK); } // HostResolver will call us using this callback when resolution is complete. net::CompletionCallbackImpl<LookupRequest> net_callback_; Predictor* predictor_; // The predictor which started us. const GURL url_; // Hostname to resolve. net::SingleRequestHostResolver resolver_; net::AddressList addresses_; DISALLOW_COPY_AND_ASSIGN(LookupRequest); }; Predictor::Predictor(net::HostResolver* host_resolver, TimeDelta max_dns_queue_delay, size_t max_concurrent, bool preconnect_enabled) : peak_pending_lookups_(0), shutdown_(false), max_concurrent_dns_lookups_(max_concurrent), max_dns_queue_delay_(max_dns_queue_delay), host_resolver_(host_resolver), preconnect_enabled_(preconnect_enabled), consecutive_omnibox_preconnect_count_(0), next_trim_time_(base::TimeTicks::Now() + kDurationBetweenTrimmings), ALLOW_THIS_IN_INITIALIZER_LIST(trim_task_factory_(this)) { } Predictor::~Predictor() { DCHECK(shutdown_); } void Predictor::Shutdown() { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); DCHECK(!shutdown_); shutdown_ = true; std::set<LookupRequest*>::iterator it; for (it = pending_lookups_.begin(); it != pending_lookups_.end(); ++it) delete *it; } // Overloaded Resolve() to take a vector of names. void Predictor::ResolveList(const UrlList& urls, UrlInfo::ResolutionMotivation motivation) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); for (UrlList::const_iterator it = urls.begin(); it < urls.end(); ++it) { AppendToResolutionQueue(*it, motivation); } } // Basic Resolve() takes an invidual name, and adds it // to the queue. void Predictor::Resolve(const GURL& url, UrlInfo::ResolutionMotivation motivation) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); if (!url.has_host()) return; AppendToResolutionQueue(url, motivation); } void Predictor::LearnFromNavigation(const GURL& referring_url, const GURL& target_url) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); DCHECK(referring_url == referring_url.GetWithEmptyPath()); DCHECK(target_url == target_url.GetWithEmptyPath()); if (referring_url.has_host()) { referrers_[referring_url].SuggestHost(target_url); // Possibly do some referrer trimming. TrimReferrers(); } } enum SubresourceValue { PRECONNECTION, PRERESOLUTION, TOO_NEW, SUBRESOURCE_VALUE_MAX }; void Predictor::AnticipateOmniboxUrl(const GURL& url, bool preconnectable) { std::string host = url.HostNoBrackets(); bool is_new_host_request = (host != last_omnibox_host_); last_omnibox_host_ = host; UrlInfo::ResolutionMotivation motivation(UrlInfo::OMNIBOX_MOTIVATED); base::TimeTicks now = base::TimeTicks::Now(); if (preconnect_enabled()) { if (preconnectable && !is_new_host_request) { ++consecutive_omnibox_preconnect_count_; // The omnibox suggests a search URL (for which we can preconnect) after // one or two characters are typed, even though such typing often (1 in // 3?) becomes a real URL. This code waits till is has more evidence of a // preconnectable URL (search URL) before forming a preconnection, so as // to reduce the useless preconnect rate. // Perchance this logic should be pushed back into the omnibox, where the // actual characters typed, such as a space, can better forcast whether // we need to search/preconnect or not. By waiting for at least 4 // characters in a row that have lead to a search proposal, we avoid // preconnections for a prefix like "www." and we also wait until we have // at least a 4 letter word to search for. // Each character typed appears to induce 2 calls to // AnticipateOmniboxUrl(), so we double 4 characters and limit at 8 // requests. // TODO(jar): Use an A/B test to optimize this. const int kMinConsecutiveRequests = 8; if (consecutive_omnibox_preconnect_count_ >= kMinConsecutiveRequests) { // TODO(jar): The wild guess of 30 seconds could be tuned/tested, but it // currently is just a guess that most sockets will remain open for at // least 30 seconds. This avoids a lot of cross-thread posting, and // exercise of the network stack in this common case. const int kMaxSearchKeepaliveSeconds(30); if ((now - last_omnibox_preconnect_).InSeconds() < kMaxSearchKeepaliveSeconds) return; // We've done a preconnect recently. last_omnibox_preconnect_ = now; const int kConnectionsNeeded = 1; PreconnectOnUIThread(CanonicalizeUrl(url), motivation, kConnectionsNeeded); return; // Skip pre-resolution, since we'll open a connection. } } else { consecutive_omnibox_preconnect_count_ = 0; } } // Fall through and consider pre-resolution. // Omnibox tends to call in pairs (just a few milliseconds apart), and we // really don't need to keep resolving a name that often. // TODO(jar): A/B tests could check for perf impact of the early returns. if (!is_new_host_request) { const int kMinPreresolveSeconds(10); if (kMinPreresolveSeconds > (now - last_omnibox_preresolve_).InSeconds()) return; } last_omnibox_preresolve_ = now; // Perform at least DNS pre-resolution. BrowserThread::PostTask( BrowserThread::IO, FROM_HERE, NewRunnableMethod(this, &Predictor::Resolve, CanonicalizeUrl(url), motivation)); } void Predictor::PreconnectUrlAndSubresources(const GURL& url) { if (preconnect_enabled()) { std::string host = url.HostNoBrackets(); UrlInfo::ResolutionMotivation motivation(UrlInfo::EARLY_LOAD_MOTIVATED); const int kConnectionsNeeded = 1; PreconnectOnUIThread(CanonicalizeUrl(url), motivation, kConnectionsNeeded); PredictFrameSubresources(url.GetWithEmptyPath()); } } void Predictor::PredictFrameSubresources(const GURL& url) { DCHECK(url.GetWithEmptyPath() == url); // Add one pass through the message loop to allow current navigation to // proceed. BrowserThread::PostTask( BrowserThread::IO, FROM_HERE, NewRunnableMethod(this, &Predictor::PrepareFrameSubresources, url)); } void Predictor::PrepareFrameSubresources(const GURL& url) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); DCHECK(url.GetWithEmptyPath() == url); Referrers::iterator it = referrers_.find(url); if (referrers_.end() == it) { // Only when we don't know anything about this url, make 2 connections // available. We could do this completely via learning (by prepopulating // the referrer_ list with this expected value), but it would swell the // size of the list with all the "Leaf" nodes in the tree (nodes that don't // load any subresources). If we learn about this resource, we will instead // provide a more carefully estimated preconnection count. if (preconnect_enabled_) PreconnectOnIOThread(url, UrlInfo::SELF_REFERAL_MOTIVATED, 2); return; } Referrer* referrer = &(it->second); referrer->IncrementUseCount(); const UrlInfo::ResolutionMotivation motivation = UrlInfo::LEARNED_REFERAL_MOTIVATED; for (Referrer::iterator future_url = referrer->begin(); future_url != referrer->end(); ++future_url) { SubresourceValue evalution(TOO_NEW); double connection_expectation = future_url->second.subresource_use_rate(); UMA_HISTOGRAM_CUSTOM_COUNTS("Net.PreconnectSubresourceExpectation", static_cast<int>(connection_expectation * 100), 10, 5000, 50); future_url->second.ReferrerWasObserved(); if (preconnect_enabled_ && connection_expectation > kPreconnectWorthyExpectedValue) { evalution = PRECONNECTION; future_url->second.IncrementPreconnectionCount(); int count = static_cast<int>(std::ceil(connection_expectation)); if (url.host() == future_url->first.host()) ++count; PreconnectOnIOThread(future_url->first, motivation, count); } else if (connection_expectation > kDNSPreresolutionWorthyExpectedValue) { evalution = PRERESOLUTION; future_url->second.preresolution_increment(); UrlInfo* queued_info = AppendToResolutionQueue(future_url->first, motivation); if (queued_info) queued_info->SetReferringHostname(url); } UMA_HISTOGRAM_ENUMERATION("Net.PreconnectSubresourceEval", evalution, SUBRESOURCE_VALUE_MAX); } } // Provide sort order so all .com's are together, etc. struct RightToLeftStringSorter { bool operator()(const GURL& left, const GURL& right) const { return string_compare(left.host(), right.host()); } static bool string_compare(const std::string& left_host, const std::string& right_host) { if (left_host == right_host) return true; size_t left_already_matched = left_host.size(); size_t right_already_matched = right_host.size(); // Ensure both strings have characters. if (!left_already_matched) return true; if (!right_already_matched) return false; // Watch for trailing dot, so we'll always be safe to go one beyond dot. if ('.' == left_host[left_already_matched - 1]) { if ('.' != right_host[right_already_matched - 1]) return true; // Both have dots at end of string. --left_already_matched; --right_already_matched; } else { if ('.' == right_host[right_already_matched - 1]) return false; } while (1) { if (!left_already_matched) return true; if (!right_already_matched) return false; size_t left_length, right_length; size_t left_start = left_host.find_last_of('.', left_already_matched - 1); if (std::string::npos == left_start) { left_length = left_already_matched; left_already_matched = left_start = 0; } else { left_length = left_already_matched - left_start; left_already_matched = left_start; ++left_start; // Don't compare the dot. } size_t right_start = right_host.find_last_of('.', right_already_matched - 1); if (std::string::npos == right_start) { right_length = right_already_matched; right_already_matched = right_start = 0; } else { right_length = right_already_matched - right_start; right_already_matched = right_start; ++right_start; // Don't compare the dot. } int diff = left_host.compare(left_start, left_host.size(), right_host, right_start, right_host.size()); if (diff > 0) return false; if (diff < 0) return true; } } }; void Predictor::GetHtmlReferrerLists(std::string* output) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); if (referrers_.empty()) return; // TODO(jar): Remove any plausible JavaScript from names before displaying. typedef std::set<GURL, struct RightToLeftStringSorter> SortedNames; SortedNames sorted_names; for (Referrers::iterator it = referrers_.begin(); referrers_.end() != it; ++it) sorted_names.insert(it->first); output->append("<br><table border>"); output->append( "<tr><th>Host for Page</th>" "<th>Page Load<br>Count</th>" "<th>Subresource<br>Navigations</th>" "<th>Subresource<br>PreConnects</th>" "<th>Subresource<br>PreResolves</th>" "<th>Expected<br>Connects</th>" "<th>Subresource Spec</th></tr>"); for (SortedNames::iterator it = sorted_names.begin(); sorted_names.end() != it; ++it) { Referrer* referrer = &(referrers_[*it]); bool first_set_of_futures = true; for (Referrer::iterator future_url = referrer->begin(); future_url != referrer->end(); ++future_url) { output->append("<tr align=right>"); if (first_set_of_futures) { base::StringAppendF(output, "<td rowspan=%d>%s</td><td rowspan=%d>%d</td>", static_cast<int>(referrer->size()), it->spec().c_str(), static_cast<int>(referrer->size()), static_cast<int>(referrer->use_count())); } first_set_of_futures = false; base::StringAppendF(output, "<td>%d</td><td>%d</td><td>%d</td><td>%2.3f</td><td>%s</td></tr>", static_cast<int>(future_url->second.navigation_count()), static_cast<int>(future_url->second.preconnection_count()), static_cast<int>(future_url->second.preresolution_count()), static_cast<double>(future_url->second.subresource_use_rate()), future_url->first.spec().c_str()); } } output->append("</table>"); } void Predictor::GetHtmlInfo(std::string* output) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Local lists for calling UrlInfo UrlInfo::UrlInfoTable name_not_found; UrlInfo::UrlInfoTable name_preresolved; // Get copies of all useful data. typedef std::map<GURL, UrlInfo, RightToLeftStringSorter> SortedUrlInfo; SortedUrlInfo snapshot; // UrlInfo supports value semantics, so we can do a shallow copy. for (Results::iterator it(results_.begin()); it != results_.end(); it++) snapshot[it->first] = it->second; // Partition the UrlInfo's into categories. for (SortedUrlInfo::iterator it(snapshot.begin()); it != snapshot.end(); it++) { if (it->second.was_nonexistent()) { name_not_found.push_back(it->second); continue; } if (!it->second.was_found()) continue; // Still being processed. name_preresolved.push_back(it->second); } bool brief = false; #ifdef NDEBUG brief = true; #endif // NDEBUG // Call for display of each table, along with title. UrlInfo::GetHtmlTable(name_preresolved, "Preresolution DNS records performed for ", brief, output); UrlInfo::GetHtmlTable(name_not_found, "Preresolving DNS records revealed non-existence for ", brief, output); } UrlInfo* Predictor::AppendToResolutionQueue( const GURL& url, UrlInfo::ResolutionMotivation motivation) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); DCHECK(url.has_host()); if (shutdown_) return NULL; UrlInfo* info = &results_[url]; info->SetUrl(url); // Initialize or DCHECK. // TODO(jar): I need to discard names that have long since expired. // Currently we only add to the domain map :-/ DCHECK(info->HasUrl(url)); if (!info->NeedsDnsUpdate()) { info->DLogResultsStats("DNS PrefetchNotUpdated"); return NULL; } info->SetQueuedState(motivation); work_queue_.Push(url, motivation); StartSomeQueuedResolutions(); return info; } void Predictor::StartSomeQueuedResolutions() { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); while (!work_queue_.IsEmpty() && pending_lookups_.size() < max_concurrent_dns_lookups_) { const GURL url(work_queue_.Pop()); UrlInfo* info = &results_[url]; DCHECK(info->HasUrl(url)); info->SetAssignedState(); if (CongestionControlPerformed(info)) { DCHECK(work_queue_.IsEmpty()); return; } LookupRequest* request = new LookupRequest(this, host_resolver_, url); int status = request->Start(); if (status == net::ERR_IO_PENDING) { // Will complete asynchronously. pending_lookups_.insert(request); peak_pending_lookups_ = std::max(peak_pending_lookups_, pending_lookups_.size()); } else { // Completed synchronously (was already cached by HostResolver), or else // there was (equivalently) some network error that prevents us from // finding the name. Status net::OK means it was "found." LookupFinished(request, url, status == net::OK); delete request; } } } bool Predictor::CongestionControlPerformed(UrlInfo* info) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Note: queue_duration is ONLY valid after we go to assigned state. if (info->queue_duration() < max_dns_queue_delay_) return false; // We need to discard all entries in our queue, as we're keeping them waiting // too long. By doing this, we'll have a chance to quickly service urgent // resolutions, and not have a bogged down system. while (true) { info->RemoveFromQueue(); if (work_queue_.IsEmpty()) break; info = &results_[work_queue_.Pop()]; info->SetAssignedState(); } return true; } void Predictor::OnLookupFinished(LookupRequest* request, const GURL& url, bool found) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); LookupFinished(request, url, found); pending_lookups_.erase(request); delete request; StartSomeQueuedResolutions(); } void Predictor::LookupFinished(LookupRequest* request, const GURL& url, bool found) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); UrlInfo* info = &results_[url]; DCHECK(info->HasUrl(url)); if (info->is_marked_to_delete()) { results_.erase(url); } else { if (found) info->SetFoundState(); else info->SetNoSuchNameState(); } } void Predictor::DiscardAllResults() { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Delete anything listed so far in this session that shows in about:dns. referrers_.clear(); // Try to delete anything in our work queue. while (!work_queue_.IsEmpty()) { // Emulate processing cycle as though host was not found. GURL url = work_queue_.Pop(); UrlInfo* info = &results_[url]; DCHECK(info->HasUrl(url)); info->SetAssignedState(); info->SetNoSuchNameState(); } // Now every result_ is either resolved, or is being resolved // (see LookupRequest). // Step through result_, recording names of all hosts that can't be erased. // We can't erase anything being worked on. Results assignees; for (Results::iterator it = results_.begin(); results_.end() != it; ++it) { GURL url(it->first); UrlInfo* info = &it->second; DCHECK(info->HasUrl(url)); if (info->is_assigned()) { info->SetPendingDeleteState(); assignees[url] = *info; } } DCHECK(assignees.size() <= max_concurrent_dns_lookups_); results_.clear(); // Put back in the names being worked on. for (Results::iterator it = assignees.begin(); assignees.end() != it; ++it) { DCHECK(it->second.is_marked_to_delete()); results_[it->first] = it->second; } } void Predictor::TrimReferrersNow() { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Just finish up work if an incremental trim is in progress. if (urls_being_trimmed_.empty()) LoadUrlsForTrimming(); IncrementalTrimReferrers(true); // Do everything now. } void Predictor::SerializeReferrers(ListValue* referral_list) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); referral_list->Clear(); referral_list->Append(new FundamentalValue(PREDICTOR_REFERRER_VERSION)); for (Referrers::const_iterator it = referrers_.begin(); it != referrers_.end(); ++it) { // Serialize the list of subresource names. Value* subresource_list(it->second.Serialize()); // Create a list for each referer. ListValue* motivator(new ListValue); motivator->Append(new StringValue(it->first.spec())); motivator->Append(subresource_list); referral_list->Append(motivator); } } void Predictor::DeserializeReferrers(const ListValue& referral_list) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); int format_version = -1; if (referral_list.GetSize() > 0 && referral_list.GetInteger(0, &format_version) && format_version == PREDICTOR_REFERRER_VERSION) { for (size_t i = 1; i < referral_list.GetSize(); ++i) { ListValue* motivator; if (!referral_list.GetList(i, &motivator)) { NOTREACHED(); return; } std::string motivating_url_spec; if (!motivator->GetString(0, &motivating_url_spec)) { NOTREACHED(); return; } Value* subresource_list; if (!motivator->Get(1, &subresource_list)) { NOTREACHED(); return; } referrers_[GURL(motivating_url_spec)].Deserialize(*subresource_list); } } } void Predictor::TrimReferrers() { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); if (!urls_being_trimmed_.empty()) return; // There is incremental trimming in progress already. // Check to see if it is time to trim yet. base::TimeTicks now = base::TimeTicks::Now(); if (now < next_trim_time_) return; next_trim_time_ = now + kDurationBetweenTrimmings; LoadUrlsForTrimming(); PostIncrementalTrimTask(); } void Predictor::LoadUrlsForTrimming() { DCHECK(urls_being_trimmed_.empty()); for (Referrers::const_iterator it = referrers_.begin(); it != referrers_.end(); ++it) urls_being_trimmed_.push_back(it->first); UMA_HISTOGRAM_COUNTS("Net.PredictionTrimSize", urls_being_trimmed_.size()); } void Predictor::PostIncrementalTrimTask() { if (urls_being_trimmed_.empty()) return; MessageLoop::current()->PostDelayedTask( FROM_HERE, trim_task_factory_.NewRunnableMethod(&Predictor::IncrementalTrimReferrers, false), kDurationBetweenTrimmingIncrements.InMilliseconds()); } void Predictor::IncrementalTrimReferrers(bool trim_all_now) { size_t trim_count = urls_being_trimmed_.size(); if (!trim_all_now) trim_count = std::min(trim_count, kUrlsTrimmedPerIncrement); while (trim_count-- != 0) { Referrers::iterator it = referrers_.find(urls_being_trimmed_.back()); urls_being_trimmed_.pop_back(); if (it == referrers_.end()) continue; // Defensive code: It got trimmed away already. if (!it->second.Trim(kReferrerTrimRatio, kDiscardableExpectedValue)) referrers_.erase(it); } PostIncrementalTrimTask(); } //------------------------------------------------------------------------------ Predictor::HostNameQueue::HostNameQueue() { } Predictor::HostNameQueue::~HostNameQueue() { } void Predictor::HostNameQueue::Push(const GURL& url, UrlInfo::ResolutionMotivation motivation) { switch (motivation) { case UrlInfo::STATIC_REFERAL_MOTIVATED: case UrlInfo::LEARNED_REFERAL_MOTIVATED: case UrlInfo::MOUSE_OVER_MOTIVATED: rush_queue_.push(url); break; default: background_queue_.push(url); break; } } bool Predictor::HostNameQueue::IsEmpty() const { return rush_queue_.empty() && background_queue_.empty(); } GURL Predictor::HostNameQueue::Pop() { DCHECK(!IsEmpty()); std::queue<GURL> *queue(rush_queue_.empty() ? &background_queue_ : &rush_queue_); GURL url(queue->front()); queue->pop(); return url; } void Predictor::DeserializeReferrersThenDelete(ListValue* referral_list) { DeserializeReferrers(*referral_list); delete referral_list; } //------------------------------------------------------------------------------ // Helper functions //------------------------------------------------------------------------------ // static GURL Predictor::CanonicalizeUrl(const GURL& url) { if (!url.has_host()) return GURL::EmptyGURL(); std::string scheme; if (url.has_scheme()) { scheme = url.scheme(); if (scheme != "http" && scheme != "https") return GURL::EmptyGURL(); if (url.has_port()) return url.GetWithEmptyPath(); } else { scheme = "http"; } // If we omit a port, it will default to 80 or 443 as appropriate. std::string colon_plus_port; if (url.has_port()) colon_plus_port = ":" + url.port(); return GURL(scheme + "://" + url.host() + colon_plus_port); } } // namespace chrome_browser_net